
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/cise

Vol. 10, No. 1
January/February 2008

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

30	 This article has been peer-reviewed.� Computing in Science & Engineering

S D S S
S c i e n c e A r c h i v e

The Catalog Archive Server
Database Management System

Ani R. Thakar, Alex Szalay, and George Fekete

Johns Hopkins University
Jim Gray

Microsoft Research

The multiterabyte Sloan Digital Sky Survey’s (SDSS’s) catalog data is stored in a commercial
relational database management system with SQL query access and a built-in query
optimizer. The SDSS Catalog Archive Server adds advanced data mining features to the
DBMS to provide fast online access to the data.

T he Sloan Digital Sky Survey’s (SDSS’s)
Science Archive catalog data is large
and complex enough to warrant a
commercial database management

system (DBMS) to ensure its long-term integrity
and to provide the storage, organization, distribu-
tion, and data mining capabilities that it warrants.
A traditional hierarchical file-based system, even
with specialized tools built on top of it, would have
fallen far short of meeting the kind of scientific use
that this data deserves and demands.

The SDSS produces both raw and catalog data;
here, we focus on the catalog data, which flows
into a commercial relational DBMS and is served
up to the outside world by the SDSS Catalog Ar-
chive Server (CAS). The data-loading pipeline
used for this task is the sqlLoader; the online Web
interface that provides access to the CAS is the
SkyServer (http://skyserver.sdss.org/ or http://cas.
sdss.org/).

Although the DBMS we adopted for the CAS

provides built-in, advanced data mining and
query optimization capabilities, we have addi-
tionally built a multidimensional spatial index-
ing scheme—called the Hierarchical Triangular
Mesh (HTM)1,2—right into the DBMS to enable
fast O(log N) spatial searches. In this article, we’ll
look briefly at the DBMS features and schema,
and the additional functionality that we’ve built
into it.

A Relational DBMS
We chose Microsoft’s SQL Server, a Windows-
based relational DBMS, as the CAS’s data reposi-
tory. We started with an object-oriented DBMS,
with the idea that an object data model would pro-
vide a much better conceptual match to the SDSS
data as well as superior performance compared
to the commercial relational DBMS technology
available at the time (early-to-mid 1990s). Howev-
er, even though the object DBMS’s performance
was initially satisfactory, it soon became insuffi-
cient for the SDSS project’s data mining needs.
Over the same period, relational DBMS technol-
ogy advanced to the point where it overtook ob-
ject DBMSs in terms of ease of use, performance,
and reliability features.

An earlier CiSE article describes the difficulties
we encountered with the object-based system,
details about migrating from an object to a re-

1521-9615/08/$25.00 © 2008 IEEE
Copublished by the IEEE CS and the AIP

January/February 2008 � 31

lational system, and the features and advantages
we gained by adopting SQL Server.3 The deci-
sion to select SQL Server was mostly pragmatic
and based on our immediate needs and resources,
rather than a comparative evaluation of relational
DBMS products. Nevertheless, SQL Server is
highly rated for its ease of use and administrative
features, and has one of the best query optimizers
in the business.4 We’ve been quite happy with our
choice so far.

The unit of data storage in a relational DBMS
is a two-dimensional table of rows and columns.
As such, all the CAS data goes into tables in the
DBMS. Let’s look more closely at the data model.

The CAS Data Model
Figure 1 shows the SDSS CAS schema, which
is divided into four functional groups of tables:
photometric data tables (Photo group), spectro-
scopic data tables (Spectro group), tables that
contain information about various types of re-
gions in SDSS space (Region group), and meta-
data tables that contain documentation and other
schema information.

Photo Tables and Views
The Photo group of tables holds the SDSS photo-
metric pipeline’s outputs—that is, the parameters
computed from data taken with the SDSS imag-
ing camera. The main table in this group is the
PhotoObjAll table, which contains the photomet-
ric parameters for each astronomical object that
the photometric pipeline identifies. This superset
of all observations recorded by the SDSS camera
also includes repeat observations of objects. For
objects that have multiple recorded observations,
the best one is marked as primary in the SDSS
photometric pipeline; other observations are
marked secondary if they’re good enough for sci-
ence or family for anything else.

Primary and secondary objects in the Photo-
ObjAll table are listed in the PhotoObj view (a
view is a virtual table defined by an SQL query),
which is the most frequently used subset of the
PhotoObjAll data by the majority of users. Expert
users and SDSS collaboration members are more
likely to go directly to the PhotoObjAll table to
look beyond primary and secondary observations.
The PhotoObjAll table is by far the largest table
in the SDSS data and contains 80 percent of the
data (by volume) in the database. We don’t cache
any of the database views; rather, we let the DBMS
handle caching instead. More specialized views of
PhotoObj facilitate searching for users who are
interested in certain types of objects:

PhotoPrimary for the primary objects in the
PhotoObj view;
Star for primary objects classified as stars by the
SDSS pipelines;
Galaxy for primary objects classified as galaxies;
Sky for primary sky (sampling) observations;
Unknown for primary observations that the
pipeline can’t classify as anything else;
PhotoSecondary for the secondary objects in
PhotoObj; and
PhotoFamily for objects that can’t be marked as
either primary or secondary.

We’ve also made a vertical partition of the
PhotoObjAll table called PhotoTag that contains
the most frequently accessed columns. It’s signifi-
cantly faster to scan the PhotoTag table because
it’s a lot thinner than PhotoObjAll and hence
makes better use of the cache. PhotoTag also has
analogous views to PhotoObjAll called StarTag
and GalaxyTag, which return primary star and
galaxy objects, respectively.

Other tables in the Photo group contain ob-
serving parameters and provenance metadata.
The Chunk, Segment, and Field tables, for ex-
ample, contain information about various units of
data export: a chunk is a completely observed part
of an SDSS stripe (the SDSS divides the sky into
strips using a special coordinate system; a stripe is
two strips), a segment is a single camera column
(out of six total) within a chunk, and a field is a
field of view within a camera column.

•

•

•
•
•

•

•

Figure 1. The Catalog Archive Server schema. Note the various
database tables and the relationships (foreign keys) between them;
tables are grouped by the kind of data they contain.

32� Computing in Science & Engineering

The Photo group also has some derived and
science data tables. The US Naval Observatory
Survey (USNO), Faint Images of the Radio Sky at
Twenty-one centimeters (FIRST), and the Roent-
gen Satellite (ROSAT) tables, for example, con-
tain matches between the SDSS and the USNO,
FIRST, and ROSAT surveys. These tables are
indexed by PhotoObj.objid as a foreign key, which
is a unique column that links two tables in a re-
lational database. The Match and MatchHead
tables contain information about multiple obser-
vations of objects typically used for variability and
other time-domain science.

Each object’s neighbors in the PhotoObjAll ta-
ble within a predetermined radius (usually 30 arc
seconds) are precomputed and kept in the Neigh-
bors table for fast proximity and cross-ID searches.
These types of searches are crucial for multiwave-
length astronomy because they let astronomers
compare data on the same objects in different sur-
veys with different wavelength coverage.

Spectro Tables and Views
The outputs from the one-dimensional Spectro
pipeline, spectroscopic targeting, and tiling in-
formation are contained in the Spectro group of
tables. The main table in this group is the Spec
ObjAll table, which is analogous to the Photo-
ObjAll table in the Photo group but with spectra
instead of images. Also analogous to PhotoObj is
the SpecObj view of the SpecObjAll table, which
contains unique spectra determined by the SDSS
to be fit for science.

Region Tables
The Region and Sector tables contain information
about the survey geometry—in particular, the var-
ious types of regions and boundaries pertaining to
photometric, spectroscopic, and plate tiling data.
They’re populated by region and sector functions.

Metadata Tables
The Metadata group includes the contents of
the documentation pages in the CAS Web sites
(SkyServer and CasJobs), which we can broadly
divide into the Help and Schema Browser pages.
Together, the metadata tables provide an applica-
tion-independent description of a DBMS that we
can use as a template for other scientific archives.
Indeed, the Schema Browser group of tables is al-
ready used in the virtual observatory community
as a template for SkyNodes in the Open SkyQuery
federated query system (www.openskyquery.net).
Let’s look closer at the tables used for metadata.

Schema description tables. Several tables describe
the schema used in the SkyServer, specifically

DBObjects. The description of each object in the
schema is kept in the DBObjects table, which
describes four types of objects—tables, views,
functions, and stored procedures. This table
also stores the access type for each object (for
example, whether it’s accessible to all users or
just administrators).
DBColumns. The one-line description of each
column in each table is kept in the DBColumns

•

•

Metadata diagnostics
and schema check tables

Metadata documentation
and index management tables

Figure 2. Metadata tables used for diagnostics and integrity checks on the schema. Everything except the
Versions, SiteDBs, and SiteConstants tables is autogenerated.

January/February 2008 � 33

table, which also holds other information such
as the column’s data type, units (if applicable),
and a unified content descriptor (UCD) name
that identifies the kind of astronomical quantity
a column represents. UCDs are now an official
International Virtual Observatory Alliance
recommendation meant to enable comparison
of data between diverse archives without hav-
ing to know archives’ individual schemas (www.
ivoa.net/Documents/latest/UCD.html).
DBViewCols. Definitions of columns for views
are kept in the DBViewCols table, which is the
counterpart of the DBColumns table. A special
feature of the DBViewCols is that it allows “*”
as shorthand for a view that includes all the
columns from the parent table. Thus, column
names need not be listed if they are not differ-
ent from those of the parent table.

Several functions and stored procedures dy-
namically load the contents of these tables into the
Schema Browser as requested by the user. Docu-
mentation about possible values for enumerated
data columns appears in the DataConstants table
and is also linked to the names of the columns in
the table schema listing. Other documentation
tables include detailed descriptions of SDSS data-
processing algorithms, a glossary that explains all
the SDSS jargon, and TableDesc, which contains
a short description of each table in the database.

•

The contents of these tables are also dynami-
cally loaded into the SkyServer Help pages, which
lets a given SkyServer site show different con-
tent depending on the data set it’s connected to.
Changes to the content for a given data release
are thus automatically propagated to all Web sites
serving that release.

Diagnostics and schema check. Figure 2 shows the
other metadata tables that provide diagnostics and
integrity checks on the schema:

Inventory lists every object in the schema on
disk, along with its source file and type of ob-
ject. We use it to cross-check the database sche-
ma against what’s on disk.
Dependency lists function and stored procedure
dependencies.
History shows the modification history of each
schema source file for quick searching.
LoadHistory lists all the loading pipeline steps
during the load stage.
PubHistory collects all the steps in the data load-
ing process during the publish/merge and finish
stages.
Diagnostics lists each database object, its type,
and the number of rows in it if it’s a table.

Stored procedures associated with the diagnostics
tables actually perform the diagnostics checks.

•

•

•

•

•

•

fGetNearbyObjAllEq

fGetNearestFrameIdEq

fGetNearestObjIdEqType

fGetNearbyObjEq

spNearestObjEq

fGetNearestObjXYZ fGetNearestObjEq

fGetNearestObjIdEq

fGetNearbyObjXYZfGetNearbyObjAllXYZ

fGetNearbyObjAllXYZ

fGetNearestFrameEq

fGetNearbyObjXYZ

fGetJpegObjects

fGetObjFromRect fGetNearestObjIdEqMode

Figure 3. Nearby function dependency chart. These functions provide fast spatial search capabilities using the Hierarchical
Triangular Mesh (HTM) spatial index. The light (yellow) functions are the primitives that make the actual HTM library calls.
All other functions call these primitives.

34� Computing in Science & Engineering

Functions and Stored Procedures
One of the most powerful features of a DBMS
is the ability to write user-defined functions and
stored procedures that operate on the data in
the database tables. Users perform complex op-
erations, including statistical analysis, right in the
database and avoid expensive movement of data as
much as possible. This feature is critical for large

data sets such as the SDSS.
In the SDSS’s databases, many functions and

stored procedures written in SQL perform various
postprocessing tasks on the data. They’re broadly
divided into two classes—admin and user—de-
pending on whether they’re available to all users
of the database or to database administrators only.
There are currently 135 stored procedures (107

fRegionConvex

fDistanceArcMinEq

spSectorCreate

spSectorCreateSkyBoxes spSectorCreateSectorlets spSectorCreateSectorsspSectorCreateWedgesspSectorCreateTileBoxes

spSectorNibbles

fWedgeV3
fTokenAdvance

fRegionIdToString

fRegionsContainingPointXYZ

spRegionAnd

spRegionSimplify

spRegionDelete

fRegionToArcs

fRegionGetObjectsFromRegionId

fRegionPredicate

fRegionOverlap

fRegionConvexToArcs

fRegionFromString

fRegionConvexIdToString

fRegionFuzz

fRegionGetObjectsFromString

fRegionNot

fRegionsContainingPointEq

fRegionNormalizeString

fRegionStringToArcs

spRegionNotspRegionOr

spRegionSubtract

spRegionUnify

spRegionCopy

spRegionCopyFuzz

spRegionIntersect

spRegionNew

fTokenNext

fTokenStringToTable

fNormalizeString

fEtaToNormal

fHtmCoverfHtmToNormalForm

spRegionNewConvexConstraint

fRegionContainsPointEq

fRegionContainsPointXYZ

spRegionNewConvex

fRegionConvexFromString

Figure 4. Dependency chart for region and sector functions and stored procedures. These functions compute the
spectroscopic plate tiling geometry required for large-scale structure studies. The shading represents the functional group
that each function belongs to; the chart illustrates the complex programming achieved with SQL functions and stored
procedures inside the database management system.

January/February 2008 � 35

admin and 28 user) and 188 functions (6 admin
and 182 user).

We can further subdivide user functions and
stored procedures into the following groups:

Nearest-neighbor searches are functions and
procedures that let users perform proximity
searches. Figure 3 shows a dependency chart
for the “nearby functions” group.
Coordinate conversions provide conversion be-
tween various coordinate systems.
Astronomical functions are specific analysis tasks
frequently required by astronomers.
Utility functions are the functions and procedures
required to display data and metadata, especially
via the Schema Browser and Help pages.

Users can browse the available functions and
stored procedures in the SkyServer and CasJobs
schema browsers. The CasJobs browser also
shows the SQL code for each function or proce-
dure, which is useful for users wanting to learn
how to write their own functions.

The administrator class of functions includes
the following groups:

Region and sector functions compute the tiling
geometry for use in large-scale structure stud-
ies. Figure 4 shows the large number of region
functions and the complex interrelationships
between them. It also shows the kind of heavy-
duty computational tasks that we can perform
inside the database, where all the various data
tables are available in one place and can be
searched quickly.
HTM functions apply specifically to the HTM’s
spatial library (we discuss them more fully in
the “Hierarchical Triangular Mesh Spatial In-
dex” section).
Web support functions provide the interface
layer between the SkyServer Web pages and

•

•

•

•

•

•

•

the database server. They include procedures
to filter user-submitted SQL and log queries.
The main procedure in this group of func-
tions, spExecuteSQL, executes user-submit-
ted SQL queries, filters out any dangerous
commands (such as “drop table”), and ensures
that the query is logged into the usage tracking
system. This function also adds the SQL code
necessary to limit query results so that queries
aren’t allowed to return millions of rows and
bog down the SkyServer Web interface. The
SkyServer also limits query execution time
by imposing timeouts on Web pages. Queries
that require large CPU and disk resources are
handled instead by the CasJobs batch query
interface.
Metadata and documentation functions provide
the Schema Browser and Help page support.
Diagnostics functions are the procedures for
generating diagnostics and checking schema
integrity.
Loader support functions include the functions and
procedures that the sqlLoader pipeline uses to
load and validate data and build auxiliary tables.

The diagnostics functions deserve special men-
tion because they help us maintain the integrity
and versioning of the data in the DBMS:

spMakeDiagnostics checks every table, view,
function, and stored procedure into the Diag-
nostics table and counts the number of rows in
each table and view.
fGetDiagChecksum generates a new checksum
from the diagnostics table.
spCompareChecksum compares the check-
sum in the SiteConstants table with the
checksum generated from diagnostics (using
fGetDiagChecksum).
spUpdateStatistics updates the statistics in ev-
ery user table.

•

•

•

•

•

•

•

Table 1. The IndexMap schema.

Column Type Description

indexmapid Int Unique primary key for the IndexMap table

code varchar(2) One char designator of index category for lookup (‘K’|’F’|’I’)

type varchar(32) Index type, one of (‘primary key’|’foreign key’|’index’|’unique index’)

tableName varchar(128) Name of the table on which the index is built

fieldList varchar(1000) List of columns to be included in the index

foreignKey varchar(1000) Definition of the foreign key, if any

indexgroup varchar(128) The group ID, one of (‘PHOTO’|’TAG’|’SPECTRO’|’META’|’TILES’|’FINISH’)

36� Computing in Science & Engineering

spCheckDBObjects compares the objects in the
database with the objects in the schema loaded
from disk.
spCheckDBColumns compares the columns in
the database with the columns in the schema
loaded from disk.
spCheckDBIndexes compares the indices in the
database (such as those listed in the sysindexes
and sysobjects tables) with the indices in the disk
schema (in this example, in the IndexMap table).

The diagnostics are typically run at the end of the
data loading and publishing process, just before
the data is released to the user community.

Database Indices
and the IndexMap Table
The SQL Server indices on the CAS databases
are created by the sqlLoader data-loading pipe-
line during the final loading stage; they’re man-
aged by the IndexMap table and associated stored
procedures. The IndexMap table contains an
entry for each index defined in the CAS tables.
The indices are subdivided into groups according
to the tables they belong to and when they’re to
be created in the loading process. Some indices
are created during the loading stage, when all
the data is loaded into the destination tables, and
others are created during the publish and finish
part of the loading workflow. Table 1 shows the
IndexMap’s schema.

The IndexMap table’s contents are available to
users for browsing in the SkyServer Schema Brows-
er, and the names and types of indices on each CAS

•

•

•

table are dynamically loaded into the data model
description in the SkyServer Help pages.

Hierarchical Triangular
Mesh Spatial Index
The size of a data set as big as the SDSS (3 Tbytes)
necessitates a spatial indexing technique in addi-
tion to database indices to enable fast searches.
Without a spatial index, searches based on coordi-
nate cuts would still take too long, particularly for
large regions. Proximity searches are also greatly
facilitated by such an index. Accordingly, we built
a multidimensional k-d tree-based spatial index
(the HTM). Each object in the SDSS database
contains a 64-bit htmID, which is the HTM k-d
tree index key for that object.

We included several functions in the database
to implement fast (O(log n)) searching using the
HTM index. The nearest-neighbor functions de-
scribed earlier call the HTM functions to perform
spatial searches. The spherical HTM functions
implemented in C# comprise an assembly (dy-
namically linked library) that extends SQL Server
2005 with new scalar and table-valued functions.
Figure 5 shows an overview of the HTM library
function groups. For details and an HTM primer,
see http://skyserver.org/HTM.

Porting the SDSS
We’ve received (and continue to receive) requests
for all the SDSS CAS data from parties wishing to
port it to other DBMS platforms such as Oracle,
DB2, and MySQL. However, we aren’t aware of
the SDSS data being successfully deployed on any
other DBMS besides Microsoft SQL Server to
date. We can think of several reasons why:

The sheer size of the SDSS data set (several
terabytes) makes it quite a daunting task to port
it to another DBMS.
The number of functions and stored proce-
dures in the schema isn’t easy to port to other
platforms. The SDSS schema has roughly
30,000 lines of SQL code, which required
about 10 to 12 person-months of development
and testing effort.
We currently don’t have the resources to make
the SDSS data available in a portable data for-
mat. Obviously, writing several terabytes of
database tables to comma-separated value files
would take a very long time and isn’t straight-
forward—we would have to split large tables
into smaller files, for example. The best we can
do at the moment is to make the SQL Server
database files available for anyone who wants to

•

•

•

SphericalHTM SphericalLib

SortableRoot

Topo

Patch

Arc

Halfspace

Cartesian

Outline

SmartTrixel

SmartVertex

Cover
SmartArc

Wedge

Region

Figure 5. Hierarchical Triangular Mesh (HTM) functions. The
cover functions provide the entry interface that calls functions in
the spherical libraries. SphericalHTM is an HTM layer on top of
SphericalLIB.

January/February 2008 � 37

take a stab at porting them to another DBMS.
The HTM library must also be ported to the
other platform and linked to the DBMS.

Although these issues make it difficult for us (and
others) to port the CAS to a different DBMS plat-
form, we’re actively working on ways to make the
various components more generic and portable.
We’re also working on making the CAS metadata
framework generic and extensible to other non-
SDSS and non-astronomy archives.

T he Microsoft SQL Server relational
DBMS gives us a reliable, versa-
tile, and high-performance data re-
pository for the SDSS catalog data.

Along with the spatial indexing library and the
metadata and diagnostics framework that we’ve
added to it, the ability to formulate efficient SQL
queries and write complex code right in the da-
tabase gives us a very powerful and scalable data
mining platform. We continue to enhance and
improve the CAS’s performance, and in the near
future, we plan to implement a distributed, par-
titioned version of the CAS DBMS on a cluster
of database servers using SQL Server’s Distrib-
uted Partitioned Views technology (see www.
databasejournal.com/features/mssql/article.php/
3319481). This will let us scale the CAS out to the
much larger data sets that will succeed the SDSS
in the upcoming years.�

References
P.Z. Kunszt et al., “The Hierarchical Triangular Mesh,” Min-
ing the Sky: Proc. MPA/ESO/MPE Workshop, A.J. Banday, S.
Zaroubi, and M. Bartelmann, eds., Springer-Verlag, 2001,
pp. 631–637.

•

1.

A.S. Szalay et al., Indexing the Sphere with the Hierarchical
Triangular Mesh, tech. report MSR-TR-2005-123, Microsoft
Research, 2005.

A.R. Thakar et al., “Migrating a Multiterabyte Astronomical
Archive from Object to Relational Databases,” Computing in
Science & Eng., vol. 5, no. 5, 2003, pp. 16–29.

T. Dyck, “Clash of the Titans,” PC Magazine, vol. 21, no. 6,
2002 pp. 122–138.

Ani R. Thakar is a research scientist in the Center for
Astrophysical Sciences at the Johns Hopkins Univer-
sity. His research interests include science with large
databases, data mining, and simulations of interact-
ing galaxies. Thakar has a PhD in astronomy from
the Ohio State University. Contact him at thakar@
jhu.edu.

Alex Szalay is Alumni Centennial Professor of Phys-
ics and Astronomy at the Johns Hopkins University.
His research interests include cosmology, large-scale
structure of the universe, data mining, and science
with large databases. Szalay has a PhD from Eotvos
University, Hungary. Contact him at szalay@jhu.edu.

George Fekete is a research scientist in the Center for
Astrophysical Sciences at the Johns Hopkins Univer-
sity. His research interests include graphics, visual-
ization, and spatial data management. Fekete has
a PhD in computer science from the University of
Maryland, College Park. Contact him at gfekete@
pha.jhu.edu.

Jim Gray, prior to his disappearance in February
2007, was the Turing Award-winning distinguished
engineer, researcher, and manager of Microsoft Re-
search’s eScience Group in San Francisco. His primary
research interests were in databases and transaction-
processing systems, with a particular focus on using
computers to make scientists more productive.

2.

3.

4.

Software
Engineering
Radio
The Podcast for Professional Software Developers
every 10 days a new tutorial or interview episode

se-radio.net

Peer-reviewed topics

Subscribe to CiSE online at http://cise.aip.org
and www.computer.org/cise

Interdisciplinary

Top-flight departments in each issue!

• Book Reviews

• Computer Simulations

• Education

• News

• Scientific Programming

• Technologies

• Views and Opinions

• Visualization Corner

Communicates to those at

the intersection of science,

engineering, computing,

and mathematics

MEMBERS

$45/year
for print and online

Emphasizes real-world

applications and modern

problem-solving

Anatomic Rendering

Stochastic Modeling

Python: Batteries Included

Climate Modeling

Computational Wizardries

High-Performance Computing
Defense Applications

Jan/Feb

Mar/Apr

May/Jun

Jul/Aug

Sep/Oct

Nov/Dec

2 0 0 7

The magazine of computational
tools and methods for

21st century science

SSDS Science Archive

Combinatorics in Computing

Computational Provenance

High-Performance Computing
in Education

Novel Architectures

Computational Astronomy

Jan/Feb

Mar/Apr

May/Jun

Jul/Aug

Sep/Oct

Nov/Dec

2 0 0 8

