
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/cise

Vol. 10, No. 1
January/February 2008

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

18	 This arTicle has been peer-reviewed.	 Computing in SCienCe & engineering

S D S S
S c i e n c e A r c h i v e

CasJobs and MyDB
A Batch Query Workbench

Catalog Archive Server Jobs (CasJobs) is an asynchronous query workbench service that lets
users run unrestricted SQL queries against scientific catalog archives. After running queries
in batch mode, users can save their results to a personal database called MyDB before
downloading them, letting users manage their query workloads, results, and histories
without causing network overloads.

T he SkyServer Web interface1,2 (http://
skyserver.sdss.org) performed ex-
tremely well for the Early Data Re-
lease (EDR) and Data Release 1

(DR1), even outperforming the object-oriented
database that we initially offered as the heavy-
duty query engine3 for power users. However, as
the data volume increased by a factor of four (from
a few hundred gigabytes to more than a terabyte)
from the EDR to DR2, and as the number of ob-
jects in the Sloan Digital Sky Survey’s Science Ar-
chive began to approach 100 million, queries that
requested large amounts of data—more than a few
gigabytes—became common.

Such queries were beyond the capabilities of the
browser-based, synchronous SkyServer Web in-
terface. Specifically, Web browsers cannot render
large outputs without disabling the Web server for
other users. It was also impractical to maintain a
browser session for the length of time required to
transport gigabytes of data over the network. The
interface’s technical difficulties associated with
synchronous query execution and high-bandwidth

queries over the network motivated us to seek an
asynchronous alternative. At the same time, we
were also struggling to meet users’ needs with re-
gard to querying the huge (and rapidly growing)
SDSS data set (see the “Querying a Terabyte Da-
tabase” sidebar for more details).

To address the SkyServer’s limitations and the
challenges of querying a terabyte data set, we de-
veloped Catalog Archive Server Jobs (CasJobs), an
asynchronous query workbench service4 that pro-
vides users of catalog archives the ability to run
virtually unrestricted SQL queries against the ar-
chive and save results to a personal database. In
developing this service, our primary goals were

to segregate short from long queries to better
utilize limited resources and
to maximize processing local to the database by
minimizing data movement over the network
(bringing the program to the data, not vice
versa).

CasJobs, which is available for free download at
http://skyserver.org/casjobs, has proven to be ex-
tremely useful and reliable in handling complex
and wide-ranging query workloads. Since its ini-
tial release in late 2002, CasJobs has seen steadily
increasing use and has handled an increasingly
complex query workload.

•

•

1521-9615/08/$25.00 © 2008 ieee
Copublished by the IEEE CS and the AIP

NolaN li aNd aNi R. ThakaR

Johns Hopkins University

January/February 2008 19

casJobs Functionality
CasJobs is a set of .NET Web applications and
services implemented with ASP.NET and C#

that provides an asynchronous batch query work-
bench interface to the SDSS Catalog Archive
Server (CAS). We can best describe CasJobs’s

Querying a TerabyTe DaTabase

We had to address some inadequacies of the Catalog
Archive Server (CAS) system as the size of the catalog

data began to approach a terabyte because a significant
fraction of our user community was expressing dissatisfac-
tion with the available tools and query performance.

Load Balancing
Our analysis of the usage logs for the SkyServer Web
interface1 over the first year of its release showed a power-
law CPU-usage pattern (see Figure A). Although the vast
majority of queries finished in under a minute, a small
number of them ran for a long time and slowed down the
database server for all users. More than a couple of such
long, intensive queries running concurrently on a given
server caused serious performance degradation. Clearly,
we needed to segregate the short and long queries to
avoid having a few users running intensive, long queries
significantly affect the majority of users running short
ones.

increasing SQL Usage
SQL usage steadily increased as users became more famil-
iar with it (see Figure B). They wanted to do more complex
queries and postprocessing of the results as they gradu-
ated beyond the simple Web-form-based and restricted
SQL interfaces in the SkyServer. The most sophisticated
CAS users wanted access to SQL Server 2000’s Query Ana-
lyzer so that they could submit complex queries directly
to the database server and write their own Transact-SQL
(T-SQL) functions and stored procedures to postprocess
the results of their queries. The SkyServer SQL Query page
didn’t support sessions or query batches, so it couldn’t
accept variables or other procedural elements of T-SQL.
Power users also wanted to cache their intermediate query
results on the server so they could download them when
they were satisfied with them. The only way to meet this
demand was to give users access to the full SQL functional-
ity offered by SQL Server and to let them store results on
the server.

Minimizing Data Movement
As the frequency of queries that returned gigabytes of data
increased, it became imperative to minimize unnecessary
data movement between the query output destination and
the database server—for example, due to the unsuccessful or
incorrect data requests that are common when users initially
formulate and refine their queries. Often, users realized that

they didn’t need a good fraction of the columns or rows only
after they had downloaded all the query results. This type of
unnecessary network traffic could be minimized only by sav-
ing output close to the database server for verification and
postprocessing.

reference
A. Szalay et al., “The SDSS SkyServer - Public Access to the Sloan

Digital Sky Server Data,” Proc. 2002 ACM SIGMOD Int’l Conf.

Management of Data, ACM Press, 2002, pp. 570–581.

1.

1

10

100

1,000

10,000

100,000

1,000,000

0 1 2 4 8 16 32 64 12
8

25
6

51
2
1,

02
4
2,

04
8
4,

09
6
8,

19
2

16
,3

84

32
,7

68

65
,5

36

26
,2

14

52
,4

28

Elapsed
CPU
Rows

CPU time (sec)

Q
ue

rie
s

Figure A. Number of queries as a function of elapsed and CPU time
(in seconds) vs. the number of rows. The vast majority of queries
finish in under a minute.

Monthly Catalog Archive Server usage

W
eb

 h
its

 a
nd

 S
Q

L
qu

er
ie

s

1.E+04

1.E+05

1.E+06

1.E+07

20
01

-6

20
01

-9

20
01

-1
2

20
02

-3

20
02

-6

20
02

-9

20
02

-1
2

20
03

-3

20
03

-6

20
03

-9

20
03

-1
2

20
04

-3

20
04

-6

20
04

-9

20
04

-1
2

Web hits
SQL queries

Figure B. Number of Web hits and SQL queries as a function of
time. Both have been steadily increasing, although the increase in
SQL usage is more dramatic.

20	 Computing in SCienCe & engineering

full functionality by highlighting its primary
features:

MyDB. Each user has a personal 500-Mbyte
SQL Server database that query results are sent
to for batch queries.
Contexts. CasJobs introduces the concept of a
context as an abstraction of the database layer.
Contexts let users select from multiple mirrors
of the same data set as well as run queries and
joins between multiple different data sets.
Two modes of query execution. Users can submit
queries in one of two modes on the query page:
a synchronous mode for quick queries and an
asynchronous batch mode for long queries.
Job history and management. A detailed Job His-
tory page is available to users for viewing all the
jobs they’ve ever submitted along with their
original queries (which they can resubmit with
or without modification). This system maintains
a history of all queries a user has run, as well
as execution information about queries, such as
the time they took to run, and whether they suc-
ceeded or failed.
Table import. Users can import their own data
as tables in MyDB via the CasJobs Import page.
Although we limit the imported table’s size, this
is still a convenient and powerful way for us-
ers to import data into CasJobs and run cross-
match or other queries on it. For example, users

•

•

•

•

•

can import the entire Abell Galaxy Cluster into
CasJobs and cross match it with SDSS data.
Shared data with groups. Users can create or join
one or more groups to which they can pub-
lish their MyDB tables. This makes the tables
visible to all members of that group in their
 MyDBs. Group members can also see the que-
ry that created the table. Members can query
shared tables like any other table using their
fully qualified names.
User login and account management. Users must
log in to run batch queries, but they can run
quick queries without logging in.
Data extraction. Users can download copies of
MyDB tables to their home machines. The ex-
pectation is that users typically download their
tables only after they’ve refined their queries
and results to their satisfaction, thus minimiz-
ing network traffic.
Annotation. Users can leave comments on any
database object in any visible context. Such
comments are then visible to all users who can
view that object. This lets people leave descrip-
tions and usage details that might benefit other
users and collaborators.
Access control. It’s possible to restrict access to
contexts to a certain group so that only group
members can query that context. In this case,
the group’s administrator controls the group’s
member list. Restricted-access contexts might
be used to give access to data that isn’t yet
public or to provide additional resources for a
restricted group by having such contexts map
to more powerful servers or queues with larger
time limits.
Programmatic access. The Web services APIs
(http://cas.sdss.org/casjobs/casjobs.asmx) facili-
tate the development of third-party access tools
for programmatic access to CasJobs. A Java
command-line access tool that we developed
using these APIs is currently available from
the CasJobs Tools page, and an Emacs script is
available for running CasJobs queries.

All these features provide a versatile and con-
venient workbench environment for users to
perform complex query and analysis tasks on the
catalog data.

Batch Queries
Figure 1 shows an example of the CasJobs query
page, which users see when they log in.

For database and data-set abstraction, load
balancing, and access to multiple databases, Cas-
Jobs uses contexts to run queries on particular

•

•

•

•

•

•

MyDB table that
query results go into

Name that
this query

job is given

Load one of
the sample
queries into
query buffer

Context that
query is

executed in

Check query
syntax

Get graphical
query plan

Query
buffer

Run query in
quick (1-minute)

mode

Submit query
to long
(8-hour)
queue

Figure 1. CasJobs query pane showing various controls. Each query
is submitted to a particular context, and results are sent by default
to a MyDB table if users click the Submit button. If users submit
their queries with the Quick button, the results are displayed in the
browser under the query pane.

January/February 2008 21

data sets. Each context corresponds to a particu-
lar instance of a database (that is, a database and
server combination)—for example, there’s a DR5
context corresponding to the BestDR5 database,
a DR4 context for the BestDR4 database, and so
on—in addition to the MyDB context. We ref-
erence database objects with a simple context.
objname syntax (such as DR6.PhotoObj), re-
placing the traditional Transact-SQL (T-SQL)
database.owner.objname syntax (such as
BestDR6.dbo.PhotoObj). Contexts let users
select from multiple mirrors of the same data set,
allowing a crude form of load balancing. Con-
texts also let users run queries and joins between
multiple data sets.

Each query is submitted to a particular context.
The user can change the context by selecting from
the dropdown context menu. The list of contexts
visible to a user is determined by that user’s privi-
leges; the order displayed in the context menu is
determined by the rank field for the context in the
BatchAdmin table that holds the entry for each
context. Each context name is unique, but a given
database can have more than one context (on dif-
ferent servers) for load balancing.

Quick and Batch Modes and Output
CasJobs’s users can submit queries in one of two
modes on the query page:

A query started with the Quick button is ex-
ecuted synchronously, with a low maximum
execution time and a limit on the amount of
data returned. This mode is intended for low-
overhead queries, such as object creation or
deletion, data exploration, and so on. CasJobs
imposes no limit on the number of concurrent
quick queries.
Queries started with the Submit button are ex-
ecuted asynchronously with a high maximum
execution time and no data limit (other than the
MyDB size, which is 500 Mbytes by default).
The results of these queries can only be sent
to the user’s MyDB, not to the client browser.
We limit the number of concurrent queries per
context, so the job scheduler queues submitted
queries until the number of executions in that
context drops below the context limit. This
mode is intended for queries with an expected
high execution time or output size.

Each context accepts query submission by ei-
ther of these methods. We can route each type
of query to a different server, thus segregating
the quick queries from the long ones. The Quick

•

•

button in Figure 1 will execute the query imme-
diately (synchronously) but will limit the query
execution time to one minute (configurable) and
output buffer to a modest size. If the query doesn’t
complete within one minute or the output is too
large, it is canceled and an error message is dis-
played. If the query finishes within a minute, the
results are displayed in the browser in a scrollable
preview window.

If users select the Submit button, then the que-
ry executes in batch mode and is queued for ex-
ecution in the queue corresponding to the chosen
context. Each context has two queues associated
with it, a quick (one-minute) queue and a long
(usually eight-hour) queue.

The default output destination for synchronous
quick queries is the client browser, so the “Table
(optional)” field in Figure 1 is ignored unless explic-
itly specified in the query using the INTO clause.
However, each batch query’s output always goes to a
MyDB table. If the user does not enter a table name
in the optional field, CasJobs generates a table name
of the form “MyTable_<n>,” where n is the next un-
used table number in that user’s MyDB.

Query Plan, Syntax check, and Samples
CasJobs provides a color-coded version of the
SQL Server graphical query plan when users
press the Plan button (see Figure 1) and the que-
ry buffer holds a valid query. Figure 2 shows an
example of a query plan display; execution steps
are color coded by their estimated cost. Details
of each step are propagated from the SQL Server
and displayed as mouse-over tool tips.

Figure 2. Graphical query plan showing color-coded steps and mouse-
over details. This is a graphical version of the query execution plan
that the SQL Server generates, showing how expensive each part of
the query is in relative terms (percentage of the whole execution time).

22	 Computing in SCienCe & engineering

The Syntax button in Figure 1 lets users per-
form a syntax check before submitting a query.
This simply passes the query on to the SQL Serv-
er for syntax checking. CasJobs displays a “Syntax
OK” message in green if the query is valid; oth-
erwise, the error message from the SQL Server is
propagated and displayed in red.

In addition, the user can load any of more
than 50 sample queries with one click, via the
Samples button in Figure 1. These sample que-
ries are also available on the SkyServer site, rang-
ing from simple SELECT-FROM-WHERE queries to
complex queries with multiple joins and nestings.
The dropdown menu for the sample queries has
mouse-over descriptions for each query.

Query Buffer
The CasJobs query buffer accepts free-form
SQL queries, with the query window providing
basic editing capabilities. Queries can’t be saved,
but a submitted query is always available in the
history page so users can edit and resubmit it at
a later time.

Due to CasJobs’s distributed implementation,
a few small differences still exist between the
standard SQL Server T-SQL and the version ac-
cepted by the CasJobs parser. The most promi-
nent difference is the way a table name is specified
(context.table rather than database.owner.
table). Other differences (which we explain in
the Help and FAQ pages) are related to how func-
tion calls and multiple queries in a single buffer
are handled.

MyDB
When users create a CasJobs account, they get
control over a 500-Mbyte SQL Server database,
but they don’t have permission to expand or delete
it. The initial size is intentionally small because
inexperienced users are likely to inadvertently run
queries that generate very large output tables. Us-
ers can request more space for their MyDBs from
the SDSS help desk, and all reasonable requests
are usually granted, including temporary requests
for large amounts of space for specific queries. It’s
not uncommon for users to have 1- to 5-Gbyte
MyDBs, with some collaboration users (temporar-
ily) having MyDBs as large as 40 Gbytes. MyDBs
can be physically located on multiple servers dedi-
cated for MyDB use for better performance and
load balancing.

Users can create and drop tables, views, func-
tions, and stored procedures in their MyDBs us-
ing various buttons on the MyDB page or running
them as T-SQL queries on the query page.

The MyDB page in CasJobs presents the user
with an object browser in the gutter frame and
information about the selected object in the main
frame. The object browser lists objects sorted
either alphabetically (default) or by another key
(such as size or type) that the user chooses. The
displayed objects include tables (default), views,
functions, and procedures.

When the user initially clicks on the MyDB
menu link, the selected object pane gives an over-
view of MyDB operations instead of information
about a selected object (see Figure 3). The top of
the pane displays the current space used and to-
tal space available in the database. Once the user
clicks on a particular object from the list, this
pane displays information about that object.

Tables and views
The browser and selected object panes for tables
and views are similar. Views are virtual tables that
select a horizontal or vertical partition of a data-
base table.

When tables (the default) are selected, the ap-
proximate number of rows and kilobytes that each
table occupies in the database are shown next to
the table’s name. (This information isn’t available
for views.) Users can sort table information by
type or size, but several table types are denoted
by color coding:

Normal tables have the default coloring.
Published tables are the ones that the user
owns that have been published to the user’s
group(s).

•
•

MyDB context is the default, but
other contexts can be selected

User can browse database views,
tables, functions, and procedures

Table list can be
sorted by name,
size, and type

The space used and
total space available

Multiple tables can be selected
and dropped at once

Figure 3. MyDB front page. This view shows the object browser
(showing tables) and initial overview in the selected object pane.

January/February 2008 23

Group tables are published by other users to the
current user’s groups.
Pending tables are still being created by a query
that hasn’t finished yet. For obvious reasons,
these tables can’t be dropped until their state
changes.
Failed tables are the results of failed queries
(hence they are usually incomplete).

The colors change when users mouse over the key
next to the context dropdown menu.

The selected object pane in Figure 4 contains
a mouse-over menu with selections for various
functions, depending on the type of object select-
ed. Tables have functions as well:

View data displays the selected number of rows
(default 100) from the selected table or view.
Query displays the query that created the table
or view.
Job shows information about the job that cre-
ated this table.
Plot plots two columns of the table against each
other using a Java plotting tool. This is a simple
plotting capability that lets users create and
download quick plots.
Download copies the table data out to a file of
the selected format such as ASCII comma-
separated value (CSV); Flexible Image Trans-
port System (FITS, http://fits.gsfc.nasa.gov/);
or Virtual Observatory Table (VOTable, www.
ivoa.net/twiki/bin/view/IVOA/IvoaVOTable),
a standard that provides an XML schema for
FITS tables. Users can then download the file
from the output page.
Neighbors searches for spatial neighbors of each
object in the table within a specified search ra-
dius. This is a quick way for astronomers to do
a proximity search on an imported table of ob-
jects (from another data set) or points of inter-
est. The table must have right ascension (RA)
and declination (dec) columns containing the
coordinates on which neighbor searches are to
be centered. The Help page under “Advanced
CasJobs Queries” provides examples of more
advanced neighbors searches.
Publish shares this table or view with the user’s
groups.
Rename renames the table or view.
Drop deletes the table or view from the
database.

The table information also includes a hori-
zontal listing of the columns in the table and
their respective data types under the Table

•

•

•

•

•

•

•

•

•

•

•
•

Schema heading. Users can rename individual
columns in the table schema by directly editing
the column names shown on the page. There’s
currently no capability to add or delete columns,
although users can do this in the query window
using the appropriate T-SQL commands if they
know how.

Functions and Procedures
The object browser lets users browse user-defined
functions and stored procedures in the selected
context (the default is MyDB) on the MyDB page
by selecting the appropriate object type (functions
or procedures) in the object browser and then se-
lecting a particular function or procedure to view
information about it. Figure 5 gives an example of
a stored procedure on the MyDB page; this image
displays the arguments and the SQL code for the
function or procedure. For a MyDB function or
procedure, the information pane also has buttons
that let users edit or drop that object. The other
databases are read-only, so these buttons aren’t
available, and the user can browse only the argu-
ments and SQL code.

The ability to view the SQL code for functions
and procedures lets users clone constructs from
SDSS procedures in their MyDBs. Some restric-
tions on using SDSS functions and procedures
are due to the fact that CasJobs queries are ex-
ecuted in distributed mode—that is, the function
or procedure must be invoked remotely from a
different server, which isn’t allowed in the SQL
Server. The user can get around this restriction

The query that
created this table

Figure 4. MyDB page showing a selected table. The query function is
highlighted, showing the query that created the table (if available).

24	 Computing in SCienCe & engineering

by cloning the function in his or her MyDB and
invoking it locally.

Data import and export
When users download data from their MyDB
table, we queue the table output as a job just as
with queries, although a separate job scheduler
can handle output jobs (see the “Jobs Service”
section for details). Downloads of large tables can
take a considerable amount of time, so they must
be done in batch mode as well.

Users can import their own data into CasJobs
using the Table Import page. Accepted formats
for imported data also include ASCII CSV, FITS,
and VOTable. Because the import is via an HTTP
upload, the uploaded file’s size is (currently) lim-
ited to 100 Mbytes by the Web.config (the default
configuration file used by .NET Web services and
applications) parameter MAX_HTTP_REQUEST_

LENGTH. Setting the limit too high causes too
much memory to be used for the upload. Another
consideration is how long it takes to upload the
file: the limit must be small enough that the up-
load can be completed in a few minutes. Figure 6
shows the Table Import page.

Sharing Data with Groups
The groups functionality lets users share their
data and queries with other users. The Groups
page gives users the ability to create, subscribe,
and unsubscribe to user groups.

creating a Group
A user can create a group with the Create Group
button; the user’s current list of groups is listed
on the left, and pending invitations to subscribe
to groups created by other users are listed at the
top. The user can accept or decline an invitation
to join a group. Once the invitation is accepted,
the member shows up in the group.

When users click on a group that they’ve cre-
ated, a Manage Users button lets them invite
other users to join the group. This brings up the
list of users who have their group visibility flag
turned on in their personal profile (set in the Pro-
file page). The group creator can choose one or
more users from the list and invite them to join
the group.

Publishing Tables to a Group
The MyDB page lets users publish individual
tables to a particular group. Once published,
these tables become visible to all users who have
accepted the invitation to join that group and are
color coded in their MyDBs in a standard Group-
Name.UserId.TableName name format (such as
QuasarWorkingGroup.jdoe.HiZQsos). There-
after, group members can use these tables in their

Figure 6. Table import page. Comma-separated values or white-space-
separated files are accepted as well as specialized formats such as
XML. Users can import small files using copy and paste. The current
uploaded file size limit is 100 Mbytes.

SQL code
for stored
procedure

Stored
procedure
arguments

Figure 5. MyDB page showing a stored procedure listing. The
procedure arguments and the T-SQL code for it appear here, along
with buttons to edit or drop the procedure.

January/February 2008 25

queries using a qualified name—for example,
 “SELECT TOP 10 * FROM QuasarWorking-
Group.jdoe.HiZQsos”.

Users can turn on or off lists of group tables in
the MyDB page on a per-group basis. A user might
choose to display all tables or only local tables in
the MyDB or include tables from specific groups.

Jobs Service
The jobs service is a stand-alone application that
schedules query and output jobs. For better per-
formance and load balancing, CasJobs adminis-
trators can run separate instances of the service
for query and output job handling.

Job Scheduling
The jobs service schedules jobs in the order of
their submission time, but users aren’t allowed
to run successive jobs if other users are waiting.
This is to ensure that users submitting multiple,
machine-gun queries don’t hog a given queue. At
the end of each job, the service will give prefer-
ence to a job submitted in the meantime from a
different user before picking up the next job from
the same user. For example, in Table 1, if job 1001
completes sometime after 11:30:00, then job 1004
will be picked up before job 1002. This prevents
user Pumba from running successive jobs and
gives user Timone a fair chance to run his job.

canceling Jobs
The jobs service also ensures that jobs don’t ex-
ceed the time allotted for each queue by cancel-
ing the query when the time limit is reached. A
user (or administrator) might also cancel a query
at any time by pressing the Cancel button on the
Job Info page.

If a job takes longer than the time limit for
that queue, it’s marked for cancellation as soon as
the limit is reached. Thus, quick queries return a
timeout message at close to 60 seconds, but it can
sometimes take a while to cancel a job. For ex-
ample, a user might run a query for two seconds,
then cancel it and find that the cancel itself takes
10 to 20 seconds. This usually happens because
cancellation requires rolling back a transaction.
Jobs stay in the canceling state for up to five min-
utes, after which the process is abandoned.

Canceling a job takes up a queue slot in the jobs
queue, so a job that takes a while to cancel will show
up in the jobs queue in canceling state. Other than
this, canceling a job doesn’t affect the user’s ability
to run other jobs or access tables in their MyDBs.

Once the job is actually canceled, it is marked
as canceled. Jobs that time out are canceled,

while jobs that failed for other reasons are
marked as failed.

Job history and info
The Job History page (which is accessible from
the History link in the menu in Figure 7) provides
a job history for all the jobs a user ever submit-
ted. The job history is chronologically ordered
in reverse order (latest first) and is searchable
so that users can look for a job with a particular
name or pattern.

A particular job’s full history is available by
clicking the Info link in that job’s history listing.
Users can resubmit a job with or without modi-
fication from the history page. This history pro-
vides a permanent record of queries a given user
submits; it’s retrievable at any time, even after us-
ers delete the table the job created (and hence the
query associated with it).

casJobs Administration
Administration tasks for CasJobs include manag-
ing user accounts and privileges, MyDB databas-
es, user groups, and archiving query and output

Figure 7. Job History page showing all jobs submitted to target DR6.
Each job listing shows the job parameters and outcome and includes
an Info link to view details and resubmit the job if necessary.

Table 1. example job scheduling log in the jobs service application.

Target Queue User iD Time submit Job iD

DR5 500 Pumba 11:10:00 1001

DR5 500 Pumba 11:11:00 1002

DR5 500 Pumba 11:15:00 1003

DR5 500 Timone 11:30:00 1004

26	 Computing in SCienCe & engineering

jobs. Most of this is automated and managed by
a special administration database that we call
BatchAdmin.

BatchAdmin Database
The BatchAdmin database contains all the infor-
mation necessary for CasJobs’s day-to-day system
administration. Each of the following is a single
table in the BatchAdmin database; unless other-
wise indicated, the default owner in SQL Server,
dbo, owns the tables.

The Servers table describes the contexts avail-
able to CasJobs users. This is where we main-
tain each context’s privilege level, indicating
which group of users can access it. The Serv-
ers table entry provides the mapping between
a context name and its associated database
(catalog) in the Cat column and the server
that hosts that catalog in the Host column;
the connection string to the database is in
the ConnectionString column. The string in
the Privs column specifies the privilege level
necessary for this context; the groups that us-
ers belong to must include this privilege in
the Groups table for users to see this context
in their context menus. The server table is
owned by the batch user, an SQL Server user
who has administrator-level privileges to cre-
ate user (MyDB) databases and run jobs on
all the servers.

1.

The Users table stores user profiles and is
owned by the batch user. In addition to the
user’s name, email, Web services ID (WSID),
and user ID (all of which must be unique), this
table contains privileges and MyDB informa-
tion such as the server on which the MyDB
is hosted and MyDB size limits (MyDBHost,
MyDBMinSize, and MyDBMaxSize col-
umns). The pwencrypted column stores the
user’s password in encrypted form to protect
user privacy. Other profile information kept
here includes the email notification level,
which controls the messages sent to the user
in response to changes in job status or other
events. Users can opt to turn off job notifica-
tion by selecting the admin-only notification
level or select whether they want to be noti-
fied upon job completion, failure, and so on.
The Jobs table (also owned by the batch user)
contains an entry for each job submitted in
the CasJobs system. This includes query and
output jobs, regardless of whether they’re suc-
cessful. The Status table defines the meaning
of each numerical job status code.
The Groups, GroupMembers, and GroupTables
tables are linked to the Users table and man-
age the functionality that lets users share
tables with other users. Each group has an
entry in the Groups table, each user who is
part of a group has an entry in the Group-
Members table, and each shared table has an
entry in the GroupTables table.
The MyDBHosts table contains information
on all servers currently hosting MyDBs. The
MyDBHost column in the Users table points
to an entry in the MyDBHosts table.
The Filter table lists the filters to apply to
user-submitted SQL queries, mainly to re-
move any dangerous SQL commands (such
as “drop table”) from the queries for non-
MyDB targets.

Figure 8 shows each table in the BatchAdmin
schema and the relationships between them.

Administering the Jobs Service
The jobs service is a Windows service that must
be installed using the Windows installutil.
exe application. The administrator can name the
service during installation and must set the login
account for the service to a local or domain ad-
ministrative account. The jobs service can run in
one of three modes:

jobs, which handles query jobs;

2.

3.

4.

5.

6.

•

Figure 8. BatchAdmin database schema. The tables in this database
contain the information to manage CasJobs sessions, contexts, users,
jobs, and MyDBs.

January/February 2008 27

output, which handles output jobs; or
both, which handles both query and output jobs.

The service mode is set in the configuration file,
Jobsservice.exe.config, via the service mode
parameter, which has three values: 0 = jobs, 1 =
output, and 2 = both.

The service mode lets the administrator separate
the query and output jobs services and run them on
different servers for better load balancing. It also al-
lows query jobs to run independently from output
jobs, which is preferable so that user queries don’t
have to be killed if the output queue gets stuck.

The connection string to the BatchAdmin
server is also one of the configuration parameters.
Only one jobs service instance of each service
mode can point to a given BatchAdmin server—
that is, only one jobs service or one output ser-
vice can point to a given BatchAdmin server at
any given time. Hence, multiple jobs services can
coexist on a single Web server as long as each is
either pointing to a different BatchAdmin server
or is in a different service mode.

Managing MyDBs and User Accounts
Most of the day-to-day administration of MyDBs
and users is done via the CasJobs Admin page, vis-
ible only to administrative-level users (determined
by the “batch” privilege in the Users table). This
page shows the currently active queries and out-
put jobs, analogous to the Queries page for normal
users. It also includes a search window to search
for users by user ID and name. The administrator
can load a particular user’s profile into the page
using the Load User button and then update it as
necessary to include MyDB size and password.

Each MyDB host must have an entry in the
MyDBHosts table that provides a mapping be-
tween the logical and physical MyDB server
names and their connection parameters.

casJobs under the hood
Now let’s look briefly at the CasJobs implementa-
tion—in particular, the Web application and the
jobs service—and how we achieve load balancing
through the distributed server configuration. The
CasJobs interface we’ve illustrated in this article is
the SDSS version (http://cas.sdss.org/casjobs), but it
can be customized for any archive. A Windows ap-
plication—the jobs service—manages the CasJobs
queues. The Web application and jobs service inter-
face with several different CasJobs Web services:

user services (http://casjobs.sdss.org/casjobs/
CasUsers.asmx);

•
•

•

job services (http://cas.sdss.org/casjobs/Cas
Jobs.asmx), not to be confused with the jobs
service application that we describe in this
section;
extraction services (http://casjobs.sdss.org/cas
jobs/TableJobs.asmx); and
groups services (http://casjobs.sdss.org/cas
jobs/CasGroups.asmx).

Anyone can use the Web service descriptions
for these services (such as http://casjobs.sdss.
org/casjobs/casjobs.asmx?WSDL) to build their
own application that interfaces with the CasJobs
Web services.

Web Application
The CasJobs Web application’s back end interfaces
with SQL database servers to execute user queries
in a distributed manner. The CasJobs Web site is
based on a set of SOAP services, so any user can
access these services directly using a SOAP tool-
kit in his or her preferred programming language.
At the Johns Hopkins University, we’ve success-
fully used Python, Java (Axis), and C# clients for
Web services, but others have written Perl clients
as well. More information is available at the Inter-
national Virtual Observatory Alliance’s (IVOA’s)
Web site (www.ivoa.net).

We have developed a command-line package
for accessing CasJobs in Java that serves as an ex-
ample of how to programmatically access the ser-
vices provided by CasJobs. It’s also a useful tool
for demonstrating the interoperation between
.NET and Apache Axis.

CasJobs Web services are stateless. We don’t
use any Web service or grid technology to track
state in SOAP calls: each one could be answered
by any server hosting the CasJobs software that
has access to the CasJobs database. CasJobs also
has a database of jobs belonging to a particular
user, so it can manage privileges and authoriza-
tion on an individual basis. We choose, however,
to follow the template of most e-commerce sites
and implement state within our system using da-
tabase technology, much as e-commerce shopping
carts are generally implemented. In each call, the
user’s WSID is passed as a parameter; internally,
we use it to set the context of the message and find
the state in the SQL database. Hence, the service
is “stateful” but without any library overhead.

Jobs Service
Apart from short jobs, everything in the CasJobs
system is asynchronous and requires job tracking.
Each job has an entry in the BatchAdmin Jobs

•

•

•

28	 Computing in SCienCe & engineering

table—simply submitting a job creates this entry.

A Windows service (the procrastinator) runs a
thread that wakes up periodically and scans the
Jobs table for new jobs for each target specified
in the Servers table (see Figure 9). If a server isn’t
running its allowed number of jobs, a thread spins
off for the job; the thread includes a timer that
cancels the query and closes the connection if the
job runs longer than the specified queue length.
The entry in the Jobs table is updated to show the
job has started and will be updated once more to
show whether it completed or failed. At this point,
the service will also email users concerning the
job if they’ve selected that option in their profile.
This thread also checks for jobs marked canceled
in the Jobs table and stops them.

The procrastinator runs a separate thread for
file export (output) jobs. It creates output files
(sequentially), updates job entries, and scans the
HTTP directory in which files are written and
removes files older than a configurable time (cur-
rently one week).

Load Balancing with
Distributed Query execution
CasJobs uses the SQL-Server-linked server mech-
anism to execute queries remotely on different da-
tabase servers. We link all servers bidirectionally,
to allow a query running on one server to read or
write results to a different server (for example, ex-
ecute a query on a SDSS database server and write
results to a table on the MyDB server). The query
is executed on the server hosting the context to
which the query was submitted.

This also lets us achieve a crude but functional
form of parallelism and load balancing by provid-
ing multiple copies of a given database on differ-
ent servers. Each copy is a different context in the
query page, so users can submit queries to multiple
contexts for a given data set, thereby distributing
the load. This can be scaled out as necessary by
simply adding servers with more copies and creat-
ing contexts for them.

Figure 10 shows how this works. For a given
SDSS data set—here, DR6—we achieve load
balancing by making copies of the BestDR6 da-
tabase on three servers and providing each copy
as a separate context in the CasJobs query page.
Users can select one of the DR6 contexts to which
to submit their query. Generally, each data set
has at least one public and one collaboration-re-
stricted context. Different data sets are usually on
different servers, so queries directed at the DR5
data set, for instance, won’t contend with queries
against the DR6 data set; the MyDBs are on their
own server(s). In particular, we use this feature to

Short jobs

Find new
or canceled jobs

Database

BatchAdmin
User (ID, name, email…)
Jobs (ID, type, userid, status, startTime…)
Servers (ID, name, connectionString…)

Write job rows
Look up users…

SOAP services

Web site

JobService

Procrastinator

Execute job on
server—limit time

and number of jobs

Find
output requests

OutputService

Write files

Long jobs

Database

Figure 9. Jobs service implementation using the Windows
procrastinator service. The jobs service runs continuously and
executes user query and output jobs.

Web server

Client (user)

Quick
queries

BestDR6

Quick
queries

BestDR5

Long
queries

BestDR5

Long
queries

BestDR5

Long
queries

BestDR6

MyDB

MyDB2MyDB1 MyDBn

Long
queries

BestDR6

MyDB
queries

DB
servers

…

Links
Collab queues
Public queues

Figure 10. Distributed query execution and load balancing in CasJobs
with linked servers. Queries are divided between multiple copies
of data sets hosted on different servers by creating more than one
context for each data set. Quick-mode queries and Submit-mode
(batch) queries are sent to different servers in order to maintain
adequate performance.

January/February 2008 29

separate short (quick) and long (submit) queries.
Multiple quick query queues might point to a giv-
en server, but usually only one long query queue
points to one server. Otherwise, the query per-
formance can degrade significantly.

C asJobs has become the mainstay and
workhorse of the SDSS data-access
system. It’s in use at SDSS mirror
sites worldwide and has also been

adapted for non-SDSS astronomical archives, such
as Galaxy Evolution Explorer (GALEX), Palomar
Quest, and the upcoming Panoramic Survey Tele-
scope and Rapid Response System (Pan-STARRS)
PS1 archive, as well as for non-astronomy applica-
tions that contain hydrology sensor data such as
AmeriFlux. The technologies that CasJobs em-
ploys—asynchronous query execution and per-
sonal server-side database access—are universally
applicable and inescapable for query management
in very large online databases.

references
A. Szalay et al., “The SDSS SkyServer - Public Access to the 1.

Sloan Digital Sky Server Data,” Proc. 2002 ACM SIGMOD Int’l

Conf. Management of Data, ACM Press, 2002, pp. 570–581.

The SDSS SkyServer - Public Access to the Sloan Digital Sky
Server Data, tech. report MSR-TR-2001-104, 2001; Microsoft
Research, http://research.microsoft.com/research/pubs/
view.aspx?msr_tr_id=MSR-TR-2001-104.

A.R. Thakar et al., “The Sloan Digital Sky Survey Science
Archive: Migrating a Multi-Terabyte Astronomical Archive
from Object to Relational DBMS,” Computing in Science &
Eng., vol. 5, no. 5, 2003, pp. 16–29.

W. O’Mullane et al., Proc. IEEE Int’l Conf. Web Services
(ICWS), vol. 1, IEEE Press, 2005, pp. 33–40.

nolan li is a doctoral student in the departments
of computer science and physics and astronomy at
the Johns Hopkins University. His work and research
interests focus on Web services and innovative solu-
tions for efficient access to large scientific databases.
Li has a BS in computer science from the Johns Hop-
kins University. Contact him at nli@pha.jhu.edu.

ani r. Thakar is a research scientist at the Johns
Hopkins University. His research interests include sci-
ence with large databases and interacting galaxies.
Thakar has a PhD in astronomy from the Ohio State
University. Contact him at thakar@jhu.edu.

2.

3.

4.

Engineering and Applying
the Internet
IEEE Internet Computing reports emerging tools,
technologies, and applications implemented
through the Internet to support a worldwide
computing environment.

In 2008, we’ll look at:

• Crisis Management
• Virtual Organizations
• Useful Computer Security
• Mesh Networking
• Service Mashups
• and more!

www.computer.org/internet/

Peer-reviewed topics

Subscribe to CiSE online at http://cise.aip.org
and www.computer.org/cise

Interdisciplinary

Top-flight departments in each issue!

• Book Reviews

• Computer Simulations

• Education

• News

• Scientific Programming

• Technologies

• Views and Opinions

• Visualization Corner

Communicates to those at

the intersection of science,

engineering, computing,

and mathematics

MEMBERS

$45/year
for print and online

Emphasizes real-world

applications and modern

problem-solving

Anatomic Rendering

Stochastic Modeling

Python: Batteries Included

Climate Modeling

Computational Wizardries

High-Performance Computing
Defense Applications

Jan/Feb

Mar/Apr

May/Jun

Jul/Aug

Sep/Oct

Nov/Dec

2 0 0 7

The magazine of computational
tools and methods for

21st century science

SSDS Science Archive

Combinatorics in Computing

Computational Provenance

High-Performance Computing
in Education

Novel Architectures

Computational Astronomy

Jan/Feb

Mar/Apr

May/Jun

Jul/Aug

Sep/Oct

Nov/Dec

2 0 0 8

