
GrayWulf: Scalable Clustered Architecture for Data Intensive Computing

Team Information

The Johns Hopkins University: Alex Szalay, Maria Nieto-Santisteban, Jan Vandenberg, Alainna

Wonders, Randal Burns, Eric Perlman, Ani Thakar, Mike McCarty, Dean Zariello
Microsoft: Gordon Bell, Tony Hey, Catherine Van Ingen, Roger Barga, Michael Thomassy, Lubor

Kollar, George Spix
University of Chicago Illinois Circle: Bob Grossman, David Hanley, Yunhong Gu, Michal Sabala
University of Hawaii: Jim Heasley
Dell Computer: Tim Carrol, Eric Barnes

Abstract

Data intensive computing presents novel challenges
for traditional computing architectures that have
focused on FLOPS. CPU speeds have surpassed IO
capabilities of both commodity clusters and
traditional supercomputers. We present the
architecture of a database cluster targeted at data-
intensive computations with petascale data sets. The
goal of our design is to build a balanced system in
terms of IO capability, following Amdahl’s Laws. The
system is built from commodity servers, similar to the
well-known BeoWulf architecture. The GrayWulf
name pays tribute to Jim Gray who was actively
involved in its early design. The hardware at JHU
exceeds one petabyte of disk space, and has
70GB/sec aggregate IO bandwidth. Our benchmarks
are based on data from the petascale Pan-STARRS
project, building the largest sky survey to date. The
benchmarks involve sequential searches over
hundreds of terabytes.

1. Problem Statement

The nature of high performance computing is
changing. While a few years ago much of high-end
computing involved maximizing CPU cycles per
second allocated for a given problem; today it
revolves around performing computations over large
data sets. This means that efficient data access from
disks and data movement across servers is an
essential part of the computation. Data sets are
doubling every year, growing slightly faster than
Moore’s Law[1]. As a result, a new challenge is
emerging, as many groups in science (but also
beyond) are facing analyses of data sets in tens of
terabytes, eventually extending to a petabyte since
disk access and data-rates have not grown with their

size. There is no magic way to manage and analyze
such data sets today. The problem exists both on the
hardware and the software levels.

The requirements for the data analysis
environment are (i) scalability, including the ability
to evolve over a long period, (ii) performance, (iii)
ease of use, (iv) some fault tolerance and (v) most
important—low entry cost.

Database-Centric Computing

Many of the typical data access patterns in

science require a first, rapid pass through the data,
with relatively few CPU cycles carried out on each
byte. These involve filtering by a simple search
pattern, or computing a statistical aggregate. Such
operations are quite naturally performed within a
relational database, and expressed in SQL. So a
traditional relational database fits these patterns
extremely well.

The picture gets more complicated when one
needs to run more complex algorithms on the data,
not necessarily easily expressed in a declarative
language. Examples of such applications can include
complex geospatial queries, processing time series
data, or running the BLAST algorithm for gene
sequence matching.

The traditional approach of bringing the data to
where there is an analysis facility is inherently not
scalable, once the data sizes exceed a terabyte, due to
network bandwidth, latency, and cost. It has been
suggested [2] that the best approach is to bring the
analysis to the data. If the data are stored in a
relational database, nothing is closer to the data than
the CPU of the database server. It is quite easy today
with most relational database systems to import
procedural (or object oriented) code and expose their
methods as user defined functions within the query.

This approach has proved to be very successful in
many of our reference applications, and while writing
class libraries linked against SQL was not always the
easiest coding paradigm, its excellent performance
made the coding effort worthwhile.

Typical data-intensive scientific workloads

Over the last few years we have implemented
several eScience applications, in experimental data-
intesive physical sciences applications such as
astronomy, oceanography and water resources. We
have been monitoring the usage and the typical
workloads corresponding to different types of users.
When analyzing the workload on the publicly
available multi-terabyte Sloan Digital Survey
SkyServer database[6], it was found that most user
metrics have a 1/f power law distribution[7].
Of the several hundred million data accesses most
queries were very simple, single row lookups in the
data set, which heavily used indices such as on
position over the celestial sphere (nearest object
queries). These made up the high frequency, low
volume part of the power law distribution. On the
other end there were analyses which did not map very
well on any of the precomputed indices, thus the
system had to perform a sequential scan, often
combined with a merge join. These often took over
an hour to scan through the multi-terabyte database.
In order to submit a long query, users had to register
with an email address, while the short accesses were
anonymous.

We have noticed a pattern in-between these two
types of accesses. Long, sequential accesses to the
data were broken up into small, templated queries,
typically implemented by a simple client-side Python
script, submitted once in every 10 seconds. These
“crawlers” had the advantage of returning data
quickly, and in small buckets. If the inspection of the
first few buckets hinted at an incorrect request (in the
science sense), the users could terminate the queries
without having to wait too long.

The “power users” have adopted a different
pattern. Their analyses involved complex, multi-step
workflows, where the end result was approached in a
multi-step, hit-and-miss fashion. Once the workflow
was finalized, they executed it over the whole data
set, by submitting a large job into a batch queue.

In summary, most scientific analyses are done in
a exploratory fashion, where “everything goes”, and
few predefined patterns apply. Users typically want
to experiment, try innovative things that often do not
fit preconceived notions, and would like to get rapid
feedback on the momentary approach.

Amdahl’s laws

Amdahl has established several laws for building
a balanced computer system [8]. These were
reviewed recently[9] in the context of the explosion
of data. The paper pointed out that contemporary
computer systems IO subsystems are lagging CPU
cycles. In the discussion below we will be concerned
with two of Amdahl’s Laws:

A balanced system

• needs one bit of IO for each CPU cycle
• has 1 byte of memory for each CPU cycle

These laws enumerate a rather obvious statement– in
order to perform continued generic computations, we
need to be able to deliver data to the CPU, through
the memory. Amdahl observed that these ratios need
to be close to unity and this need has stayed relatively
constant.

For large data sets the only way we can even hope
to accomplish the analysis if we follow a maximally
sequential read pattern. The sequential IO rate has
grown somewhat faster as the density of the disks has
increased by the square root of disk capacity. For
commodity SATA drives the sequential IO is
typically 60MB/sec, compared with 20MB/sec 10
years ago. Nevertheless, compared to the increase of
the data volumes and the CPU speedups, this increase
is not fast enough to conduct business as usual. Just
loading a terabyte at this rate takes 4.5 hours. Given
this sequential bottleneck, the only way to increase
the disk throughput of the system is to add more and
more disk drives and to eliminate obvious bottlenecks
in the rest of the system.

Scale-up or scale-out?

A 20-30TB data set is too large to fit on a single,
inexpensive server. One can scale-up, buying an
expensive multiprocessor box with many fiber
channel (FC) Host Channel Adapters (HCA) and a
FC disk array, easily exceeding the $1M price tag.
The performance of such systems is still low,
especially for sequential IO. To build a system with
over one GB/sec sequential IO speed one needs at
least 8 FC adapters. While this may be attractive for
management, the entry cost is not low!

Scaling out using a cluster of disks attached to
each computing node provides a much more cost
effective and high throughput solution, very much
along the lines of BeoWulf designs. The sequential
read speed of a properly balanced mid-range server
with many local disks can easily exceed a GB/sec
before saturation[10]. The cost of such a server can

be kept close to the $10,000 range. On the other hand
managing an array of such systems, and manually
partitioning the data can be quite a challenge. Given
the success of the BeoWulf concept for academic
research, we believe that the dominant solution in this
environment will be deployed locally. Given the
scarcity of space at universities it also needs to have a
high packing density. In this challenge we would like
to show that:

(i) a scaled-out, database–centric system provides a

good platform to perform typical data intensive
computations

(ii) such a system can be built in from quite
inexpensive components

(iii) the aggregate IO performance of such a system
can be extremely competitive, reaching tens of
GBytes/sec.

2. The Hardware Configuration

We are building a combined hardware and
software platform from commodity components to
perform large-scale database-centric computations.
The system should
a) scale to petabyte-size data sets
b) provide a very high sequential IO bandwidth
c) support most eScience access patterns
d) provide simple tools for database design
e) provide tools for fast data ingest

Modular, layered architecture

Our cluster consists of modular building blocks,
in three tiers. Having multiple tiers provides a system
with a certain amount of hierarchical spread of
memory and disk storage. The low level data can be
spread evenly among server nodes on the lowest tier,
all running in parallel, while query aggregations are
done on more powerful servers in the higher tiers.

The lowest, tier 1 building block is a single 2U
sized Dell 2950 server, with two quad core 2.66GHz
CPUs. Each server has 16 GB of memory, two PCIe
PERC6/E dual-channel RAID controllers and a 20
Gbit/sec QLogic SilverStorm Infiniband HCA, with a
PCIe interface. Each server is connected to two
MD1000 SAS disk boxes that contain a total of 30-
750GB, 7,200rpm SATA disks. Each disk box is
connected to its dedicated controller. There are two
mirrored 73GB, 15,000rpm disks residing in internal
bays, connected to a controller on the motherboard.
These contain the operating system and the rest of the
installed software. Thus, each of these modules
contain a total of 22.5TB of data storage.

Four of these units with UPS power is put in a
rack. The whole lower tier consists of 10 such racks,
with a total of 900TB of data space, and 640 GB of
memory. Tier 2 consists of four Dell R900 servers
with 16 cores each and 64 GB of memory, connected
to three of the MD1000 disk boxes, each populated as
above. There is one dual channel PERC6/E controller
for each disk box. The system disks are two mirrored
73GB SAS drives at 10,000 rpm and a 20Gbit/sec
SilverStorm Infiniband HCA. This layer has a total of
135TB of data storage and 256GB of memory. We
also expect that data sets that need to be sorted and/or

Infiniband 20Gbits/s

10 Gbits/s

Tier 1

Tier 2 Tier 3 Interconnect

320 CPU
640GB memory

900TB disk

96 CPU
512GB memory

158TB disk

Infiniband 20Gbits/s

10 Gbits/s

Tier 1

Tier 2 Tier 3 Interconnect

320 CPU
640GB memory

900TB disk

96 CPU
512GB memory

158TB disk

Figure 1. Schematic diagram of three tiers of the GrayWulf architecture. All servers
are interconnected through a QLogic Infiniband switch. The aggregate resource
numbers are provided for the bottom and the top two tiers, respectively.

rearranged will be moved to these servers, utilizing
the larger memory.

Finally, tier 3 consists of two Dell R900 servers
with 16 cores, 128GB of memory, each connected to
a single MD1000 disk box with 15 disks, and a
SilverStorm IB card. The total storage is 22.5TB and
the memory is 256GB. These servers can also run
some of the resource intensive applications, complex
data intensive web services (still inside the SQL
Server engine using CLR integration) requiring more
physical memory than available on the lower tiers.

 server core mem[GB] disk[TB] Count

Tier 1 2950 8 16 22.50 40
Tier 2 R900 16 64 33.75 4
Tier 3 R900 16 128 11.25 2
total 416 1152 1057.50 46

Table 1. Tabular description of the three tiers of the
cluster with aggregates for cores, memory and disk
space within our GrayWulf system.

The Infiniband interconnect is through a Qlogic
SilverStorm 9240 288 port switch, with across-
sectional aggregate bandwidth of 11.52 Tbit/s. The
switch also contains a 10 Gbit/sec Ethernet module
that connects any server to our dedicated single
lambda National Lambda Rail connection over the
Infiniband fabric, without the need for dedicated 10
Gbit Ethernet adapters for the servers.

Storage layout: Balanced IO bandwidth

The most important consideration when we designed
the system (besides staying within our budget) was to
avoid the obvious choke points in terms of streaming
data from disk to CPU, then across the interconnect

layer. These bottlenecks can exist all over the system:
the storage bus (FC, SATA, SAS, SCSI), the storage
controllers, the PCI buses, system memory itself, and
in the way that software chooses to access the
storage.

The disks: A single 7,200 rpm 750 GB SATA
drive can sustain about 75 MB/sec sequential reads at
the outer cylinders, and slighly less on the inner parts.

The storage interconnect: We are using Serial
Attached SCSI (SAS) to connect our SATA drives to
our systems. SAS is built on full-duplex 3 Gbit/sec
“lanes”, which can be either point-to-point (i.e.
dedicated to a single drive), or can be shared by
multiple drives via SAS “expanders”, which behave
much like network switches. Prior parallel SCSI

standards like Ultra320 accommodated only
expensive native SCSI drives, which are great for
IOPS-driven applications, but are not as compelling
for petascale, sequentially-accessed data sets. In
addition to supporting native SAS/SCSI devices, SAS
also supports SATA drives, by adopting a physical
layer compatible with SATA, and by including a
Serial ATA Tunneling Protocol within the SAS

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7
Disks

M
B/

s

20%

SAS

SAS after 25% protocol

SATA after additional 20%

Figure 2. Behavior of SAS lanes showing the effects
of the various protocol overheads relative to the
idealized bandwidth.

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25Disks

M
B

/s

1C-1B-2S

1C-1B-4S

1C-2B-8S

2C-2B-8S

Figure 3. Throughput measurements corresponding to different controller, bus, and
disk configurations.

protocol. For large, fast, potentially low-budget
storage applications, SATA over SAS is a terrific
compromise between enterprise-class FC and SCSI
storage, and the inexpensive but fragile “SATA
bricks” which are particularly ubiquitous in research.

The SCSI protocol itself operates with a 25% bus
overhead. So for a 3 Gbit/sec SAS lane, the real-
world sustainable throughput is about 225 MB/sec.
The SATA Tunneling Protocol introduces an
additional 20% overhead, so the real-world SAS-lane
throughput is about 180 MB/s with SATA drives.

The disk enclosures: Each Dell MD1000 15-disk

enclosure uses a single SAS “4x” connection. 4x is a
bundle of four 3 Gbit/sec lanes, carried externally
over a standard Infiniband-like cable with Infiniband-
like connectors. This 12 Gbit/sec connection to the
controller is very nice relative to common 4 Gbit/sec
FC interconnects. But with SATA drives, the actual
sustainable throughput over the 12 Gbit/sec is only
720 MB/sec. Thus we have already introduced a
moderate bottleneck relative to the ideal ~1100
MB/sec throughput of our 15x750 MB/sec drives.

The disk controllers: The LSI Logic based Dell

PERC6/E controller has dual 4x SAS channels, and
has a feature set which is common among
contemporary RAID controllers. Why do we go to
the trouble and the expense of using one controller
per disk enclosure when we could easily attach one
dedicated 4x channel to each enclosure using a single
controller? Our tests show that the PERC6 controllers
themselves saturate at about 800 MB/sec, so to gain
additional throughput as we add more drives, we
need to add more controllers. It is convenient that a
single controller is so closely matched to a SATA-
populated enclosure.

The PCI and memory busses: The Dell 2950

servers have two “x8” PCI Express connections and
one “x4” connection, rated at 2000 MB/sec and 1000
MB/s half-duplex speeds respectively. We can safely
use the x4 connection for one of our PERC6
controllers since we expect no more than 720 MB/s
from these. These 2000 MB/sec-each x8 connections
are plenty for one of the PERC6 controllers, and just
enough for our 20 Gbit/sec DDR Infiniband HCAs.
Our basic tests suggest that the 2950 servers can read
from memory at 5700 MB/sec, write at 4100 MB/sec,
and copy at 2300 MB/sec. This is a pretty good
match to our 1440 MB/sec of disk bandwidth and
2000 MB/sec Infiniband bandwidth.

In Figure 3, we present our measurements of the
saturation points of various components of the
GrayWulf’s IO system. The labels on the plots

designate the number of controllers, the number of
disk boxes, and the number of SAS lanes for each
experiment. The “1C-1B-2S” plot shows a pair of 3
Gbit/sec SAS lanes saturating near the expected 360
MB/sec mark. “1C-1B-4S” shows the full “4x” SAS
connection of one of the MD1000 disk boxes
saturating at the expected 720 MB/sec. “1C-2B-8S”
demonstrates that the PERC6 controller saturates at
just under 1 GB/sec. “2C-2B-8S” shows the
performance of the actual Tier 1 GrayWulf nodes,
right at twice the “1C-1B-4S” performance.

The full cluster contains 96 of the 720 MB/sec
PERC6/MD1000 building blocks. This translates to
an aggregate low-level throughput of about 70
GB/sec. Even though the bandwidth of the
interconnect is slightly below that of the disk
subsystem, we do not regard this as a major
bottleneck, since in our typical applications the data
is first filtered and/or aggregated, before it is sent
across the network for further stream aggregation.
This filtering operation will result in a reduction of
the data volume to be sent across the network (for
most scenarios) thus a factor of 2 lower network
throughput compared to the disk IO is quite tolerable.

The other factor to note is that for our science
application the relevant calculations take place at the
backplanes of the individual servers, and the higher
level aggregation requires a much lower bandwidth at
the upper tiers.

3. The Software Used

The cluster is running Windows Enterprise Server

2008 and the database engine is SQL Server 2008
that is automatically deployed across the cluster. We
built a middleware that is used for resource tracking,
data partitioning and workflow execution.

Low level IO testing, monitoring tools

We use a combination of Jim Gray’s MemSpeed

tool, and SQLIO [11]. MemSpeed measures system
memory performance itself, along with basic buffered
and unbuffered sequential disk performance. SQLIO
can perform various IO performance tests using IO
operations that resemble what SQL Server’s. Using
SQLIO, we typically test sequential reads and writes,
and random IOPS, but we’re most concerned with
sequential read performance.

Performance measurements presented here are
typically based on SQLIO’s sequential read test,
using 128 KB requests, one thread per system
processor, and 32-deep requests per thread. We
believe that this resembles the typical table scan
behavior of SQL Server’s Enterprise Edition. We

find that the IO speeds that we measure with SQLIO
are very good predictors for SQL Server’s real-world
IO performance.

The full-scale GrayWulf system is rather
complex, with many components performing tasks in
parallel. We need a detailed performance monitoring
subsystem that can track and quantitatively measure
the behavior of the hardware. We need the
performance data in several different contexts:
• track and monitor the status of computer and

network hardware in the “traditional” sense
• as a tool to help design and tune individual SQL

queries, monitor level of parallelism
• track the status of long-running queries,

particularly those that are heavy consumers of
CPU, disk, or network resources in one or more
of the GrayWulf machines

The performance data are acquired both from the
well-known “PerfMon” (Windows Performance Data
Helper) counters and from selected SQL Server
Dynamic Management Views (DMVs). To
understand the resource utilization of different long-
running queries, it is useful to be able to relate DMV
performance observations of SQLServer objects such
as filegroups with PerfMon observations of per-
processor CPU utilization and logical disk IO.

Performance data for SQL queries are gathered by
a C# program that monitors SQL Trace events and
samples performance counters on one or more SQL
Servers. The data is aggregated in a SQL database,
where performance data is associated with individual
SQL queries. This part of the monitoring represented
a particular challenge in a parallel environment, since
there is no easy mechanism to follow process
identifiers for remote subqueries. Data gathering is
limited to “interesting” SQL queries, which are
annotated by specially-formatted SQL comments
whose contents are also recorded in the database.

4. Description of Solution

In this proposal we would like to demonstrate
how we can use simple building blocks, a
commercial database software, combined with our
own middle-ware, running in the Windows
environment to solve real-world data-intensive
problems at the scale of hundreds of Terabytes. The
key to this performance (at the sub $700K cost) is the
usage of locally attached disks, and a careful
selection of the low level system components,
combined with a good data layout strategy.

We have three reference applications, each
corresponding to a different kind of data layout, and

thus a different access pattern. These range from
computational fluid dynamics to astronomy, each
consisting of datasets close to or exceeding 100TB.
Our proposed benchmarks will use these data sets in
their proper scientific context, and demonstrate that
the GrayWulf system is capable of delivering the
necessary throughput to do the science.

5.1. Immersive Turbulence

The first application is in computational fluid

dynamic, CFD, to analyze large hydrodynamic
simulations of turbulent flow. The state-of-the-art
simulations have spatial resolutions of 40963 and
consist of hundreds if not thousands of timesteps.
While current supercomputers can easily run these
simulations it is becoming increasingly difficult to
perform subsequent analyses of the results. Each
timestep over such a spatial resolution can be close to
a terabyte. Storing the data from all timesteps
requires a storage facility reaching hundreds of
terabytes. Any analysis of the data requires the users
to analyze these data sets, which requires accessing
the same compute/storage facility. As the cutting
edge simulations become ever larger, fewer and
fewer scientists can participate in the subsequent
analysis. A new paradigm is needed, where a much
broader class of users can perform analyses of such
data sets.

A typical scenario is that scientists want to inject
a number of particles (5,000-50,000) into the
simulation and follow their trajectories. Since many
of the CFD simulations are performed in Fourier
space, over a regular grid, no labeled particles exist in
the output data. At JHU we have developed a new
paradigm to interact with such data sets using a web-
services interface [12].

A large number of timesteps are stored in the
database, organized along a convenient three-
dimensional spatial index based on a space-filling
curve (Peano-Hilbert, or z-transform). The disk
layout closely preserves the spatial proximity of grid
cells, making disk access of a coherent region more
sequential. The data for each timestep is simply
sliced across N servers, shown as scenario (a) on
Figure 4. The slicing is done along a partitioning key
derived from the space filling curve.

Spatial and temporal interpolation functions are
implemented inside the database that can compute the
velocity field at an arbitrary spatial and temporal
coordinate. A scientist with a laptop can insert
thousands of particles into the simulation by
requesting the velocity filed at those locations. Given
the velocity values, the laptop can then integrate the
particles forward, and again request the velocities at

the updated location and so on. The resulting
trajectories of the particles have been integrated on
the laptop, but they correspond to the velocity field
inside the simulation spanning hundreds of terabytes.
This is digital equivalent of launching sensors into a
vortex of a tornado, like the scientists in the movie
“Twister”.

This computing model has been proven extremely
successful; we have so far ingested a 10243
simulation into a prototype SQL Server cluster, and
created the above mentioned interpolating functions
configured as a TVF (table valued function) inside
the database[13]. The data has been made publicly
available. We also created a Fortran(!) harness to call
the web service, since most of the CFD community is
still using that language.

SkyQuery

The SkyQuery[14] service has been originally

created as part of the National Virtual Observatory. It
is a universal web services based federation tool,
performing cross-matches (fuzzy geospatial joins)
over large astronomy data sets. It has been very
successful, but has a major limitation. It is very good
in handling small areas of the sky, or small user-
defined data sets. But as soon as a user requests a
cross-match over the whole sky, involving the largest
data sets, generating hundreds of millions of rows, its
efficiency rapidly deteriorates, due to the slow wide
area connections.

Co-locating the data from the largest few sky
surveys on the same server farm will give a dramatic
performance improvement. In this case the cross-
match queries are running on the backplane of the
database. We have created a zone-based parallel
algorithm that can perform such spatial cross-
matches in the database[15] extremely fast. This
algorithm has also been shown to run efficiently over
a cluster of databases. We can perform a match
between two datasets (2MASS, 400M objects and
USNOB, 1B objects) in less than 2 hours on a single
server. Our reference application for the GrayWulf is
running parallel queries, and merging the result set,
using a paradigm similar to the MapReduce
algorithm[5].

Making use of threads and multiple servers we
believe that on the JHU cluster can achieve a 20-fold
speedup, yielding a result in a few minutes instead of
a few hours. We use our spatial algorithms to
compute the common sky area of the intersecting
survey footprints then split this area equally among
the participating servers, and include this additional
spatial clause in each instance of the parallel queries
for an optimal load balancing. The data layout in this

case is a simple N-way replication of the data, as
shown as part (b) on Figure 4. The relevant database
that contains all the catalogs is about 5TB, thus a 20-
way replication is still manageable. The different
query streams will be aggregated on one of the Tier 3
nodes.

Pan-STARRS

The Pan-STARRS project[3] is a large
astronomical survey, that will use a special telescope
in Hawaii with a 1.4 gigapixel camera to sample the
sky over a period of 4 years. The large field of view
and the relatively short exposures will enable the
telescope to cover three quarters of the sky 4 times

per year, in 5 optical colors. This will result in more
than a petabyte of images per year. The images will
then be processed through an image segmentation
pipeline that will identify individual detections, at the
rate of 100 million detections per night. These
detections will be associated with physical objects on
the sky and loaded into the project’s database for
further analysis and processing. The database will
contain over 5 billion objects and well over 100
billion detections. The projected size of the database
is 30 terabytes by the end of the first year, growing to
80 terabytes by the end of year 4.

Expecting that most of the user queries will be ran
against the physical object, it is natural to consider a
hierarchical data layout, shown of section (c) on
Figure 4. The star schema of the database naturally
provides a framework for such an organization. The
top level of the hierarchy contains the objects, which
are logically partitioned into N segments, but they
physically stored on one of the Tier 2 servers. The
corresponding detections (much larger in cardinality)
are then sliced among the N servers in the lowest Tier
(A’,B’, etc).

A B C D E F G H

A’ B’ C’ D’ E’ F’ G’ H’

(c) hierarchical

A A A A A A A A

(b) replicated

A B C D E F G H

(a) sliced

A B C D E F G H

A’ B’ C’ D’ E’ F’ G’ H’

(c) hierarchical

A B C D E F G H

A’ B’ C’ D’ E’ F’ G’ H’

A B C D E F G HA B C D E F G HA B C D E F G H

A’ B’ C’ D’ E’ F’ G’ H’A’ B’ C’ D’ E’ F’ G’ H’

(c) hierarchical

A A A A A A A A

(b) replicated

A A A A A A A AA A A A A A A A

(b) replicated

A B C D E F G H

(a) sliced

A B C D E F G HA B C D E F G H

(a) sliced

Figure 4. Data layouts over the GrayWulf cluster,
corresponding to our reference applications. The
three scenarios show (a) sliced, (b) replicated and
(c) hierarchical data distributions.

5. Experiments and measurements

We propose to perform a series of tests to show

the performance of our system:

1. Establish the low level IO speeds. We will run
a sequence of tests using the Microsoft tool
SQLIO under various parameters to measure the
low level sequqntial IO using different disk and
controller configurations (for a preview see Fig.
3.) In separate experiments, we establish the
speed of the Infiniband interconnect, both at the
operating syste level and at the application level
(SQL to SQL streaming).

2. Sequential scan of Pan-STARRS data. We will
use simulated data that we used for the system
testing since the telescope will only become fully
operational at the end of this calendar year. The
data will involve the P2Detection table, which is
partitioned across many servers. We will
replicate data across 25 servers, in excess of
200TB. We will perform a set of range queries,
both on indexed and unindexed quantitites, with
a selectivity of approximately 2%. The output
will be collected on a set of Windows application
nodes connected through the Infiniband.

3. Deliver the Pan-STARRS data to Chicago. In
collaboration with the UIC group we will use the
Sector environment to transfer the resulting 4TB
of data to an application server in Chicago. We
will send the data both buffered at JHU, and as a
direct data stream from SQL.

4. Extract a subset of the turbulence data. We
will run a subset extraction query on the
turbulence data, partitioned and replicated over
25 servers for an aggregate data volume of
120TB. We deliver the result to an HPC cluster
residing at JHU. The benchmark will select a
sub-cube of our 10243 simulation at a given
timestep, and extract the pressure for a subset of
the 64x2563 sub-regions for further computing
and visualization.

5. Distributed join across a geographic divide.
We will use the SkyQuery dataset, replicated
across 20 servers at JHU to perform a streaming
join with another large table residing at Chicago
(UIC) and compare the performance to a local
join. This represents one of the most frequent
query patterns in the astronomy community’s use
of the National Virtual Observatory.

The quantitative measurements will be done
though capturing various system counters (PerfMon)
both at the operating system level and at the database

server level, at the 10 sec granularity. The resulting
data stream will be captured in a database and the
various statistical analyses will be evaluated
afterwards.

6. Claims

In this section we would like to consider several
well-studied architectures for scientific High
Performance Computing and calculate their Amdahl
numbers for comparison. The Amdahl RAM number
is calculated by dividing the total memory in Gbytes
with the aggregate instruction cycles in units of GIPS
(1000 MIPS). The Amdahl IO number is computed
by dividing the aggregate sequential IO speed of the
system in Gbits/sec by the GIPS value. A ratio close
to 1 indicates a balanced system in the Amdahl sense.

We consider first a typical University BeoWulf
cluster, consisting of 50 3GHz dual-core machines,
each with 4GB of memory and one SATA disk drive
with 60MB/sec. Next, we consider a typical desktop
used by the average scientist, doing his/her own data
analysis. Today such a machine has 2 3GHz CPUs,
4GB of memory and 3 SATA disk drives, which
provide an aggregate sequential IO of about
150MB/sec, since they all run off the motherboard
controller. A virtual machine in a commercial cloud
would have a single CPU, say at 3GHz, 4GB RAM,
but a lower IO speed of about 30MB/sec per VM
instance[4].

Let us consider two hypothetical machines used
in today’s scientific supercomputing environments.
An approximate configuration “SC1” for a typical
BlueGene-like machine was obtained from the LLNL
web pages[16]. The sequential IO performance of an
IO-optimized BlueGene/L configuration with 256 IO
nodes has been measured to reach 2.6 GB/sec
peak[17]. A simple minded scaling this result to the
1664 IO nodes in the LLNL system gives us the
hypothetical 16.9 GB/sec figure used in the table for
“SC1”. The other hypothetical supercomputer,
“SC2,” has been modeled on the Cray XT-3 at the
Pittsburgh Supercomputer Center. The XT-3 IO
bandwidth is currently limited by the PSC Infiniband
fabric[18]. We have also attempted to get accurate
numbers from several of the large cloud computing
companies – our efforts have not been successful,
unfortunately.

The Graywulf IO numbers have been estimated
from our single-node measurements of sequential IO
performance and our typical reference workloads.
Table 2 shows that our GrayWulf architecture excels
in aggregate IO performance as well as in the
Amdahl IO metric, in some cases well over a factor
of 50. It is interesting that the desktop of a data

intensive user comes closest to the GrayWulf IO
number of 0.5.

In this paper we wanted to make a few simple
claims:
• Data-intensive scientific computations today

require a large sequential IO speed more than
anything else.

• As we consider higher and higher end systems,
their IO rate does not keep up with the CPUs.

• It is possible to build balanced IO intensive
systems using commodity components

• These systems satisfy criteria in today’s data-
intensive environment similar to those that made
the original BeoWulf idea so successful

• Database-centric computing can perform at high
enough IO rates necessary to today’s petascale
scientific challenges

Our specific claims include the following:

• We will reach an aggregate sequential IO speeds

in excess of 30GBytes/sec
• We will use several different applications, each

with data sizes between 10TB to 200TB to
demonstrate the generic nature and scalablility
of our approach

• We will show that the IO rates are in excess of
70% of the maximum delivered by the hardware

• We will demonstrate how to build a scalable
petabyte system with these metrics for well under
the budget of $1M

7. Acknowledgements

The authors would like to thank Jim Gray for
many years of intense collaboration and friendship.

Financial support for the GrayWulf cluster hardware
was provided by the Gordon and Betty Moore
Foundation, Microsoft Research and the Pan-
STARRS project. Microsoft’s SQL Server group, in
particular Jose Blakeley has given us enormous help
in optimizing the throughput of the database engine.

8. References

[1] G. Moore, “Cramming more components onto
integrated circuits”, Electronics Magazine, 38, No 8, 1965.
[2] A.S. Szalay, J. Gray, “Science in an Exponential
World”, Nature, 440, pp 23-24, 2006.
[3] Pan-STARRS: Panoramic Survey Telescope and Rapid
Response System, http://pan-starrs.ifa.hawaii.edu/
[4] M. Palankar, A. Iamnitchi, M. Ripeanu and S.
Garfinkel,”Amazon S3 for Science Grids: a Viable
Solution?” DADC’08 Conference, Boston, MA, June 24
2008.
[5] J. Dean and S. Ghemawat, “MapReduce: Simplified
Data Processing on Large Clusters”, 6th Symposium on
Operating System Design and Implementation, San
Francisco, 2004.
[6] A.R. Thakar, A.S. Szalay, P.Z. Kunszt, J. Gray, “The
Sloan Digital Sky Survey Science Archive: Migrating a
Multi-Terabyte Astronomical Archive from Object to
Relational DBMS”, Computing in Science and
Engineering, V5.5,Sept 2003, IEEE Press. pp. 16-29, 2003.
[7] V. Singh, J. Gray, A.R. Thakar, A.S. Szalay, J. Raddick,
W. Boroski, S. Lebedeva and B. Yanny, “SkyServer Traffic
Report – The First Five Years”, Microsoft Technical
Report, MSR-TR-2006-190, 2006.
[8] http://en.wikipedia.org/wiki/Amdahl's_law
[9] G. Bell, J. Gray, and A.S. Szalay, “Petascale Compu-
tational Systems: Balanced Cyber-Infrastructure in a Data-
Centric World”, IEEE Computer, 39, pp 110-113, 2006.
[10] T. Barclay, W. Chong, J. Gray, “TerraServer Bricks –
A High Availability Cluster Alternative,” Microsoft
Technical Report, MSR-TR-2004-107, 2004.

System CPU
count

GIPS
[GHz]

RAM
[GB]

diskIO
[MB/s]

Amdahl
RAM IO

BeoWulf 100 300 200 3000 0.67 0.080
Desktop 2 6 4 150 0.67 0.200
Cloud VM 1 3 4 30 1.33 0.080
SC1 212992 150000 18600 16900 0.12 0.001
SC2 2090 5000 8260 4700 1.65 0.008
GrayWulf 416 1107 1152 70000 1.04 0.506

Table 2. The two Amdahl numbers characterizing a balanced system are
shown for a variety of systems commonly used in scientific computing
today. Amdahl numbers close to 1 indicate a balanced architecture.

[11] J. Gray, B. Bouma, A. Wonders, “Performance of
Sun X4500 under Windows, NTFS and SQLServer
2005”, http://research.microsoft.com/~gray/papers/
JHU_thumper.doc
[12] Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R.
Burns, S. Chen, G. Eyink and A. Szalay, “A public
turbulence database and applications to study Lagrangian
evolution of velocity increments in turbulence”, submitted
to J. Comp. Phys, 2008.
[13] E. Perlman, R. Burns, Y. Li and C. Meneveau, “Data
exploration of turbulence simulations using a database
cluster”, In Proceedings of the Supercomputing Conference
(SC’07), 2007.
[14] T. Budavari,T., T. Malik, A.S. Szalay, A. Thakar, J.
Gray, “SkyQuery – a Prototype Distributed Query Web
Service for the Virtual Observatory”, Proc. ADASS XII,
ASP Conference Series, eds: H.Payne, R.I. Jedrzejewski
and R.N.Hook, 295, 31, 2003.
[15] J. Gray, M.A. Nieto-Santisteban, A.S. Szalay, “The
Zones Algorithm for Finding Points-Near-a-Point or Cross-
Matching Spatial Datasets,” Microsoft Technical Report,
MSR-TR-2006-52, 2006.
[16]https://computing.llnl.gov/?set=resources&page=SCF_
resources#bluegenel
[17] H. Yu, R. K. Sahoo, C. Howson, G. Almasi, J. G.
Castanos, M. Gupta J. E. Moreira, J. J. Parker, T. E.
Engelsiepen, R. Ross, R. Thakur, R. Latham, and W. D.
Gropp, "High Performance File I/O for the BlueGene/L
Supercomputer," in Proc. of the 12th International
Symposium on High-Performance Computer Architecture
(HPCA-12), February 2006.
[18] Ralph Roskies, private communication

