
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or 

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be 

obtained from the IEEE.  

 
For more information, please see www.ieee.org/web/publications/rights/index.html. 

 
 

www.computer.org/cise 
 
 
 
 
 

 
 
 
 
 

Vol. 10, No. 1 
January/February 2008 

 
 
 
 
 
 
 
 
 
 

This material is presented to ensure timely dissemination of scholarly and technical 
work. Copyright and all rights therein are retained by authors or by other copyright 
holders. All persons copying this information are expected to adhere to the terms 
and constraints invoked by each author's copyright. In most cases, these works 

may not be reposted without the explicit permission of the copyright holder. 
 

 



30	 This article has been peer-reviewed.� Computing in Science & Engineering

S D S S
S c i e n c e  A r c h i v e

The Catalog Archive Server 
Database Management System

Ani R. Thakar, Alex Szalay, and George Fekete

Johns Hopkins University
Jim Gray

Microsoft Research

The multiterabyte Sloan Digital Sky Survey’s (SDSS’s) catalog data is stored in a commercial 
relational database management system with SQL query access and a built-in query 
optimizer. The SDSS Catalog Archive Server adds advanced data mining features to the 
DBMS to provide fast online access to the data.

T he Sloan Digital Sky Survey’s (SDSS’s) 
Science Archive catalog data is large 
and complex enough to warrant a 
commercial database management 

system (DBMS) to ensure its long-term integrity 
and to provide the storage, organization, distribu-
tion, and data mining capabilities that it warrants. 
A traditional hierarchical file-based system, even 
with specialized tools built on top of it, would have 
fallen far short of meeting the kind of scientific use 
that this data deserves and demands.

The SDSS produces both raw and catalog data; 
here, we focus on the catalog data, which flows 
into a commercial relational DBMS and is served 
up to the outside world by the SDSS Catalog Ar-
chive Server (CAS). The data-loading pipeline 
used for this task is the sqlLoader; the online Web 
interface that provides access to the CAS is the 
SkyServer (http://skyserver.sdss.org/ or http://cas. 
sdss.org/). 

Although the DBMS we adopted for the CAS 

provides built-in, advanced data mining and 
query optimization capabilities, we have addi-
tionally built a multidimensional spatial index-
ing scheme—called the Hierarchical Triangular 
Mesh (HTM)1,2—right into the DBMS to enable 
fast O(log N ) spatial searches. In this article, we’ll 
look briefly at the DBMS features and schema, 
and the additional functionality that we’ve built 
into it.

A Relational DBMS
We chose Microsoft’s SQL Server, a Windows-
based relational DBMS, as the CAS’s data reposi-
tory. We started with an object-oriented DBMS, 
with the idea that an object data model would pro-
vide a much better conceptual match to the SDSS 
data as well as superior performance compared 
to the commercial relational DBMS technology 
available at the time (early-to-mid 1990s). Howev-
er, even though the object DBMS’s performance 
was initially satisfactory, it soon became insuffi-
cient for the SDSS project’s data mining needs. 
Over the same period, relational DBMS technol-
ogy advanced to the point where it overtook ob-
ject DBMSs in terms of ease of use, performance, 
and reliability features.

An earlier CiSE article describes the difficulties 
we encountered with the object-based system, 
details about migrating from an object to a re-
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lational system, and the features and advantages 
we gained by adopting SQL Server.3 The deci-
sion to select SQL Server was mostly pragmatic 
and based on our immediate needs and resources, 
rather than a comparative evaluation of relational 
DBMS products. Nevertheless, SQL Server is 
highly rated for its ease of use and administrative 
features, and has one of the best query optimizers 
in the business.4 We’ve been quite happy with our 
choice so far.

The unit of data storage in a relational DBMS 
is a two-dimensional table of rows and columns. 
As such, all the CAS data goes into tables in the 
DBMS. Let’s look more closely at the data model. 

The CAS Data Model 
Figure 1 shows the SDSS CAS schema, which 
is divided into four functional groups of tables: 
photometric data tables (Photo group), spectro-
scopic data tables (Spectro group), tables that 
contain information about various types of re-
gions in SDSS space (Region group), and meta-
data tables that contain documentation and other 
schema information.

Photo Tables and Views
The Photo group of tables holds the SDSS photo-
metric pipeline’s outputs—that is, the parameters 
computed from data taken with the SDSS imag-
ing camera. The main table in this group is the 
PhotoObjAll table, which contains the photomet-
ric parameters for each astronomical object that 
the photometric pipeline identifies. This superset 
of all observations recorded by the SDSS camera 
also includes repeat observations of objects. For 
objects that have multiple recorded observations, 
the best one is marked as primary in the SDSS 
photometric pipeline; other observations are 
marked secondary if they’re good enough for sci-
ence or family for anything else.

Primary and secondary objects in the Photo-
ObjAll table are listed in the PhotoObj view (a 
view is a virtual table defined by an SQL query), 
which is the most frequently used subset of the 
PhotoObjAll data by the majority of users. Expert 
users and SDSS collaboration members are more 
likely to go directly to the PhotoObjAll table to 
look beyond primary and secondary observations. 
The PhotoObjAll table is by far the largest table 
in the SDSS data and contains 80 percent of the 
data (by volume) in the database. We don’t cache 
any of the database views; rather, we let the DBMS 
handle caching instead. More specialized views of 
PhotoObj facilitate searching for users who are 
interested in certain types of objects:

PhotoPrimary for the primary objects in the 
PhotoObj view;
Star for primary objects classified as stars by the 
SDSS pipelines;
Galaxy for primary objects classified as galaxies;
Sky for primary sky (sampling) observations;
Unknown for primary observations that the 
pipeline can’t classify as anything else;
PhotoSecondary for the secondary objects in 
PhotoObj; and
PhotoFamily for objects that can’t be marked as 
either primary or secondary.

We’ve also made a vertical partition of the 
PhotoObjAll table called PhotoTag that contains 
the most frequently accessed columns. It’s signifi-
cantly faster to scan the PhotoTag table because 
it’s a lot thinner than PhotoObjAll and hence 
makes better use of the cache. PhotoTag also has 
analogous views to PhotoObjAll called StarTag 
and GalaxyTag, which return primary star and 
galaxy objects, respectively.

Other tables in the Photo group contain ob-
serving parameters and provenance metadata. 
The Chunk, Segment, and Field tables, for ex-
ample, contain information about various units of 
data export: a chunk is a completely observed part 
of an SDSS stripe (the SDSS divides the sky into 
strips using a special coordinate system; a stripe is 
two strips), a segment is a single camera column 
(out of six total) within a chunk, and a field is a 
field of view within a camera column.

•

•

•
•
•

•

•

Figure 1. The Catalog Archive Server schema. Note the various 
database tables and the relationships (foreign keys) between them; 
tables are grouped by the kind of data they contain.
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The Photo group also has some derived and 
science data tables. The US Naval Observatory 
Survey (USNO), Faint Images of the Radio Sky at 
Twenty-one centimeters (FIRST), and the Roent-
gen Satellite (ROSAT) tables, for example, con-
tain matches between the SDSS and the USNO, 
FIRST, and ROSAT surveys. These tables are 
indexed by PhotoObj.objid as a foreign key, which 
is a unique column that links two tables in a re-
lational database. The Match and MatchHead 
tables contain information about multiple obser-
vations of objects typically used for variability and 
other time-domain science.

Each object’s neighbors in the PhotoObjAll ta-
ble within a predetermined radius (usually 30 arc 
seconds) are precomputed and kept in the Neigh-
bors table for fast proximity and cross-ID searches. 
These types of searches are crucial for multiwave-
length astronomy because they let astronomers 
compare data on the same objects in different sur-
veys with different wavelength coverage.

Spectro Tables and Views
The outputs from the one-dimensional Spectro 
pipeline, spectroscopic targeting, and tiling in-
formation are contained in the Spectro group of 
tables. The main table in this group is the Spec
ObjAll table, which is analogous to the Photo-
ObjAll table in the Photo group but with spectra 
instead of images. Also analogous to PhotoObj is 
the SpecObj view of the SpecObjAll table, which 
contains unique spectra determined by the SDSS 
to be fit for science.

Region Tables
The Region and Sector tables contain information 
about the survey geometry—in particular, the var-
ious types of regions and boundaries pertaining to 
photometric, spectroscopic, and plate tiling data. 
They’re populated by region and sector functions.

Metadata Tables
The Metadata group includes the contents of 
the documentation pages in the CAS Web sites 
(SkyServer and CasJobs), which we can broadly 
divide into the Help and Schema Browser pages. 
Together, the metadata tables provide an applica-
tion-independent description of a DBMS that we 
can use as a template for other scientific archives. 
Indeed, the Schema Browser group of tables is al-
ready used in the virtual observatory community 
as a template for SkyNodes in the Open SkyQuery 
federated query system (www.openskyquery.net). 
Let’s look closer at the tables used for metadata.

Schema description tables. Several tables describe 
the schema used in the SkyServer, specifically

DBObjects. The description of each object in the 
schema is kept in the DBObjects table, which 
describes four types of objects—tables, views, 
functions, and stored procedures. This table 
also stores the access type for each object (for 
example, whether it’s accessible to all users or 
just administrators).
DBColumns. The one-line description of each 
column in each table is kept in the DBColumns 

•

•

Metadata diagnostics
and schema check tables

Metadata documentation
and index management tables

Figure 2. Metadata tables used for diagnostics and integrity checks on the schema. Everything except the 
Versions, SiteDBs, and SiteConstants tables is autogenerated.
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table, which also holds other information such 
as the column’s data type, units (if applicable), 
and a unified content descriptor (UCD) name 
that identifies the kind of astronomical quantity 
a column represents. UCDs are now an official 
International Virtual Observatory Alliance 
recommendation meant to enable comparison 
of data between diverse archives without hav-
ing to know archives’ individual schemas (www.
ivoa.net/Documents/latest/UCD.html).
DBViewCols. Definitions of columns for views 
are kept in the DBViewCols table, which is the 
counterpart of the DBColumns table. A special 
feature of the DBViewCols is that it allows “*” 
as shorthand for a view that includes all the 
columns from the parent table. Thus, column 
names need not be listed if they are not differ-
ent from those of the parent table. 

Several functions and stored procedures dy-
namically load the contents of these tables into the 
Schema Browser as requested by the user. Docu-
mentation about possible values for enumerated 
data columns appears in the DataConstants table 
and is also linked to the names of the columns in 
the table schema listing. Other documentation 
tables include detailed descriptions of SDSS data-
processing algorithms, a glossary that explains all 
the SDSS jargon, and TableDesc, which contains 
a short description of each table in the database.

•

The contents of these tables are also dynami-
cally loaded into the SkyServer Help pages, which 
lets a given SkyServer site show different con-
tent depending on the data set it’s connected to. 
Changes to the content for a given data release 
are thus automatically propagated to all Web sites 
serving that release.

Diagnostics and schema check. Figure 2 shows the 
other metadata tables that provide diagnostics and 
integrity checks on the schema:

Inventory lists every object in the schema on 
disk, along with its source file and type of ob-
ject. We use it to cross-check the database sche-
ma against what’s on disk.
Dependency lists function and stored procedure 
dependencies.
History shows the modification history of each 
schema source file for quick searching.
LoadHistory lists all the loading pipeline steps 
during the load stage.
PubHistory collects all the steps in the data load-
ing process during the publish/merge and finish 
stages.
Diagnostics lists each database object, its type, 
and the number of rows in it if it’s a table.

Stored procedures associated with the diagnostics 
tables actually perform the diagnostics checks.

•

•

•

•

•

•

fGetNearbyObjAllEq

fGetNearestFrameIdEq

fGetNearestObjIdEqType

fGetNearbyObjEq

spNearestObjEq

fGetNearestObjXYZ fGetNearestObjEq

fGetNearestObjIdEq

fGetNearbyObjXYZfGetNearbyObjAllXYZ

fGetNearbyObjAllXYZ

fGetNearestFrameEq

fGetNearbyObjXYZ

fGetJpegObjects

fGetObjFromRect fGetNearestObjIdEqMode

Figure 3. Nearby function dependency chart. These functions provide fast spatial search capabilities using the Hierarchical 
Triangular Mesh (HTM) spatial index. The light (yellow) functions are the primitives that make the actual HTM library calls. 
All other functions call these primitives.
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Functions and Stored Procedures
One of the most powerful features of a DBMS 
is the ability to write user-defined functions and 
stored procedures that operate on the data in 
the database tables. Users perform complex op-
erations, including statistical analysis, right in the 
database and avoid expensive movement of data as 
much as possible. This feature is critical for large 

data sets such as the SDSS. 
In the SDSS’s databases, many functions and 

stored procedures written in SQL perform various 
postprocessing tasks on the data. They’re broadly 
divided into two classes—admin and user—de-
pending on whether they’re available to all users 
of the database or to database administrators only.  
There are currently 135 stored procedures (107 

fRegionConvex

fDistanceArcMinEq

spSectorCreate

spSectorCreateSkyBoxes spSectorCreateSectorlets spSectorCreateSectorsspSectorCreateWedgesspSectorCreateTileBoxes

spSectorNibbles

fWedgeV3
fTokenAdvance

fRegionIdToString

fRegionsContainingPointXYZ

spRegionAnd

spRegionSimplify

spRegionDelete

fRegionToArcs

fRegionGetObjectsFromRegionId

fRegionPredicate

fRegionOverlap

fRegionConvexToArcs

fRegionFromString

fRegionConvexIdToString

fRegionFuzz

fRegionGetObjectsFromString

fRegionNot

fRegionsContainingPointEq

fRegionNormalizeString

fRegionStringToArcs

spRegionNotspRegionOr

spRegionSubtract

spRegionUnify

spRegionCopy

spRegionCopyFuzz

spRegionIntersect

spRegionNew

fTokenNext

fTokenStringToTable

fNormalizeString

fEtaToNormal

fHtmCoverfHtmToNormalForm

spRegionNewConvexConstraint

fRegionContainsPointEq

fRegionContainsPointXYZ

spRegionNewConvex

fRegionConvexFromString

Figure 4. Dependency chart for region and sector functions and stored procedures. These functions compute the 
spectroscopic plate tiling geometry required for large-scale structure studies. The shading represents the functional group 
that each function belongs to; the chart illustrates the complex programming achieved with SQL functions and stored 
procedures inside the database management system.
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admin and 28 user) and 188 functions (6 admin 
and 182 user).

We can further subdivide user functions and 
stored procedures into the following groups:

Nearest-neighbor searches are functions and 
procedures that let users perform proximity 
searches. Figure 3 shows a dependency chart 
for the “nearby functions” group.
Coordinate conversions provide conversion be-
tween various coordinate systems.
Astronomical functions are specific analysis tasks 
frequently required by astronomers.
Utility functions are the functions and procedures 
required to display data and metadata, especially 
via the Schema Browser and Help pages.

Users can browse the available functions and 
stored procedures in the SkyServer and CasJobs 
schema browsers. The CasJobs browser also 
shows the SQL code for each function or proce-
dure, which is useful for users wanting to learn 
how to write their own functions.

The administrator class of functions includes 
the following groups:

Region and sector functions compute the tiling 
geometry for use in large-scale structure stud-
ies. Figure 4 shows the large number of region 
functions and the complex interrelationships 
between them. It also shows the kind of heavy-
duty computational tasks that we can perform 
inside the database, where all the various data 
tables are available in one place and can be 
searched quickly.
HTM functions apply specifically to the HTM’s 
spatial library (we discuss them more fully in 
the “Hierarchical Triangular Mesh Spatial In-
dex” section).
Web support functions provide the interface 
layer between the SkyServer Web pages and 

•

•

•

•

•

•

•

the database server. They include procedures 
to filter user-submitted SQL and log queries. 
The main procedure in this group of func-
tions, spExecuteSQL, executes user-submit-
ted SQL queries, filters out any dangerous 
commands (such as “drop table”), and ensures 
that the query is logged into the usage tracking 
system. This function also adds the SQL code 
necessary to limit query results so that queries 
aren’t allowed to return millions of rows and 
bog down the SkyServer Web interface. The 
SkyServer also limits query execution time 
by imposing timeouts on Web pages. Queries 
that require large CPU and disk resources are 
handled instead by the CasJobs batch query 
interface.  
Metadata and documentation functions provide 
the Schema Browser and Help page support.
Diagnostics functions are the procedures for 
generating diagnostics and checking schema 
integrity.
Loader support functions include the functions and 
procedures that the sqlLoader pipeline uses to 
load and validate data and build auxiliary tables.

The diagnostics functions deserve special men-
tion because they help us maintain the integrity 
and versioning of the data in the DBMS:

spMakeDiagnostics checks every table, view, 
function, and stored procedure into the Diag-
nostics table and counts the number of rows in 
each table and view.
fGetDiagChecksum generates a new checksum 
from the diagnostics table.
spCompareChecksum compares the check-
sum in the SiteConstants table with the 
checksum generated from diagnostics (using 
fGetDiagChecksum).
spUpdateStatistics updates the statistics in ev-
ery user table.

•

•

•

•

•

•

•

Table 1. The IndexMap schema.

Column Type Description

indexmapid Int Unique primary key for the IndexMap table

code varchar(2) One char designator of index category for lookup (‘K’|’F’|’I’)

type varchar(32) Index type, one of (‘primary key’|’foreign key’|’index’|’unique index’)

tableName varchar(128) Name of the table on which the index is built 

fieldList varchar(1000) List of columns to be included in the index

foreignKey varchar(1000) Definition of the foreign key, if any

indexgroup varchar(128) The group ID, one of (‘PHOTO’|’TAG’|’SPECTRO’|’META’|’TILES’|’FINISH’) 
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spCheckDBObjects compares the objects in the 
database with the objects in the schema loaded 
from disk.
spCheckDBColumns compares the columns in 
the database with the columns in the schema 
loaded from disk.
spCheckDBIndexes compares the indices in the 
database (such as those listed in the sysindexes 
and sysobjects tables) with the indices in the disk 
schema (in this example, in the IndexMap table).

The diagnostics are typically run at the end of the 
data loading and publishing process, just before 
the data is released to the user community.

Database Indices  
and the IndexMap Table
The SQL Server indices on the CAS databases 
are created by the sqlLoader data-loading pipe-
line during the final loading stage; they’re man-
aged by the IndexMap table and associated stored 
procedures. The IndexMap table contains an 
entry for each index defined in the CAS tables. 
The indices are subdivided into groups according 
to the tables they belong to and when they’re to 
be created in the loading process. Some indices 
are created during the loading stage, when all 
the data is loaded into the destination tables, and 
others are created during the publish and finish 
part of the loading workflow. Table 1 shows the 
IndexMap’s schema.

The IndexMap table’s contents are available to 
users for browsing in the SkyServer Schema Brows-
er, and the names and types of indices on each CAS 

•

•

•

table are dynamically loaded into the data model 
description in the SkyServer Help pages.

Hierarchical Triangular  
Mesh Spatial Index
The size of a data set as big as the SDSS (3 Tbytes) 
necessitates a spatial indexing technique in addi-
tion to database indices to enable fast searches. 
Without a spatial index, searches based on coordi-
nate cuts would still take too long, particularly for 
large regions. Proximity searches are also greatly 
facilitated by such an index. Accordingly, we built 
a multidimensional k-d tree-based spatial index 
(the HTM). Each object in the SDSS database 
contains a 64-bit htmID, which is the HTM k-d 
tree index key for that object. 

We included several functions in the database 
to implement fast (O(log n)) searching using the 
HTM index. The nearest-neighbor functions de-
scribed earlier call the HTM functions to perform 
spatial searches. The spherical HTM functions 
implemented in C# comprise an assembly (dy-
namically linked library) that extends SQL Server 
2005 with new scalar and table-valued functions. 
Figure 5 shows an overview of the HTM library 
function groups. For details and an HTM primer, 
see http://skyserver.org/HTM. 

Porting the SDSS
We’ve received (and continue to receive) requests 
for all the SDSS CAS data from parties wishing to 
port it to other DBMS platforms such as Oracle, 
DB2, and MySQL. However, we aren’t aware of 
the SDSS data being successfully deployed on any 
other DBMS besides Microsoft SQL Server to 
date. We can think of several reasons why:

The sheer size of the SDSS data set (several 
terabytes) makes it quite a daunting task to port 
it to another DBMS.
The number of functions and stored proce-
dures in the schema isn’t easy to port to other 
platforms. The SDSS schema has roughly 
30,000 lines of SQL code, which required 
about 10 to 12 person-months of development 
and testing effort. 
We currently don’t have the resources to make 
the SDSS data available in a portable data for-
mat. Obviously, writing several terabytes of 
database tables to comma-separated value files 
would take a very long time and isn’t straight-
forward—we would have to split large tables 
into smaller files, for example. The best we can 
do at the moment is to make the SQL Server 
database files available for anyone who wants to 

•

•

•

SphericalHTM SphericalLib
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Figure 5. Hierarchical Triangular Mesh (HTM) functions. The 
cover functions provide the entry interface that calls functions in 
the spherical libraries. SphericalHTM is an HTM layer on top of 
SphericalLIB.
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take a stab at porting them to another DBMS.
The HTM library must also be ported to the 
other platform and linked to the DBMS.

Although these issues make it difficult for us (and 
others) to port the CAS to a different DBMS plat-
form, we’re actively working on ways to make the 
various components more generic and portable. 
We’re also working on making the CAS metadata 
framework generic and extensible to other non-
SDSS and non-astronomy archives.

T he Microsoft SQL Server relational 
DBMS gives us a reliable, versa-
tile, and high-performance data re-
pository for the SDSS catalog data. 

Along with the spatial indexing library and the 
metadata and diagnostics framework that we’ve 
added to it, the ability to formulate efficient SQL 
queries and write complex code right in the da-
tabase gives us a very powerful and scalable data 
mining platform. We continue to enhance and 
improve the CAS’s performance, and in the near 
future, we plan to implement a distributed, par-
titioned version of the CAS DBMS on a cluster 
of database servers using SQL Server’s Distrib-
uted Partitioned Views technology (see www. 
databasejournal.com/features/mssql/article.php/ 
3319481). This will let us scale the CAS out to the 
much larger data sets that will succeed the SDSS 
in the upcoming years.�
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