
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/cise

Vol. 10, No. 1
January/February 2008

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

38	 This arTicle has been peer-reviewed.	 Computing in SCienCe & engineering

S D S S
S c i e n c e A r c h i v e

The sqlLoader
Data-Loading Pipeline

Alex SzAlAy And Ani R. ThAkAR

Johns Hopkins University
Jim GRAy

Microsoft Research

Using a database management system (DBMS) is essential to ensure the data integrity and
reliability of large, multidimensional data sets. However, loading multiterabyte data into a
DBMS is a time-consuming and error-prone task that the authors have tried to automate by
developing the sqlLoader pipeline—a distributed workflow system for data loading.

D atabase management systems offer
considerable advantages and are es-
sential for reliable data warehousing
and integrity, not to mention accept-

able data retrieval performance and data mining
capabilities. Of course, we must ingest the data
into the DBMS before we can realize any of these
benefits. Loading large multidimensional data
sets such as the Sloan Digital Sky Server (SDSS)
into a DBMS is a critical and time-consuming
step that’s fraught with potential missteps. In
many ways, loading the data is the weakest link
in archive publishing: it’s typically the most er-
ror-prone, time-consuming yet least-planned and
budgeted part of archive operations.

The virtual observatory (VO)1 effort involves
integrating many historical and current data sets
into online repositories. Loading these data sets
(and reloading them as schemas change) is an on-
going task. With the multiterabyte-to-petabyte
data volumes anticipated for upcoming archives

in the VO, data-loading time is expected to be-
come a critical factor. Disk speeds won’t keep up
with the exponential increase in data volume, and
with the limited operational resources typical for
scientific archives, loading such large archives can
take several days if parallelism is used—several
weeks if not. In practice, archive data often must
be reloaded several times even before it’s pub-
lished; errors in the data and in the data-process-
ing pipeline cause reloads, so any changes to the
schema or performance considerations sometimes
make reloading the data the most expedient and
clean option.

The efficiency and reliability of the data-load-
ing process therefore is of paramount importance
so as to minimize the operational resources re-
quired to reload data and maximize the chance of
the data being correct the first time it’s published.
A crucial fact about public archives is that once
the data is published, it’s immutable—that is, it
can’t be retracted or changed, especially after sci-
entific research has been based on the data and
papers have been published. As such, we get only
one chance to get the data loaded correctly, so the
loading procedure must be as reliable, thorough,
and automated as possible.

Accordingly, we’ve developed a data-loading
pipeline for the SDSS data called the sqlLoader.2
We subdivided the loading process into a sequence

1521-9615/08/$25.00 © 2008 ieee
Copublished by the IEEE CS and the AIP

January/February 2008 39

of steps and developed a largely automated work-
flow system that executes these steps (in parallel
where possible) on a distributed cluster of load
servers. Loading the multiterabyte SDSS archive
would be chaotic, if not impossible, without the
automation and workflow management that the
sqlLoader pipeline provides.

Loading SDSS Data
There are three main operational stages in SDSS
data loading:

Converting Flexible Image Transport System
(FITS) binary data to ASCII comma-separated
value (CSV) files. We store the output from the
SDSS processing pipelines in binary form in the
operational database (OpDB). We then export
it from the OpDB into binary FITS files—a
standard astronomy format for binary data and
images. The FITS data must be converted to
ASCII CSV format before it can be ingested
into the databases (see Figure 1).
Loading CSV files into temporary SQL Server da-
tabases. Once we convert the data to CSV, we
load it into temporary SQL Server databases
called task databases and validate it—that is,
we check the export for any inconsistencies and
errors.
Publishing the data from the task databases to the fi-
nal SDSS database. This is the stage in which we
merge all the data from multiple task databases
and write it to the database that will be avail-
able to users, also known as the publish database.
This stage creates the database indices and oth-
er ancillary tables. This last part is complex and
time-consuming enough that we consider it a
separate “finish” substage.

The first stage is performed on the Linux side where
the FITS files are hosted. The last two stages are
automated on the Windows side in the sqlLoader
workflow as the load and publish/finish stages.

FiTS-to-cSv converter
When we export the raw data stored in the SDSS
OpDB to FITS files, several different types of
files correspond to distinct data sets within the
SDSS data, including image and spectroscopic
data. A unit of exported image data is a chunk, or a
single resolve operation in the OpDB. Because the
data is often recalibrated as the image-processing
pipeline is refined, different calibrations result in
different skyVersions of the image data:

Target skyVersion is the calibration from which

•

•

•

•

we chose the spectroscopic targets.
Best skyVersion is the latest, best calibration of
the data.
Runs skyVersion is a temporary calibration that
might be reclassified as Target or Best later. Un-
til then, it’s only for use in internal collabora-
tion and isn’t released to the public.

In addition to the image data sets, the public
data release also includes spectroscopic plates and
tiling data. A utility called sqlFits2Csv converts
these FITS files into ASCII CSV files and JPEG
image files for ingestion into the SQL databases.
sqlFits2Csv creates one type of output file for each
table in the database; it also assigns to each catalog
object a unique 64-bit object ID that we use as the
primary key in the corresponding database table.

The conversion to CSV also acts as a “blood–
brain” barrier between the Linux and Windows
worlds and between the file and database worlds—
that is, it keeps either side protected from opera-
tional (as well as some functional) problems on
the other side. All the popular database systems
support generic CSV file converters. The CSV
files are Samba-mounted on the Windows side
and imported into the databases by the sqlLoad-
er’s distributed workflow system. Figure 1 shows
the data flow.

Workflow Management
The SQL Server agent process controls the loader

•

•

TChunk BChunk Run Plate Tiling

Linux

Windows

OpDB export

CSV files

sqlLoader

Catalog Archive Server databases

sqlFits2CSV

TChunk BChunk Run Plate Tiling

Figure 1. Sloan Digital Sky Survey data-loading pipelines. Flexible
Image Transport System (FITS) data exported by the operational
database (OpDB) is first converted to comma-separated value (CSV)
format on the Linux side. It’s then Samba-mounted and loaded into
the SQL Server databases on the Windows side.

40	 Computing in SCienCe & engineering

workflow using two agent jobs: load and pub. The
load job runs once every minute, picking up the
next step from the load stage for the first active
task and executing it. Similarly, the pub job wakes
up once every minute and picks up the next step in
the publish/merge or finish stages. Figure 2 shows
the workflow stages.

The loader workflow has three distinct stages:

The load stage includes checking the input CSV
files, loading them into temporary task databas-
es, validating the data in the task databases, and
making a backup of the task database.
The publish stage involves publishing the indi-
vidual task databases to the publish database,
merging the various data streams (imaging,
spectro, and tiling) in the publish database, and
creating the indices on the main tables.
The finish stage includes running the final tests
and creating the derived tables and precomput-
ed joins as well as the corresponding indices.

We subdivide the publish stage further into two
substages: publish and finish. At the moment, we
must run the publish and finish stages sequential-
ly because they write to the same (publish) data-
base. The load/validate stages can run in parallel
on a cluster of load servers, each having its own
view of the schema and its own task database. On
remote load servers (slaves), the local SQL Server
agent also controls the workflow using account

•

•

•

delegation. We create a domain “loadagent” ac-
count for this purpose.

Distributed Framework
There are two main parts of the sqlLoader
framework—loadadmin and loadsupport—facili-
tate distributed and parallel data loading with
a cluster of load servers. The loadadmin scripts
and database control the load framework on the
master load server. The loadsupport scripts and
databases set up the loading on the slave load
servers and build the ancillary framework to fa-
cilitate the loading process, such as setting up
user privileges, the links between master and
slave load servers (if applicable), spatial index-
ing, and utilities to manage units of the loading
process (phase, step, task, and so on). Figure 3
shows the relationship between the loadadmin
and loadsupport parts of the framework. Each
of the satellite or slave servers links only to the
master, not to each other.

The loadsupport database contains read-only
remote views of the loadadmin database rather
than copies so that changes in the master data or
schema are automatically reflected in the slaves.
This feature uses the SQL Server’s linked server
mechanism to make remote databases and tables
appear to be local.

Load and Publish roles
The loadadmin and loadsupport servers have dif-
ferent roles in the distributed implementation:
the loadadmin server runs both in load and pub-
lish roles, whereas the loadsupport servers run
only in the load role. The load role corresponds
to loading CSV files into individual component
databases (one per load unit), whereas the pub-
lish role involves validating and transferring the
component database’s contents into the publish
database for each data set. Therefore, we can do
the loading in parallel, but the final part of the
publishing stage that brings all the loaded com-
ponents together into the publish database must
be done sequentially. We refer to this final pub-
lish step as the merge/finish step to avoid confus-
ing it with the copying of the task databases to
the publish database.

Several load servers can be in the load role, but
only one server can be in the pub role at a time.
On each slave server (master and slave can coexist
on one server), the SQL agent load job picks up
the next load task to execute from its view of the
task table. Similarly, on the publish server (usually
the master), the SQL agent pub job picks up the
next publish task from its view of the task table.

Load

Finish

Validate

Export

Check comma-separated value

Build task databases

Build SQL schema

Back up

Detach

Publish

Clean up

Publish

EXP

CHK

BLD

SQL

VAL

BCK

DTC

PUB

CLN FIN

Figure 2. The workflow diagrams for the sqlLoader, showing the load,
publish, and finish workflows. The load workflow is the most time-
consuming and can run in distributed parallel mode. The publish and
finish stages must be sequential.

January/February 2008 41

Loader command Scripts
The sqlLoader framework contains several kinds
of scripts:

Windows command scripts (.bat files) create
the loading framework and invoke the SQL
scripts;
SQL scripts (.sql files) contain the SQL code
to set up the loading framework and load the
data;
Data Transformation Services (DTS) packages
perform special-purpose data import tasks; and
Visual Basic (VBScript) scripts check the CSV
files’ syntax and parse the documentation files
to load them into the databases.

The initial creation of the loader framework,
including building the loadadmin and loadsup-
port databases, must be done via two main Win-
dows batch/command scripts—one each to build
the loadadmin (master) and loadsupport (slave)
frameworks. Although for conceptual clarity we
show the master hosting only a loadadmin data-
base in Figure 3, in practice, the master server
hosts both the loadadmin database and a loadsup-
port database.

Loader SQL Scripts
The command scripts invoke the loadadmin and
loadsupport SQL scripts to perform the actual da-
tabase tasks (see Table 1). We coded most of the
functions required for data import, validation,
and publishing in the form of SQL stored pro-
cedures in the loadsupport task and publish data-
bases. These are defined in Table 1 and installed
in the appropriate databases upon creation.

Schema Files
The schema creation scripts for the Catalog Ar-
chive Server (CAS) databases are in the schema
subdirectory. The contents of this subdirectory en-
capsulate the data model for the archive and hence
will change the most when adapted to other (non-
SDSS) archives. Five subdirectories at this level
contain various aspects of the database schema:

csv contains CSV outputs from the documenta-
tion generation scripts—in general, this direc-
tory contains input files for metadata tables. It
also contains CSV input files for tables of non-
SDSS data required to do meaningful science
with the SDSS (such as Stetson or RC3 cata-
logs) and derived science data tables such as the
Quasi-Stellar Object (QSO) catalogs.
doc contains the schema documentation files.

•

•

•

•

•

•

etc includes miscellaneous SQL script files
for housekeeping and utility schema-related
functions.
log holds the weblogging schema and scripts .
sql is the main subdirectory containing the
SDSS database schema files. The SQL scripts
in this subdirectory create the various schema
tables, views, stored procedures, and functions.
The xschema.txt file in this directory drives
the schema creation. It contains a list of schema
files that the loader executes in the order indi-
cated in Table 2.

Data validator
Data validation is a critical step in the data-load-
ing process. The validation procedure has the fol-
lowing objectives:

Correctness ensures that the data-loading pro-
cess and SDSS data-processing pipeline don’t
have errors. An important function is to uncov-
er data corruption that can occur as a result of
disk failures or any problems with networking
hardware.
Completeness checks that all the data is loaded
and no data is lost.
Self-consistency checks referential integrity.

Data emerges from the data-processing pipe-

•

•
•

•

•

•

Samba-mounted comma-separated value files

Publish server Finish/merge

Slave LoadSupport

View of
master
schema

Task DB

data

LocalAdmin

Master
schema

Task DB

data

Master

Slave LoadSupport

View of
master
schema

TaskTask

Task

Task DB

data

Load monitor

Publish
schema

Publish
data

Figure 3. Master (loadadmin) and slave (loadsupport) servers. The
loadsupport servers have remote views of the loadadmin schema
via linked server connections. Note that the master server hosts, in
practice, both loadadmin and loadsupport environments.

42	 Computing in SCienCe & engineering

line as ASCII CSV files and image files in JPEG
and GIF formats. Each batch of files is imported
into a staging database where it’s validated and
merged. Once validated, the data is moved to the
production or archive databases. Figure 4 shows
the validation steps.

Photometric and spectroscopic data have differ-
ent routines, but the Best, Target, and Runs data
sets have approximately the same validation logic.

The validator is invoked as a set of stored pro-
cedures on a particular task database; its job is to
validate that database, which it does by searching
the task table using the host and database names
as keys. The returned record tells the validator

the type of validation (photo or spectro);
the type of imaging data (Best, Target, Runs) if
it’s a photo job;
the destination database; and
a job ID that’s used as a key to all future log
events.

spValidate then branches to spValidatePlates or
spValidatePhoto (there’s also an spValidateTiles
for the tiling data). When these routines com-
plete, spValidate writes a completion message in
the task table and exits. At each step, the valida-
tion routines record the test’s result. The Load
Monitor can watch the validation progress and as-

•
•

•
•

Table 1. sqlLoader scripts required for data import, validation, and publishing.

Script file Script functions

loadadmin-build.sql Deletes the existing loadadmin database if any.
Turns on the trace flag 1807 (a secret Windows flag that lets us mount remote databases).
Sets numerous database options.
Turns autoshrink off because the performance bogs down when autoshrink tasks run in the
background.

loadadmin-schema.sql Creates Task, Step, and Phase tables in the loadadmin database. Inserts null task and step to
assign system errors if everything fails.
Creates the NextStep table, which drives the loading sequence by specifying the
procedures for the next step.
Creates the ServerState table, which lets us stop the server and thus stop processing.
Creates the Constants table and puts it in all the paths.
Gets the server name from a global variable. (Note the SQL Server name for the server must
be the same as the Windows name.)

loadadmin-local-config.sql Must be adapted for the local configuration before running the loader.
Sets up the paths for comma-separated value files.
Sets up backup paths.
Sets up the loadagent user and domain so that the SQL agent can be started up.

loadsupport-build.sql Must be edited to update the domain account names explicitly. (In the future, we will likely
reorganize it to deal differently with master/slave loadservers.)
Creates a webagent user account used by the Load Monitor Web interface to connect to
the loadserver(s) and run loader tasks to make sure that the Web agent is a sysadmin on the
loadserver and that only the master loadserver does this.

loadsupport-schema.sql Creates tables specific to loadsupport (at the moment, only the LoadServer table that
contains the current server’s name).

loadsupport-link.sql Sets up the link between the master and slave server for this slave.
Creates a two-way link-server relationship between the slave and master servers.
Sets up all the views of the loadadmin schema.
Enables remote transactions.

loadsupport-sp.sql Sets up the stored procedures for loading from the server.
Creates constructors for phase, step, and task.
Performs start/end steps (only on the loadserver).
Kills a task, ensuring that log records are kept and files are cleaned up.
Deletes the task database when the same task is resubmitted (with new taskID).

loadsupport-utils.sql Stores procedures for the load stage.

loadsupport-steps.sql Controls high-level steps: each step has a stored procedure with the name “sp<name-of-
step>step” associated with it, which is the meat of the step’s logic, and an “sp<name-of-
step>” procedure, a wrapper that calls the “sp<name-of-step>step” procedure.

loadsupport-show.sql Displays Load Monitor screens.

January/February 2008 43

sess the validation’s success or failure by looking
at this journal (in the load database) or by looking
at the job summary record.

The photo (imaging) data validator performs
the following tasks:

It checks the uniqueness of the primary key
fields.
It creates temporary indices to make subse-

1.

2.

quent tests run faster.
It then tests a series of foreign keys.
It checks to see if the advertised populations
match the real populations.
It looks at the parent objects to see which child
objects were deblended from which parents.
It then tests to see that the number of child
objects matches the count for the respective
parents for the first 1,000 non-null parents.

3.
4.

5.

Table 2. Sloan Digital Sky Survey database schema Data Definition Language (DDL) files.

Group File Description

Metadata FileGroups.sql Data-partitioning tables for multivolume disk

DataConstants.sql Data Constants table and initialization

ConstantSupport.sql Support functions to display constants

MetadataTables.sql Metadata table definitions

IndexMap.sql Index definitions for all tables

Versions.sql Database versions

Basic schema PhotoTables.sql Photometry (imaging) table definitions

spPhoto.sql Support functions for imaging data

NeighborTables.sql Match and Neighbors tables

SpectroTables.sql Spectroscopic Data tables

spSpectro.sql Support functions for spectroscopic data

TilingTables.sql Plate Tiling Information tables

RegionTables.sql Sector and Region tables

FrameTables.sql Imaging frames for JPEG display

Views.sql Definitions of views on all tables

Spatial functions spHtmCSharp.sql C# Hierarchical Triangular Mesh (HTM) library functions

spSphericalLib.sql Support library for HTM functions

spNearby.sql Proximity search functions

Region & sector spCoordinate.sql Coordinate conversion functions

spRegion.sql Functions to compute regions

spBoundary.sql Functions to compute survey boundaries

spSector.sql Functions to compute plate sectors

Diagnostics & test spCheckDB.sql Various diagnostics functions

spTestQueries.sql Test query suite

Web interface spDocSupport.sql Schema browser and online documentation support functions

spSQLSupport.sql Web SQL query handling functions

spUrlFitsSupport.sql Functions to compute URLs of Flexible Image Transport System file versions
of the data finish, validation, and utility functions

spNeighbor.sql Neighbor and Match table computation functions

spSetValues.sql Functions to initialize various computed columns, such as HTM IDs

spValidate.sql Functions for data validation (validate step in loading)

spPublish.sql Functions to publish data to the pub database

spFinish.sql Functions for finish stage processing

spCopyDBSubset.sql Functions to make various-sized subsets of the Best database

44	 Computing in SCienCe & engineering

It also tests the first 1,000 image objects to
see that the external Hierarchical Triangu-
lar Mesh (HTM) calculation is similar to the
internal one. We allow a few errors due to
rounding, but 99 percent of the results should
agree exactly.
It computes the neighbors of each object; for
a Best database, it computes a 30-arc-sec-
ond neighborhood, but the Target and Runs
databases use a 3-arc-second radius. The
neighbor computation is the longest step of
the validation process. The final neighbors
computation in the publish database is done
in the finish stage.
Finally, the validator drops the indices it cre-
ated for the validation work.

spValidatePhoto then returns to spValidate. If the
database holds spectroscopic data, it will be vali-
dated next.

Testing spectroscopic data is simpler. This data
is always destined for the spectro part of the data-
base schema, and there are fewer tests:

spValidateSpectro first tests the uniqueness
of the primary keys.
It then creates two indices to make the subse-
quent tests run faster.
Next, it tests several foreign keys.
It also tests the first 1,000 HTM IDs in the
SpecObj table (SpecObj.htmID) to check
that the external HTM calculation is similar

6.

7.

8.

1.

2.

3.
4.

to the internal one.
Finally, it drops the working indices and
returns.

The last stage of the loading—in which ev-
erything is brought together in the publish data-
base, the database indices are created, and all the
derived and precomputed tables are created—is
complex and time-consuming enough to warrant
its own section.

Finish Stage
Some of the steps in the finish process are SDSS-
specific, but others are relevant for any scientific
archive. The finish procedures are all enshrined
in the spFinish.sql file in the schema directory,
although many of these procedures call other
functions and procedures elsewhere in the direc-
tory. Figure 5 shows the procedures and their
dependencies.

The following steps are executed in the finish
stage in order. Currently, all these steps must be
executed sequentially on a single server:

Drop indices. The first step is to drop any in-
dices as necessary before updating the data in
the affected tables. For incremental loading,
we usually leave the primary key (PK) indices
in and drop the foreign key (FK) and other
nonclustered indices.
Synchronize schema. This is usually necessary
only for incremental loading, when there are
schema changes since the last incremental
load.
Load PhotoTag. The PhotoTag table is a ver-
tical partition of the PhotoObjAll table and
hence is created from the PhotoObjAll table
during the finish processing.
Build primary keys. If any of the PKs (and
associated indices) were dropped in the first
step, they’re recreated here. For the larger
tables, such as PhotoObjAll (which is more
than a terabyte for Data Release 6) and
PhotoProfile (which has more than 10 bil-
lion rows), this step can take several days
to finish.
Build indices. Other indices besides the PK in-
dices are built in this step as necessary.
Build foreign keys. FKs and associated indi-
ces are built after all other indices have been
built. (FK indices require the PK indices
to be in place first.) The FKs on the larger
tables, especially PhotoProfile, usually take
several days to be created.
Build Match tables. Many objects in the SDSS

5.

1.

2.

3.

4.

5.

6.

7.

Test uniqueness
of primary keys

Test
foreign keys

Test
cardinalities

Test
HTM IDs

Test parent–child
consistency

Test the unique key in each table

Test for consistency of keys that link tables

Test consistency of numbers of various
quantities

Test the Hierarchical Triangular Mesh (HTM)
IDs used for spatial indexing

Ensure that all parents and children are
linked

Figure 4. Data validation checks performed by the data validator. The
checks range from basic data integrity tests to domain-specific self-
consistency checks.

January/February 2008 45

data set are observed more than once, usual-
ly because they’re in the overlapping bound-
aries between fields. The Match and Match
Head tables keep track of multiply observed
objects, which are useful for time-domain
studies—for example, to study variable ob-
jects over time. (The procedure for building
these tables is in the SkyServer Algorithms
Help page at http://cas.sdss.org/dr6/en/help/
docs/algorithm.asp?key=match.)
Compute neighbors. The Neighbors table is
a precomputed table that finds the spatial
neighbors within 30 arc-seconds of each
 object in the PhotoObjAll table for fast
 proximity-type searches in the database.
Compute regions and sectors. The Region and
Sector tables are part of the Tiling group
of tables that contain survey geometry con-
structs necessary for large-scale structure
studies—for example, to gauge the complete-
ness of spectroscopic targeting. Comput-
ing the regions and especially the sectors is
a complex task, and we’ve written a set of
stored procedures and functions to compute
the tiling geometry. (We describe the al-

8.

9.

gorithm in the SkyServer Algorithms Help
page at http://cas.sdss.org/dr6/en/help/docs/
algorithm.asp?key=sector.)
Load Science tables. These (usually external)
science tables are necessary for the SDSS
data, and include tables of standard stars or
other well-known catalogs. Sometimes they
also include derived science tables, such as
those computed from SDSS data.
Synchronize spectra with photometry. The spec-
troscopic observations are matched up spa-
tially with the photometry in this step.
Build finish indices. Some indices must be built
at the end, after most of the finish processing
completes—for example, indices on Spectro
tables and Match and Neighbors tables.
Match Target and Best photometry. As we men-
tioned earlier, we use at least two calibrations
of the data: the Target calibration from which
the spectroscopic targets were chosen and the
Best calibration, which is the latest, greatest
calibration. This step correlates the objects
from the Target skyVersion with those from
the Best skyVersion.
Load patches. The last step is to apply any

10.

11.

12.

13.

14.

spFinish FileGroups

spSpectro

spNeighbor

spCheckDB

spValidate

spTestQueries

spWebSupport

spSetValues
spBoundary

spFrameTables

spHTMspCoordinate

spPhoto

ConstantSupport
IndexMap

spNearby

spSectorspPublish

spRegion

Figure 5. Dependency chart for finish functions and stored procedures. This shows the complexity and scope of the merge/
finish stage in the loading; it’s also the most application-dependent part of the pipeline.

46	 Computing in SCienCe & engineering

patches necessary before releasing the data
to the public. Normally, patch files are listed
in a predetermined file in the schema direc-
tory and automatically loaded and executed
in this step.

In addition to these steps, we must tie up a
couple of loose ends manually outside the finish-
ing process, mainly because the data isn’t available
during the finish. Right now, the finish stage takes
more than two weeks to complete. We’re looking
for ways to speed this up, including parallelizing
some of the steps and optimizing them for incre-
mental data ingest.

Load Monitor or Admin Web Pages
The admin subdirectory contains the Web pages
and associated files and scripts for the loader ad-
ministration Web interface (the Load Monitor).

This subdirectory should be copied or moved to
the Web tree where the Load Monitor is to be ac-
cessed from.

The Web server connects to the loadadmin
server’s loadsupport database. This directory con-
tains four kinds of files:

active server pages (.asp) files that correspond to
actual Web pages;
Cascading Style Sheet (.css) files used by the
Web pages to set up the overall look and feel;
JavaScript (.js) files containing functions in Java-
Script to perform loader admin procedures;
and
include (.inc) files, which are part of the other
three file types.

ASP files correspond to each of the commands
listed in the menu on the main sqlLoader page.
Figure 6 gives an example of a Load Monitor ASP
page for the All Tasks command. Each of these
ASP scripts formulates and submits an SQL que-
ry to the loadsupport database on the loadadmin
server, which sees the query as being submitted by
the webagent user. The query can execute a stored
procedure in the loadsupport database or request
rows from a loadsupport table.

In addition to scripts for displaying the various
pages showing task logs and information, there is
an ASP script that displays a summary statistics
page for loader tasks showing the average total
time taken for each step in the task and for each
table processed (see Figure 7).

Task Management
The administrator launches the loading process
from the Load Monitor Web interface. The basic
unit of loader processing at the top level is a task. A
new task must be created for each unit of the load-
ing using the New Task or Upload pages.

The loader framework divides tasks into steps
and then subdivides them into phases. Steps
have a well-defined start and end, but a phase
does not. A step also has an SQL stored proce-
dure associated with it. The Tasks Display pages
(active, all, finished, and killed tasks) show task
tables containing the task, step, and phase IDs,
hence the granularity of the task display is a
single phase.

creating a new task. The Add New Task page (see
Figure 8) creates a new loader task. The user must
enter the following task parameters:

The data set is the release being loaded (for ex-

•

•

•

•

•

Figure 6. Load Monitor showing the All Tasks display page.

Figure 7. Load Monitor statistics page. Average and
cumulative stats for all jobs are displayed.

January/February 2008 47

ample, DR1, DR2, or TEST for testing). It’s
the same as the first parameter given to the
build-publish-db.bat script.
The export type is the data set to which we’re ex-
porting. The choices are Best, Runs, or Target for
an imaging load; plates for spectro; tiles for til-
ing; and a special export type called finish for the
last step that merges all the data streams (photo,
spectro, and tiling) and computes the indices.
The xroot is the root of the exported CSV
directory tree on the Linux side (Samba-
mounted). In Windows notation, this is
\\hostname\directory\subdir.
xid is the identifier of the export or load unit—
that is, the chunk, plates, or tiles that must be
loaded. This is the name of the subdirectory in
the CSV directory tree that contains the runs,
plates, or tiles to be loaded.
The user is the name of the person running this
load task.
Optional comments describe this load’s purpose
or content.

New tasks can be added singly or in bulk. The
Add New Task page is for adding one task at a
time. The administrator can also upload a file
containing multiple task definitions using the
Upload page.

submitting multiple load tasks (file upload). Users
can submit multiple load tasks at once by build-
ing an upload file containing the task parameters
values in CSV format. Here’s an example of a load
file’s contents:

DR2,BEST,\\sdssdata\dr2data\csv\phCSV\

 best\1-82-1176576\,JohnDoe,best34

DR2,BEST,\\sdssdata\dr2data\csv\phCSV\

 best\1-86-1184468\,JohnDoe,best35

DR2,BEST,\\sdssdata\dr2data\csv\phCSV\

 best\1-86-1402340\,JohnDoe,best38

DR2,BEST,\\sdssdata\dr2data\csv\phCSV\

 best\1-86-1422868\,JohnDoe,best39

DR2,TARGET,\\sdssdata\dr2data\csv\

 phCSV\target\0-37-718022\,JohnDoe,

 targ39

DR2,TARGET,\\sdssdata\dr2data\csv\

 phCSV\target\0-82-1113106\,JohnDoe,

 targ40

Killing a task. A user can kill a task by clicking on
the last column of the task display in the tasks
table. After prompting the user for confirma-
tion, the loader cleans up the information asso-
ciated with that task. However, it won’t delete

•

•

•

•

• some files, especially the temporary task data-
bases, until the administrator submits the same
task (with the same parameters but a different
task ID) again. This is intentional because rec-
reating a database is a time-consuming process,
and we assume that, in most cases, a killed task
will be rerun at a later date, so the data must be
loaded into the database eventually. Of course,
the administrator can always manually delete
the task database in SQL Server after the task
is killed.

Monitoring the load. Selecting the active tasks or
all tasks links in the Load Monitor shows users
the tasks currently running (see Figure 6). The
color coding for the task status is shown below
the task table. For each task, the task ID, the step
ID, and the phase number are shown, along with
the name of the task and step currently executing.
The task display updates once every minute.

For each task, users can select the steps, files,
or log links to look at the steps, files, and phases
logged (completed) for that task.

The preload step of a loading task usually takes
the longest time because CSV files are loaded
into the load database in this step. The largest
CSV files for each run—the PhotoObjAll*.csv
files—will take 10 to 15 minutes each to load, and
the preload step for one imaging chunk can take
more than an hour to complete. Users can moni-
tor the step’s progress by selecting the display for
that task.

The Load Monitor also lets the administrator
start and stop the SQL Server on each of the load-
servers from the Servers page.

Figure 8. Load Monitor Add New Task page. New
tasks can be added individually or uploaded in a
text file containing multiple task specifications. This
is the page for adding a single new task.

48	 Computing in SCienCe & engineering

A s we continue to use the sqlLoader to
load SDSS-II (the successor to SDSS)
data and look toward future archives,
we’re concentrating on several areas

of future development. First, several steps in the
finish stage recreate tables from scratch even
when data is incrementally added to the existing
archive. Most of these would run in a fraction of
their current time if we could adapt them to work
incrementally.

We’re also looking to fully automate every aspect
of the pipeline. Parts of the loading process still re-
quire human intervention, especially when things
go wrong. Precious time is lost when this happens,
so the pipeline needs to be fully automated.

Another crucial goal is to make the process scal-
able to petabyte-scale archives. This entails data
partitioning across a cluster of data nodes so we
can scale the loader out to archives that are an or-

der of magnitude or more larger than SDSS, such
as the Panoramic Survey Telescope and Rapid Re-
sponse System (Pan-STARRS, http://pan-starrs.
ifa.hawaii.edu/) and the Large Synoptic Survey
Telescope (LSST, www.lsst.org/).

Lastly, we’re researching ways to generalize
our current framework. The sqlLoader is tightly
coupled to the SDSS schema, even though we’ve
tried to keep all the schema files in a single direc-
tory. More work is needed to decouple the schema
from the framework. In doing so, we also want
to extend the pipeline to other DBMS environ-
ments beyond the SQL Server. This is the most
challenging task, but it’s essential if the sqlLoader
pipeline is to become a general-purpose data-
loading pipeline for other archives in astronomy
and beyond.

references
A. Szalay, “The National Virtual Observatory,” Proc. Conf.
Astronomical Data Analysis Software and Systems (ADASS) X,
vol. 238, F.R. Harnden Jr., F.A. Primini, and H.E. Payne, eds.,
Astronomical Soc. of the Pacific, 2001., p.3.

A. Thakar, S. Szalay, and J. Gray, “From FITS to SQL - Load-
ing and Publishing the SDSS Data,” Astronomical Data
Analysis Software and Systems (ADASS) XIII, vol. 314, F.
Ochsenbein, M.G. Allen, and D. Egret, eds., Astronomical
Soc. of the Pacific, 2004., p. 38.

alex szalay is Alumni Centennial Professor of Phys-
ics and Astronomy at the Johns Hopkins University.
His research interests include cosmology, large-scale
structure of the universe, data mining, and science
with large databases. Szalay has a PhD from Eotvos
University, Hungary. He is a member of the American
Astronomical Society and the Association for Com-
puting Machinery (ACM). Contact him at szalay@
jhu.edu.

ani r. Thakar is a research scientist in the Center for
Astrophysical Sciences at the Johns Hopkins Univer-
sity. His research interests include science with large
databases, data mining, and simulations of interact-
ing galaxies. Thakar has a PhD in astronomy from
the Ohio State University. He is a member of the
American Astronomical Society, the Astronomical So-
ciety of the Pacific, and the IEEE Computer Society.
Contact him at thakar@jhu.edu.

Jim Gray, prior to his disappearance in February
2007, was the Turing Award-winning distinguished
engineer, researcher, and manager of Microsoft Re-
search’s eScience Group in San Francisco. His primary
research interests were in databases and transaction
processing systems, with particular focus on using
computers to make scientists more productive.

1.

2.

IEEE Pervasive Computing

seeks accessible, useful papers on the latest

peer-reviewed developments in pervasive,

mobile, and ubiquitous computing. Topics

include hardware technology, software

infrastructure, real-world sensing and

interaction, human-computer interaction,

and systems considerations, including

deployment, scalability, security, and

privacy.

Author guidelines:

www.computer.org/mc/pervasive/

author.htm

 Call for

 Articles

Further

details:

pervasive@

computer.org

www.

computer.

org/pervasive

Peer-reviewed topics

Subscribe to CiSE online at http://cise.aip.org
and www.computer.org/cise

Interdisciplinary

Top-flight departments in each issue!

• Book Reviews

• Computer Simulations

• Education

• News

• Scientific Programming

• Technologies

• Views and Opinions

• Visualization Corner

Communicates to those at

the intersection of science,

engineering, computing,

and mathematics

MEMBERS

$45/year
for print and online

Emphasizes real-world

applications and modern

problem-solving

Anatomic Rendering

Stochastic Modeling

Python: Batteries Included

Climate Modeling

Computational Wizardries

High-Performance Computing
Defense Applications

Jan/Feb

Mar/Apr

May/Jun

Jul/Aug

Sep/Oct

Nov/Dec

2 0 0 7

The magazine of computational
tools and methods for

21st century science

SSDS Science Archive

Combinatorics in Computing

Computational Provenance

High-Performance Computing
in Education

Novel Architectures

Computational Astronomy

Jan/Feb

Mar/Apr

May/Jun

Jul/Aug

Sep/Oct

Nov/Dec

2 0 0 8

