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Abstract 
 
Data intensive computing presents novel challenges 
for traditional computing architectures that have 
focused on FLOPS. CPU speeds have surpassed IO 
capabilities of both commodity clusters and 
traditional supercomputers. We present the 
architecture of a database cluster targeted at data-
intensive computations with petascale data sets. The 
goal of our design is to build a balanced system in 
terms of IO capability, following Amdahl’s Laws. The 
system is built from commodity servers, similar to the 
well-known BeoWulf architecture. The GrayWulf 
name pays tribute to Jim Gray who was actively 
involved in its early design. The hardware at JHU 
exceeds one petabyte of disk space, and has 
70GB/sec aggregate IO bandwidth. Our benchmarks 
are based on data from the petascale Pan-STARRS 
project, building the largest sky survey to date. The 
benchmarks involve sequential searches over 
hundreds of terabytes. 
  
1. Problem Statement 
 

The nature of high performance computing is 
changing. While a few years ago much of high-end 
computing involved maximizing CPU cycles per 
second allocated for a given problem; today it 
revolves around performing computations over large 
data sets. This means that efficient data access from 
disks and data movement across servers is an 
essential part of the computation.  Data sets are 
doubling every year, growing slightly faster than 
Moore’s Law[1]. As a result, a new challenge is 
emerging, as many groups in science (but also 
beyond) are facing analyses of data sets in tens of 
terabytes, eventually extending to a petabyte since 
disk access and data-rates have not grown with their 

size. There is no magic way to manage and analyze 
such data sets today. The problem exists both on the 
hardware and the software levels.   

The requirements for the data analysis 
environment are (i) scalability, including the ability 
to evolve over a long period, (ii) performance, (iii) 
ease of use, (iv) some fault tolerance and (v) most 
important—low entry cost. 
 
Database-Centric Computing 

 
Many of the typical data access patterns in 

science require a first, rapid pass through the data, 
with relatively few CPU cycles carried out on each 
byte. These involve filtering by a simple search 
pattern, or computing a statistical aggregate. Such 
operations are quite naturally performed within a 
relational database, and expressed in SQL. So a 
traditional relational database fits these patterns 
extremely well.  

The picture gets more complicated when one 
needs to run more complex algorithms on the data, 
not necessarily easily expressed in a declarative 
language. Examples of such applications can include 
complex geospatial queries, processing time series 
data, or running the BLAST algorithm for gene 
sequence matching.  

The traditional approach of bringing the data to 
where there is an analysis facility is inherently not 
scalable, once the data sizes exceed a terabyte, due to 
network bandwidth, latency, and cost. It has been 
suggested [2] that the best approach is to bring the 
analysis to the data. If the data are stored in a 
relational database, nothing is closer to the data than 
the CPU of the database server. It is quite easy today 
with most relational database systems to import 
procedural (or object oriented) code and expose their 
methods as user defined functions within the query. 



This approach has proved to be very successful in 
many of our reference applications, and while writing 
class libraries linked against SQL was not always the 
easiest coding paradigm, its excellent performance 
made the coding effort worthwhile. 

 
Typical data-intensive scientific workloads 
 

Over the last few years we have implemented 
several eScience applications, in experimental data-
intesive physical sciences applications such as 
astronomy, oceanography and water resources. We 
have been monitoring the usage and the typical 
workloads corresponding to different types of users. 
When analyzing the workload on the publicly 
available multi-terabyte Sloan Digital Survey 
SkyServer database[6], it was found that most user 
metrics have a 1/f power law distribution[7].  
Of the several hundred million data accesses most 
queries were very simple, single row lookups in the 
data set, which heavily used indices such as on 
position over the celestial sphere (nearest object 
queries). These made up the high frequency, low 
volume part of the power law distribution. On the 
other end there were analyses which did not map very 
well on any of the precomputed indices, thus the 
system had to perform a sequential scan, often 
combined with a merge join. These often took over 
an hour to scan through the multi-terabyte database. 
In order to submit a long query, users had to register 
with an email address, while the short accesses were 
anonymous.  

We have noticed a pattern in-between these two 
types of accesses. Long, sequential accesses to the 
data were broken up into small, templated queries, 
typically implemented by a simple client-side Python 
script, submitted once in every 10 seconds. These 
“crawlers” had the advantage of returning data 
quickly, and in small buckets. If the inspection of the 
first few buckets hinted at an incorrect request (in the 
science sense), the users could terminate the queries 
without having to wait too long. 

The “power users” have adopted a different 
pattern. Their analyses involved complex, multi-step 
workflows, where the end result was approached in a 
multi-step, hit-and-miss fashion. Once the workflow 
was finalized, they executed it over the whole data 
set, by submitting a large job into a batch queue. 

In summary, most scientific analyses are done in 
a exploratory fashion, where “everything goes”, and 
few predefined patterns apply. Users typically want 
to experiment, try innovative things that often do not 
fit preconceived notions, and would like to get rapid 
feedback on the momentary approach.  
 

Amdahl’s laws  
 

Amdahl has established several laws for building 
a balanced computer system [8]. These were 
reviewed recently[9] in the context of the explosion 
of data. The paper pointed out that contemporary 
computer systems IO subsystems are lagging CPU 
cycles. In the discussion below we will be concerned 
with two of Amdahl’s Laws: 

 
A balanced system  

• needs one bit of IO for each CPU cycle 
• has 1 byte of memory for each CPU cycle 
 

These laws enumerate a rather obvious statement– in 
order to perform continued generic computations, we 
need to be able to deliver data to the CPU, through 
the memory. Amdahl observed that these ratios need 
to be close to unity and this need has stayed relatively 
constant.  

For large data sets the only way we can even hope 
to accomplish the analysis if we follow a maximally 
sequential read pattern. The sequential IO rate has 
grown somewhat faster as the density of the disks has 
increased by the square root of disk capacity. For 
commodity SATA drives the sequential IO is 
typically 60MB/sec, compared with 20MB/sec 10 
years ago. Nevertheless, compared to the increase of 
the data volumes and the CPU speedups, this increase 
is not fast enough to conduct business as usual. Just 
loading a terabyte at this rate takes 4.5 hours. Given 
this sequential bottleneck, the only way to increase 
the disk throughput of the system is to add more and 
more disk drives and to eliminate obvious bottlenecks 
in the rest of the system. 

 
Scale-up or scale-out? 
 

A 20-30TB data set is too large to fit on a single, 
inexpensive server. One can scale-up, buying an 
expensive multiprocessor box with many fiber 
channel (FC) Host Channel Adapters (HCA) and a 
FC disk array, easily exceeding the $1M price tag. 
The performance of such systems is still low, 
especially for sequential IO. To build a system with 
over one GB/sec sequential IO speed one needs at 
least 8 FC adapters. While this may be attractive for 
management, the entry cost is not low! 

Scaling out using a cluster of disks attached to 
each computing node provides a much more cost 
effective and high throughput solution, very much 
along the lines of BeoWulf designs. The sequential 
read speed of a properly balanced mid-range server 
with many local disks can easily exceed a GB/sec 
before saturation[10]. The cost of such a server can 



be kept close to the $10,000 range. On the other hand 
managing an array of such systems, and manually 
partitioning the data can be quite a challenge. Given 
the success of the BeoWulf concept for academic 
research, we believe that the dominant solution in this 
environment will be deployed locally. Given the 
scarcity of space at universities it also needs to have a 
high packing density. In this challenge we would like 
to show that: 
 
(i) a scaled-out, database–centric system provides a 

good platform to perform typical data intensive 
computations  

(ii) such a system can be built in from quite 
inexpensive components 

(iii) the aggregate IO performance of such a system 
can be extremely competitive, reaching tens of 
GBytes/sec. 

 
2. The Hardware Configuration 
 

We are building a combined hardware and 
software platform from commodity components to 
perform large-scale database-centric computations.  
The system should  
a) scale to petabyte-size data sets 
b) provide a very high sequential IO bandwidth 
c) support most eScience access patterns 
d) provide simple tools for database design  
e) provide tools for fast data ingest 
 
Modular, layered architecture 

 

Our cluster consists of modular building blocks, 
in three tiers. Having multiple tiers provides a system 
with a certain amount of hierarchical spread of 
memory and disk storage. The low level data can be 
spread evenly among server nodes on the lowest tier, 
all running in parallel, while query aggregations are 
done on more powerful servers in the higher tiers.  

The lowest, tier 1 building block is a single 2U 
sized Dell 2950 server, with two quad core 2.66GHz 
CPUs.  Each server has 16 GB of memory, two PCIe 
PERC6/E dual-channel RAID controllers and a 20 
Gbit/sec QLogic SilverStorm Infiniband HCA, with a 
PCIe interface. Each server is connected to two 
MD1000 SAS disk boxes that contain a total of 30- 
750GB, 7,200rpm SATA disks. Each disk box is 
connected to its dedicated controller. There are two 
mirrored 73GB, 15,000rpm disks residing in internal 
bays, connected to a controller on the motherboard. 
These contain the operating system and the rest of the 
installed software. Thus, each of these modules 
contain a total of 22.5TB of data storage.  

Four of these units with UPS power is put in a 
rack. The whole lower tier consists of 10 such racks, 
with a total of 900TB of data space, and 640 GB of 
memory. Tier 2 consists of four Dell R900 servers 
with 16 cores each and 64 GB of memory, connected 
to three of the MD1000 disk boxes, each populated as 
above. There is one dual channel PERC6/E controller 
for each disk box. The system disks are two mirrored 
73GB SAS drives at 10,000 rpm and a 20Gbit/sec 
SilverStorm Infiniband HCA. This layer has a total of 
135TB of data storage and 256GB of memory. We 
also expect that data sets that need to be sorted and/or 
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Figure 1. Schematic diagram of three tiers of the GrayWulf architecture. All servers 
are interconnected through a QLogic Infiniband switch. The aggregate resource 
numbers are provided for the bottom and the top two tiers, respectively. 



rearranged will be moved to these servers, utilizing 
the larger memory. 

Finally, tier 3 consists of two Dell R900 servers 
with 16 cores, 128GB of memory, each connected to 
a single MD1000 disk box with 15 disks, and a 
SilverStorm IB card. The total storage is 22.5TB and 
the memory is 256GB. These servers can also run 
some of the resource intensive applications, complex 
data intensive web services (still inside the SQL 
Server engine using CLR integration) requiring more 
physical memory than available on the lower tiers. 

 
  server core mem[GB] disk[TB] Count 

Tier 1 2950 8 16 22.50 40 
Tier 2 R900 16 64 33.75 4 
Tier 3 R900 16 128 11.25 2 
total   416 1152 1057.50 46 

Table 1. Tabular description of the three tiers of the 
cluster with aggregates for cores, memory and disk 
space within our GrayWulf system. 
 

The Infiniband interconnect is through a Qlogic 
SilverStorm 9240 288 port switch, with across-
sectional aggregate bandwidth of 11.52 Tbit/s. The 
switch also contains a 10 Gbit/sec Ethernet module 
that connects any server to our dedicated single 
lambda National Lambda Rail connection over the 
Infiniband fabric, without the need for dedicated 10 
Gbit Ethernet adapters for the servers.  

 
Storage layout: Balanced IO bandwidth  
 
The most important consideration when we designed 
the system (besides staying within our budget) was to 
avoid the obvious choke points in terms of streaming 
data from disk to CPU, then across the interconnect 

layer. These bottlenecks can exist all over the system: 
the storage bus (FC, SATA, SAS, SCSI), the storage 
controllers, the PCI buses, system memory itself, and 
in the way that software chooses to access the 
storage.  

The disks: A single 7,200 rpm 750 GB SATA 
drive can sustain about 75 MB/sec sequential reads at 
the outer cylinders, and slighly less on the inner parts. 

The storage interconnect: We are using Serial 
Attached SCSI (SAS) to connect our SATA drives to 
our systems. SAS is built on full-duplex 3 Gbit/sec 
“lanes”, which can be either point-to-point (i.e. 
dedicated to a single drive), or can be shared by 
multiple drives via SAS “expanders”, which behave 
much like network switches. Prior parallel SCSI 

standards like Ultra320 accommodated only 
expensive native SCSI drives, which are great for 
IOPS-driven applications, but are not as compelling 
for petascale, sequentially-accessed data sets. In 
addition to supporting native SAS/SCSI devices, SAS 
also supports SATA drives, by adopting a physical 
layer compatible with SATA, and by including a 
Serial ATA Tunneling Protocol within the SAS 
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Figure 2. Behavior of SAS lanes showing the effects
of the various protocol overheads relative to the
idealized bandwidth. 
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Figure 3. Throughput measurements corresponding to different controller, bus, and 
disk configurations. 



protocol. For large, fast, potentially low-budget 
storage applications, SATA over SAS is a terrific 
compromise between enterprise-class FC and SCSI 
storage, and the inexpensive but fragile “SATA 
bricks” which are particularly ubiquitous in research. 

The SCSI protocol itself operates with a 25% bus 
overhead. So for a 3 Gbit/sec SAS lane, the real-
world sustainable throughput is about 225 MB/sec. 
The SATA Tunneling Protocol introduces an 
additional 20% overhead, so the real-world SAS-lane 
throughput is about 180 MB/s with SATA drives. 

 
The disk enclosures: Each Dell MD1000 15-disk 

enclosure uses a single SAS “4x” connection. 4x is a 
bundle of four 3 Gbit/sec lanes, carried externally 
over a standard Infiniband-like cable with Infiniband-
like connectors. This 12 Gbit/sec connection to the 
controller is very nice relative to common 4 Gbit/sec 
FC interconnects. But with SATA drives, the actual 
sustainable throughput over the 12 Gbit/sec is only 
720 MB/sec. Thus we have already introduced a 
moderate bottleneck relative to the ideal ~1100 
MB/sec throughput of our 15x750 MB/sec drives.  

 
The disk controllers: The LSI Logic based Dell 

PERC6/E controller has dual 4x SAS channels, and 
has a feature set which is common among 
contemporary RAID controllers. Why do we go to 
the trouble and the expense of using one controller 
per disk enclosure when we could easily attach one 
dedicated 4x channel to each enclosure using a single 
controller? Our tests show that the PERC6 controllers 
themselves saturate at about 800 MB/sec, so to gain 
additional throughput as we add more drives, we 
need to add more controllers. It is convenient that a 
single controller is so closely matched to a SATA-
populated enclosure. 

 
The PCI and memory busses: The Dell 2950 

servers have two “x8” PCI Express connections and 
one “x4” connection, rated at 2000 MB/sec and 1000 
MB/s half-duplex speeds respectively. We can safely 
use the x4 connection for one of our PERC6 
controllers since we expect no more than 720 MB/s 
from these. These 2000 MB/sec-each x8 connections 
are plenty for one of the PERC6 controllers, and just 
enough for our 20 Gbit/sec DDR Infiniband HCAs. 
Our basic tests suggest that the 2950 servers can read 
from memory at 5700 MB/sec, write at 4100 MB/sec, 
and copy at 2300 MB/sec. This is a pretty good 
match to our 1440 MB/sec of disk bandwidth and 
2000 MB/sec Infiniband bandwidth. 

In Figure 3, we present our measurements of the 
saturation points of various components of the 
GrayWulf’s IO system. The labels on the plots 

designate the number of controllers, the number of 
disk boxes, and the number of SAS lanes for each 
experiment. The “1C-1B-2S” plot shows a pair of 3 
Gbit/sec SAS lanes saturating near the expected 360 
MB/sec mark. “1C-1B-4S” shows the full “4x” SAS 
connection of one of the MD1000 disk boxes 
saturating at the expected 720 MB/sec. “1C-2B-8S” 
demonstrates that the PERC6 controller saturates at 
just under 1 GB/sec. “2C-2B-8S” shows the 
performance of the actual Tier 1 GrayWulf nodes, 
right at twice the “1C-1B-4S” performance. 

The full cluster contains 96 of the 720 MB/sec 
PERC6/MD1000 building blocks. This translates to 
an aggregate low-level throughput of about 70 
GB/sec. Even though the bandwidth of the 
interconnect is slightly below that of the disk 
subsystem, we do not regard this as a major 
bottleneck, since in our typical applications the data 
is first filtered and/or aggregated, before it is sent 
across the network for further stream aggregation. 
This filtering operation will result in a reduction of 
the data volume to be sent across the network (for 
most scenarios) thus a factor of 2 lower network 
throughput compared to the disk IO is quite tolerable. 

The other factor to note is that for our science 
application the relevant calculations take place at the 
backplanes of the individual servers, and the higher 
level aggregation requires a much lower bandwidth at 
the upper tiers. 

 
3. The Software Used 

 
The cluster is running Windows Enterprise Server 

2008 and the database engine is SQL Server 2008 
that is automatically deployed across the cluster. We 
built a middleware that is used for resource tracking, 
data partitioning and workflow execution. 
 
Low level IO testing, monitoring tools 

 
We use a combination of Jim Gray’s MemSpeed 

tool, and SQLIO [11]. MemSpeed measures system 
memory performance itself, along with basic buffered 
and unbuffered sequential disk performance. SQLIO 
can perform various IO performance tests using IO 
operations that resemble what SQL Server’s. Using 
SQLIO, we typically test sequential reads and writes, 
and random IOPS, but we’re most concerned with 
sequential read performance.  

Performance measurements presented here are 
typically based on SQLIO’s sequential read test, 
using 128 KB requests, one thread per system 
processor, and 32-deep requests per thread. We 
believe that this resembles the typical table scan 
behavior of SQL Server’s Enterprise Edition. We 



find that the IO speeds that we measure with SQLIO 
are very good predictors for SQL Server’s real-world 
IO performance. 

The full-scale GrayWulf system is rather 
complex, with many components performing tasks in 
parallel. We need a detailed performance monitoring 
subsystem that can track and quantitatively measure 
the behavior of the hardware. We need the 
performance data in several different contexts: 
• track and monitor the status of computer and 

network hardware in the “traditional” sense  
• as a tool to help design and tune individual SQL 

queries, monitor level of parallelism 
• track the status of long-running queries, 

particularly those that are heavy consumers of 
CPU, disk, or network resources in one or more 
of the GrayWulf machines 
 

The performance data are acquired both from the 
well-known “PerfMon” (Windows Performance Data 
Helper) counters and from selected SQL Server 
Dynamic Management Views (DMVs). To 
understand the resource utilization of different long-
running queries, it is useful to be able to relate DMV 
performance observations of SQLServer objects such 
as filegroups with PerfMon observations of per-
processor CPU utilization and logical disk IO. 

Performance data for SQL queries are gathered by 
a C# program that monitors SQL Trace events and 
samples performance counters on one or more SQL 
Servers. The data is aggregated in a SQL database, 
where performance data is associated with individual 
SQL queries.  This part of the monitoring represented 
a particular challenge in a parallel environment, since 
there is no easy mechanism to follow process 
identifiers for remote subqueries. Data gathering is 
limited to “interesting” SQL queries, which are 
annotated by specially-formatted SQL comments 
whose contents are also recorded in the database. 
 
4. Description of Solution 
 

In this proposal we would like to demonstrate 
how we can use simple building blocks, a 
commercial database software, combined with our 
own middle-ware, running in the Windows 
environment to solve real-world data-intensive 
problems at the scale of hundreds of Terabytes. The 
key to this performance (at the sub $700K cost) is the 
usage of locally attached disks, and a careful 
selection of the low level system components, 
combined with a good data layout strategy. 

We have three reference applications, each 
corresponding to a different kind of data layout, and 

thus a different access pattern. These range from 
computational fluid dynamics to astronomy, each 
consisting of datasets close to or exceeding 100TB. 
Our proposed benchmarks will use these data sets in 
their proper scientific context, and demonstrate that 
the GrayWulf system is capable of delivering the 
necessary throughput to do the science. 
 
5.1. Immersive Turbulence 

  
The first application is in computational fluid 

dynamic, CFD, to analyze large hydrodynamic 
simulations of turbulent flow. The state-of-the-art 
simulations have spatial resolutions of 40963 and 
consist of hundreds if not thousands of timesteps. 
While current supercomputers can easily run these 
simulations it is becoming increasingly difficult to 
perform subsequent analyses of the results. Each 
timestep over such a spatial resolution can be close to 
a terabyte. Storing the data from all timesteps 
requires a storage facility reaching hundreds of 
terabytes. Any analysis of the data requires the users 
to analyze these data sets, which requires accessing 
the same compute/storage facility. As the cutting 
edge simulations become ever larger, fewer and 
fewer scientists can participate in the subsequent 
analysis. A new paradigm is needed, where a much 
broader class of users can perform analyses of such 
data sets.  

A typical scenario is that scientists want to inject 
a number of particles (5,000-50,000) into the 
simulation and follow their trajectories. Since many 
of the CFD simulations are performed in Fourier 
space, over a regular grid, no labeled particles exist in 
the output data. At JHU we have developed a new 
paradigm to interact with such data sets using a web-
services interface [12].  

A large number of timesteps are stored in the 
database, organized along a convenient three-
dimensional spatial index based on a space-filling 
curve (Peano-Hilbert, or z-transform). The disk 
layout closely preserves the spatial proximity of grid 
cells, making disk access of a coherent region more 
sequential. The data for each timestep is simply 
sliced across N servers, shown as scenario (a) on 
Figure 4. The slicing is done along a partitioning key 
derived from the space filling curve. 

Spatial and temporal interpolation functions are 
implemented inside the database that can compute the 
velocity field at an arbitrary spatial and temporal 
coordinate. A scientist with a laptop can insert 
thousands of particles into the simulation by 
requesting the velocity filed at those locations. Given 
the velocity values, the laptop can then integrate the 
particles forward, and again request the velocities at 



the updated location and so on. The resulting 
trajectories of the particles have been integrated on 
the laptop, but they correspond to the velocity field 
inside the simulation spanning hundreds of terabytes. 
This is digital equivalent of launching sensors into a 
vortex of a tornado, like the scientists in the movie 
“Twister”.  

This computing model has been proven extremely 
successful; we have so far ingested a 10243 
simulation into a prototype SQL Server cluster, and 
created the above mentioned interpolating functions 
configured as a TVF (table valued function) inside 
the database[13]. The data has been made publicly 
available. We also created a Fortran(!) harness to call 
the web service, since most of the CFD community is 
still using that language.  

 
SkyQuery 

 
The SkyQuery[14] service has been originally 

created as part of the National Virtual Observatory. It 
is a universal web services based federation tool, 
performing cross-matches (fuzzy geospatial joins) 
over large astronomy data sets. It has been very 
successful, but has a major limitation. It is very good 
in handling small areas of the sky, or small user-
defined data sets. But as soon as a user requests a 
cross-match over the whole sky, involving the largest 
data sets, generating hundreds of millions of rows, its 
efficiency rapidly deteriorates, due to the slow wide 
area connections.  

Co-locating the data from the largest few sky 
surveys on the same server farm will give a dramatic 
performance improvement. In this case the cross-
match queries are running on the backplane of the 
database. We have created a zone-based parallel 
algorithm that can perform such spatial cross-
matches in the database[15] extremely fast. This 
algorithm has also been shown to run efficiently over 
a cluster of databases. We can perform a match 
between two datasets (2MASS, 400M objects and 
USNOB, 1B objects) in less than 2 hours on a single 
server. Our reference application for the GrayWulf is 
running parallel queries, and merging the result set, 
using a paradigm similar to the MapReduce 
algorithm[5].  

Making use of threads and multiple servers we 
believe that on the JHU cluster can achieve a 20-fold 
speedup, yielding a result in a few minutes instead of 
a few hours. We use our spatial algorithms to 
compute the common sky area of the intersecting 
survey footprints then split this area equally among 
the participating servers, and include this additional 
spatial clause in each instance of the parallel queries 
for an optimal load balancing. The data layout in this 

case is a simple N-way replication of the data, as 
shown as part (b) on Figure 4. The relevant database 
that contains all the catalogs is about 5TB, thus a 20-
way replication is still manageable. The different 
query streams will be aggregated on one of the Tier 3 
nodes. 

 
Pan-STARRS 
 

The Pan-STARRS project[3] is a large 
astronomical survey, that will use a special telescope 
in Hawaii with a 1.4 gigapixel camera to sample the 
sky over a period of 4 years. The large field of view 
and the relatively short exposures will enable the 
telescope to cover three quarters of the sky 4 times 

per year, in 5 optical colors. This will result in more 
than a petabyte of images per year. The images will 
then be processed through an image segmentation 
pipeline that will identify individual detections, at the 
rate of 100 million detections per night. These 
detections will be associated with physical objects on 
the sky and loaded into the project’s database for 
further analysis and processing. The database will 
contain over 5 billion objects and well over 100 
billion detections. The projected size of the database 
is 30 terabytes by the end of the first year, growing to 
80 terabytes by the end of year 4.   

Expecting that most of the user queries will be ran 
against the physical object, it is natural to consider a 
hierarchical data layout, shown of section (c) on 
Figure 4.  The star schema of the database naturally 
provides a framework for such an organization. The 
top level of the hierarchy contains the objects, which 
are logically partitioned into N segments, but they 
physically stored on one of the Tier 2 servers. The 
corresponding detections (much larger in cardinality) 
are then sliced among the N servers in the lowest Tier 
(A’,B’, etc).  
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Figure 4. Data layouts over the GrayWulf cluster, 
corresponding to our reference applications. The 
three scenarios show (a) sliced, (b) replicated and 
(c) hierarchical data distributions. 



 
5. Experiments and measurements 

 
We propose to perform a series of tests to show 

the performance of our system: 
 

1. Establish the low level IO speeds. We will run 
a sequence of tests using the Microsoft tool 
SQLIO under various parameters to measure the 
low level sequqntial IO using different disk and 
controller configurations (for a preview see Fig. 
3.) In separate experiments, we establish the 
speed of the Infiniband interconnect, both at the 
operating syste level and at the application level 
(SQL to SQL streaming). 

2. Sequential scan of Pan-STARRS data. We will 
use simulated data that we used for the system 
testing since the telescope will only become fully 
operational at the end of this calendar year. The 
data will involve the P2Detection table, which is 
partitioned across many servers. We will 
replicate data across 25 servers, in excess of 
200TB. We will perform a set of range queries, 
both on indexed and unindexed quantitites, with 
a selectivity of approximately 2%. The output 
will be collected on a set of Windows application 
nodes connected through the Infiniband. 

3. Deliver the Pan-STARRS data to Chicago. In 
collaboration with the UIC group we will use the 
Sector environment to transfer the resulting 4TB 
of data to an application server in Chicago. We 
will send the data both buffered at JHU, and as a 
direct data stream from SQL. 

4. Extract a subset of the turbulence data. We 
will run a subset extraction query on the 
turbulence data, partitioned and replicated over 
25 servers for an aggregate data volume of 
120TB. We deliver the result to an HPC cluster 
residing at JHU. The benchmark will select a 
sub-cube of our 10243 simulation at a given 
timestep, and extract the pressure for a subset of 
the 64x2563 sub-regions for further computing 
and visualization. 

5. Distributed join across a geographic divide. 
We will use the SkyQuery dataset, replicated 
across 20 servers at JHU to perform a streaming 
join with another large table residing at Chicago 
(UIC) and compare the performance to a local 
join. This represents one of the most frequent 
query patterns in the astronomy community’s use 
of the National Virtual Observatory. 
 

The quantitative measurements will be done 
though capturing various system counters (PerfMon) 
both at the operating system level and at the database 

server level, at the 10 sec granularity. The resulting 
data stream will be captured in a database and the 
various statistical analyses will be evaluated 
afterwards. 

 
6. Claims 
 

In this section we would like to consider several 
well-studied architectures for scientific High 
Performance Computing and calculate their Amdahl 
numbers for comparison. The Amdahl RAM number 
is calculated by dividing the total memory in Gbytes 
with the aggregate instruction cycles in units of GIPS 
(1000 MIPS). The Amdahl IO number is computed 
by dividing the aggregate sequential IO speed of the 
system in Gbits/sec by the GIPS value. A ratio close 
to 1 indicates a balanced system in the Amdahl sense. 

We consider first a typical University BeoWulf 
cluster, consisting of 50 3GHz dual-core machines, 
each with 4GB of memory and one SATA disk drive 
with 60MB/sec. Next, we consider a typical desktop 
used by the average scientist, doing his/her own data 
analysis. Today such a machine has 2 3GHz CPUs, 
4GB of memory and 3 SATA disk drives, which 
provide an aggregate sequential IO of about 
150MB/sec, since they all run off the motherboard 
controller. A virtual machine in a commercial cloud 
would have a single CPU, say at 3GHz, 4GB RAM, 
but a lower IO speed of about 30MB/sec per VM 
instance[4]. 

Let us consider two hypothetical machines used 
in today’s scientific supercomputing environments. 
An approximate configuration “SC1” for a typical 
BlueGene-like machine was obtained from the LLNL 
web pages[16].  The sequential IO performance of an 
IO-optimized BlueGene/L configuration with 256 IO 
nodes has been measured to reach 2.6 GB/sec 
peak[17]. A simple minded scaling this result to the 
1664 IO nodes in the LLNL system gives us the 
hypothetical 16.9 GB/sec figure used in the table for 
“SC1”. The other hypothetical supercomputer, 
“SC2,” has been modeled on the Cray XT-3 at the 
Pittsburgh Supercomputer Center. The XT-3 IO 
bandwidth is currently limited by the PSC Infiniband 
fabric[18]. We have also attempted to get accurate 
numbers from several of the large cloud computing 
companies – our efforts have not been successful, 
unfortunately. 

The Graywulf IO numbers have been estimated 
from our single-node measurements of sequential IO 
performance and our typical reference workloads. 
Table 2 shows that our GrayWulf architecture excels 
in aggregate IO performance as well as in the 
Amdahl IO metric, in some cases well over a factor 
of 50. It is interesting that the desktop of a data 



intensive user comes closest to the GrayWulf IO 
number of 0.5.  

In this paper we wanted to make a few simple 
claims: 
• Data-intensive scientific computations today 

require a large sequential IO speed more than 
anything else. 

• As we consider higher and higher end systems, 
their IO rate does not keep up with the CPUs. 

• It is possible to build balanced IO intensive 
systems using commodity components 

• These systems satisfy criteria in today’s data-
intensive environment similar to those that made 
the original BeoWulf idea so successful 

• Database-centric computing can perform at high 
enough IO rates necessary to today’s petascale 
scientific challenges 

 
Our specific claims include the following: 
 
• We will reach an aggregate sequential IO speeds 

in excess of 30GBytes/sec 
• We will use several different applications, each 

with data sizes between 10TB to 200TB to 
demonstrate the generic nature and scalablility 
of our approach 

• We will show that the IO rates are in excess of 
70% of the maximum delivered by the hardware 

• We will demonstrate how to build a scalable 
petabyte system with these metrics for well under 
the budget of $1M 
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