
sqlLoader

A Distributed Workflow System for Data Import,
Validation, Publication and Curation

Ani R. Thakar (JHU,

Alex Szalay (JHU),

Jim Gray (Microsoft Research)

Maria Nieto-Santisteban (JHU)

May 8, 2004

1 Introduction

The Sloan Digital Sky Survey (SDSS) is a multi-institution, internationally funded
project to map about half of the northern sky in unprecedented detail with a dedicated
2.5m telescope and special purpose instruments [SDSS]. The project began taking
observations in 2000 and is scheduled for completion in 2006. The resulting digital
archive – the SDSS Science Archive – will contain the distillation of the calibrated
scientific data from the survey. The raw image data is expected to be about 40TB in size
and the catalog data (Science Archive) is expected to be about 2-3 TB in size. Both will
be publicly distributed for online access.

The SDSS has had three data releases thus far: the Early Data Release (EDR) in
June 2001, Data Release 1 (DR1) in June 2003, and Data Release 2 (DR2) in March
2004. DR2 represents a public distribution of about 2 TB of catalog data in the form of
online databases served by the SDSS Catalog Archive Server (CAS). The online web
interface that provides access to the CAS is called SkyServer (http://skyserver.sdss.org/).
A commercial relational database management system (RDBMS) – Microsoft’s SQL
Server – is used to store and serve up the data to the scientific community. The DBMS
provides advanced data searching and query optimization capabilities, but we also built a
multi-dimensional spatial indexing scheme – the Hierarchical Triangular Mesh (HTM) –
into the DBMS to enable fast spatial searches and data mining. The DR2 SkyServer site
also provides an ability to submit batch queries and to build private databases of query
results [O’Mullane03, Nieto03] .

Loading such large multi-dimensional datasets into the DBMS is a critical and time-
consuming step that is fraught with potential missteps. In many ways, loading the data is
the weakest link in archive publishing. It is typically the most error-prone and time-
consuming yet least planned and budgeted part of archive operations.

.
The Virtual Observatory (VO) [Szalay01] also demands integrating many historical

and current datasets into online repositories. Loading these datasets (and reloading them
as schemas change) will be an ongoing task. With the multi-terabyte to petabyte data
volumes anticipated for the upcoming archives in the VO, time is also a critical factor.
Disk speeds will not keep up with the increase in data volume, and in general the loading
of such large archives will take several days if parallelism is employed, several weeks if
not.

In practice, archive data often has to be reloaded several times even before it is
published: errors in the data cause reloads, errors in the data-processing pipeline cause
reloads, and sometimes changes to the schema or performance considerations make
reloading the data to be the most expedient and clean option. The efficiency and
reliability of the data loading process therefore is of paramount importance in order to:

 minimize the time and supervision required to reload the data, and
 get the data correct the first time it is published.

http://skyserver.sdss.org/

A crucial fact about public archives is that once the data is published, it is
immutable, i.e., it cannot be retracted or changed, especially after science has been based
on the data and papers have been published. As such, we only get one chance to get the
data right, so the loading procedure must be as reliable, thorough, and as automated as
possible. Accordingly, we have invested a great deal of time and effort in developing the
data loading pipeline for the SDSS data.

We describe this pipeline here, and discuss how it could be adapted as a general-
purpose loading tool for other multi-terabyte and petabyte digital archives that will be
coming online in the near future.

2 FITS-to-CSV Converter

The raw data stored in the SDSS OpDB (operations database) is exported in the form of
FITS files. There are several different types of FITS files exported, corresponding to
distinct datasets within the SDSS data. There is both image and spectroscopic data. A
unit of image data exported is termed a chunk, and corresponds to a single resolve
operation in the OpDB. As the data is often recalibrated as the image processing pipeline
is refined, different calibrations result in different skyVersions of the image data:

 Target skyVersion – the calibration from which the spectral targets were chosen.
 Best skyVersion – the latest, greatest calibration of the data.
 Runs skyVersion – a temporary calibration that may be reclassified as target or

best later, but until then is only for internal collaboration use. It is not released to
the public.

In addition to the image datasets, there are
spectroscopic plates and tiling data that also are
included in the public data release. These FITS
files are converted into ASCII CSV (comma-
separated values) files and JPEG image files for
ingestion into the SQL databases, by a utility
called sqlFits2Csv that knows about the database
schema that the files are destined for, so it
creates one type of output file for each table in
the database. This utility also assigns to each
catalog object a unique 64-bit object-ID that is
used as the primary key in the corresponding
database table.

The conversion to CSV also acts as a blood-
brain barrier between the Linux and Windows
world and between the file and database world.
All the popular database systems support a
generic CSV file converter. The CSV files are
SAMBA-mounted on the windows side and
imported into the databases by the sqlLoader
distributed workflow system described below.
The data flow is shown in Fig. 1.

TChunkTChunkTChunk BChunkBChunkBChunk RunRunRun PlatePlatePlate TilingTilingTiling

TChunkTChunkTChunk BChunkBChunkBChunk RunRunRun PlatePlatePlate TilingTilingTiling

sqlFits2CSVsqlFits2CSVsqlFits2CSV

LINUXLINUX

WindowsWindows

OpDBOpDB
ExportExport

CSVCSV
FilesFiles

sqlLoadersqlLoadersqlLoader

CAS DatabasesCAS DatabasesCAS Databases

TChunkTChunkTChunk BChunkBChunkBChunk RunRunRun PlatePlatePlate TilingTilingTilingTChunkTChunkTChunk BChunkBChunkBChunk RunRunRun PlatePlatePlate TilingTilingTiling

TChunkTChunkTChunk BChunkBChunkBChunk RunRunRun PlatePlatePlate TilingTilingTilingTChunkTChunkTChunk BChunkBChunkBChunk RunRunRun PlatePlatePlate TilingTilingTiling

sqlFits2CSVsqlFits2CSVsqlFits2CSV

LINUXLINUX

WindowsWindows

OpDBOpDB
ExportExport

CSVCSV
FilesFiles

sqlLoadersqlLoadersqlLoader

CAS DatabasesCAS DatabasesCAS Databases

Figure 1. SDSS Data Import pipeline. FITS data
exported by the OpDB is first converted to CSV format
on the Linux side. It is then Samba-mounted and loaded
into the SQL Server databases on the Windows side.

3 Workflow Management

The loader workflow is controlled via the SQL Server Agent process. There are two
agent jobs created in order to control the workflow – the Load job and the Pub job. The
load job runs once every minute and picks up the next step from the Load stage (see
below) for the first active task and executes it. Similarly, the Pub job wakes up once
every minute and picks up the next step in the Publish-Merge or Finish stages. The
workflow stages are shown in Figure 2.

There are three distinct stages in the loader workflow:
1. LOAD – this stage includes checking the input CSV files, loading them into

temporary task DBs, validating the data in the task DBs and making a backup of
the task DB.

2. PUBLISH – Publishing the individual task DBs to the publish DB; merging of
the various data streams (imaging, spectro, tiling) in the publish DB and creating
the indices on the main tables.

3. FINISH – Running the final tests, creating the derived tables and pre-computed
joins, and the corresponding indices.

Stages 2 and 3 must be run in sequential at the moment, since they all write to the
same (publish) DB. The Load-Validate can be run in parallel on a cluster of load servers,
each having its own view of the schema and its own task DB.

LOADLOAD

PUBLISHPUBLISH

FINISHFINISH

EXPEXP

CHKCHK

BLDBLD

SQLSQL

VALVAL

BCKBCK

DTCDTC

Export

Check CSV

Build Task DBs

Build SQL Schema

Validate

Backup

Detach

PUBPUB

CLNCLN

Publish

Cleanup

FINFIN

LOADLOAD

PUBLISHPUBLISH

FINISHFINISH

EXPEXP

CHKCHK

BLDBLD

SQLSQL

VALVAL

BCKBCK

DTCDTC

Export

Check CSV

Build Task DBs

Build SQL Schema

Validate

Backup

Detach

PUBPUB

CLNCLN

Publish

Cleanup

FINFIN

Figure 2. The workflow diagrams for the sqlLoader, showing the LOAD,
PUBLISH and FINISH workflows. The LOAD workflow is the most time-
consuming and it can be run in distributed parallel mode. The PUBLISH and
FINISH must be done sequentially.

4 Distributed Framework

The framework for the sqlLoader pipeline is divided into two parts: loadadmin and
loadsupport. This facilitates distributed and parallel data loading with a cluster of
loadservers. The loadadmin scripts and databases control the load framework on the
master loadserver. The loadsupport scripts and DBs set up the loading on the slave
loadservers and build the ancillary framework to facilitate the loading process, such as
setting up the user privileges, setting up links between master and slave loadservers (if
applicable), setting
up the spatial
indexing, and utilities
to manage units of
the loading process
(phase, step, task
etc.). Figure 3 shows
the relationship
between the
loadadmin and
loadsupport parts of
the framework. Each
of the satellite or
slave servers links
only to the master,
not to each other.

The loadsupport
database contains
read-only remote
views of the
loadadmin database
rather than copies, so that changes in the master data or schema are automatically
reflected on the slaves. This uses SQL Server’slinked server mechanism to make remote
databases and tables appear to be local.

4.1 Load and Publish Roles

The loadadmin and loadsupport servers have different roles in the distributed
implementation: the loadadmin server runs both in load and publish roles, whereas the
loadsupport servers run only in the load role. The load role corresponds to the loading of
the CSV files into the individual component databases (one per load unit), whereas the
publish role involves the validation and transfer of the component database contents into
the publish DB for each dataset. The loading is therefore done in parallel, and the
publishing brings all the loaded components together into the publish DB on the master

Figure 3. Schematic of relationship between the master (loadadmin)
server and the slave (loadsupport) servers.

Samba-mounted CSV FilesSamba-mounted CSV Files

Publish
Server
Publish
Server

Publish
Data

Publish
Data

Finish/MergeFinish/Merge

MasterMaster

Task DBTask DB

Task
Data
Task
Data

LoadAdminLoadAdmin

SlaveSlave

Task DBTask DB

Task
Data
Task
Data

LoadSupportLoadSupport SlaveSlave

Task DBTask DB

Task
Data
Task
Data

LoadSupportLoadSupport

Load Monitor

Publish
Schema

View of
Master
Schema

View of
Master
Schema

Master
Schema

Samba-mounted CSV FilesSamba-mounted CSV Files

Publish
Server
Publish
Server

Publish
Data

Publish
Data

Publish
Data

Publish
Data

Finish/MergeFinish/Merge

MasterMaster

Task DBTask DB

Task
Data
Task
Data
Task
Data
Task
Data

LoadAdminLoadAdmin

SlaveSlave

Task DBTask DB

Task
Data
Task
Data
Task
Data
Task
Data

LoadSupportLoadSupport SlaveSlave

Task DBTask DB

Task
Data
Task
Data
Task
Data
Task
Data

LoadSupportLoadSupport

Load Monitor

Publish
Schema
Publish
Schema

View of
Master
Schema

View of
Master
Schema

View of
Master
Schema

Master
Schema

server. We refer to this final publish step as the merge/finish step to avoid confusion
with the copying of the task DBs to the publish DB (see below).

The sqlLoader framework contains several kinds of scripts:
1. Windows command scripts (.bat files) that run the loading framework and SQL

scripts.
2. SQL scripts (.sql files) that contain the SQL code to set up the loading framework

and load the data.
3. DTS (Data Transformation Services) packages to perform special-purpose data

import tasks.
4. Visual Basic (VBScript) scripts that are used for syntax-checking the CSV files

and parsing the documentation files to load them into the databases.

4.2 Loader Command Scripts

The initial creation of the loader framework, including building the loadadmin and
loadsupport databases, must be done via command scripts that perform the database
creation and other system level setup tasks that need to be performed only once when the
pipeline is first configured. There are two main scripts – one to build the loadadmin
(master) framework, and the other to build the loadsupport (slave) framework. In the
case where a single loadserver is used for the data loading and publishing, both of these
would be constructed on the same machine.

1. build-loadadmin.bat - This builds the loadadmin framework on the master
server. This is to be run only once from the command line on the main (master)
loadserver machine. It takes no parameters. It performs the following tasks:

o gets the loadserver host name
o creates the path for the loader logs
o looks for local log file and deletes it
o checks whether the directory where the loadadmin database is to be

created exists, and if it does not exist, creates it.
o makes load logs world-readable
o sets up 2 network shares – for the root of the sqlLoader directory structure

and the loadlog directory that holds the logs. This is necessary so that the
slave servers can see these directories.

o runs the following SQL scripts:
 loadadmin-build.sql – creates the loadadmin database.
 loadadmin-schema.sql – installs the schema in the loadadmin

database.
 loadadmin-local-config.sql – sets up the local configuration for

the master loadserver. This script has to be updated manually with
the local information.

2. build-loadsupport.bat - This script must be run on each of the loadservers in the
configuration, including the master. It builds the loadsupport part of the
framework on the current loadserver (which can be the master or one of the slaves

if applicable), including the loadsupport database, the HTM, loadsupport
utilities etc. This script performs the following functions:

o sets the name of the master loadserver
o sets up the logging paths for this loadserver
o sets up the load-support environment on this server
o builds the load-support DB and schema on this server
o sets up the load-support stored procedures and utlilities
o sets up this loadserver's role - loader or publisher or both: a loader only

stuffs the data in the databases, but does not run the validation and publish
steps

o sets up the HTM

4.3 Loader SQL Scripts

The command scripts invoke SQL scripts to carry out the actual database tasks. These
are the loadadmin and loadsupport SQL scripts described in the table below. Most of the
functions required for the data import, validation, and publishing are coded in the form of
SQL stored procedures in the loadsupport, task and publish databases. These are defined
in the following scripts and installed in the appropriate databases upon creation.

Name of script, remarks Specific functions performed by script
loadadmin-build.sql Deletes the existing loadadmin DB if any.

 Turns on the trace flag 1807 - this is a secret
Windows flag that allows us to mount remote DBs.

 Sets a bunch of DB options.
 Turns autoshrink off - this is very important

otherwise the performance bogs down when
autoshrink tasks run in the background.

loadadmin-schema.sql Creates Task and Step tables in the loadadmin DB.
 Inserts NULL task and step - this is necessary so

we can assign system errors if everything fails.
 Creates NextStep table - this drives the sequence of

loading by specifying what are the procedures for
the next step.

 Creates ServerState table - this allows us to stop the
server so that processing is stopped.

 Creates Constants table and put it in all the paths
 Gets server name from global variable (e.g.

sdssad2) - Note: SQL name for the server must be
the same as the Windows name.

loadadmin-local-config.sql
Must be adapted for the local
configuration before running
the loader.

 Sets up the paths for the CSV files.
 Sets up backup paths.
 Sets up the loadagent user and domain so that the

the loader. SQL Agent can be started up.

loadsupport-build.sql
Needs to be edited to update
the domain account names
explicitly. In the future, will
likely be reorganized to deal
differently with master/slave
loadservers.

 Creates a "webagent" user account which is used by
the load monitor web interface to connect to the
loadserver(s) and run loader tasks

o make sure that webagent is a sysadmin on
the loadserver

o make sure only the master loadserver does
this.

loadsupport-schema.sql Creates all the tables in the schema.
loadsupport-loadserver.sql
Need this to allow SQL
scripted access.

Creates a single table with a single row which is
the name of this loadserver.

loadsupport-link.sql
Sets up the link between the
master and slave server for
this slave.

 Creates a 2-way link-server relationship between
this slave server and the master server.

 Sets up all the views.
 Enables remote transactions.

loadsupport-sp.sql
Sets up the stored procedures
for loading from this server.

 Constructors for phase, step, and task.
 Start/end steps - this is done only on the loadserver.
 Kill task, ensuring that:

o log records are kept
o files are cleaned up.

 DB is deleted only when the same task is re-
submitted (with new taskID).

loadsupport-utils.sql Pre-load utilities
loadsupport-steps.sql
Controls the high-level steps

Each step has the following:
 A stored procedure with the name "sp<name-of-

step>step" associated with it - which is the meat of
the step's logic.

 A "sp<name-of-step>" procedure that is a wrapper
that calls the sp<name-of-step>step procedure.

loadsupport-show.sql Displays load monitor screens

4.4 Schema Files

The schema creation scripts for the CAS databases are in the schema subdirectory. The
contents of this subdirectory encapsulate the data model for the archive, and hence will
change the most when it is adapted to other (non-SDSS) archives. There are 5
subdirectories at this level:

1. csv - contains CSV (comma-separated values) outputs from the documentation
generation scripts; in general this directory contains input files for metadata
tables.

2. doc - the documentation content files are here.
3. etc - miscellaneous SQL script files are here, for housekeeping and utility

schema-related functions.
4. log - the weblogging scripts are here.
5. sql - this is the main subdirectory containing the schema files. The various

schema tables, views, stored procedures and functions are created by the SQL
scripts in this subdirectory. The following files are here:

o boundary.sql - Creates the tables and funtions related to boundaries and
polygons

o constantSupport.sql - Creates the support functions for various constants
and enumerated types

o dataConstants.sql - Sets the values of the constants and enumerated types
o metadataTables.sql - Creates the tables that describe the data tables
o myTimeX.sql - Contains scripts for performance measurements
o nearFunctions.sql - Creates the various functions that find nearby objects
o photoTables.sql - Creates the imaging (photo) tables
o spBackup.sql - Creates stored procedures to back up databases
o spectroTables.sql - Creates the spectro and tiling tables
o spFinish.sql - Contains the stored procedures for the Finish step in the

loading/publishing
o spGrantAccess.sql - Creates the stored procedure that sets the privileges

correctly for users after databases are loaded
o spHTMmaster.sql - Creates the stored procedures to install HTM into the

master database
o spHTM.sql - Creates the stored procedures to install HTM into other DBs
o spManageIndices.sql - Creates the stored procedures for managing the

index creation
o spPublish.sql - Contains the stored procedures for the Publish step in the

loading/publishing
o spSetValues.sql - Contains the stored procedure that sets and updates

column values after the bulk loading
o spValidate.sql - Contains the stored procedures for the Validate step in the

loading/publishing
o views.sql - Defines and creates the various views on the data tables
o webSupport.sql - Creates the stored procedures to support the web (HTTP)

interfaces to the DBs, including those needed to execute SQL queries
submitted via the skyServer and the sdssQA

o zoomTables.sql - Creates the schema for the Zoom-related tables

5 The Data Validator

Data emerges from the pipeline as ASCII CSV (comma separated values) files and image
files in JPEG and GIF format. Each batch of files is imported into a staging database

where it is validated and enhanced. Once validated the data is moved to the production
or archive databases. The validation steps are shown in Figure 4.

 Pipeline → SQL validation in Staging DB → {Best, Target, Run} SQL databases

Photometric and spectroscopic data have different routines, but the Photo Best,
Target, and Runs datasets have approximately the same validation logic.

5.1 spValidator

The validator is invoked as a stored procedure on a particular database. Its job is to
validate that database. It searches the Task table using the host name and DB-name as a
key. The returned record tells the validator:
 The type of validation (photo or spectro).
 If it is a photo job, the subtype (BEST,

TARGET, RUNS).
 The destination database.
 A job ID that is used to key all future log

events.

The spValidator then branches to
spValidateSpectro or spValidatePhoto. When
these routines complete, spValidator writes a
completion message in LoadSupport.dbo.Task
and exits. At each step the validation routines
record the result of a test. The loader interface
can watch the validation progress and can
assess the success or failure of the validation
by looking at this journal (in the load
database) and by looking at the job summary
record.

5.2 spValidatePhoto

The photo validator performs the following checks:

1. It checks the uniqueness of the following primary key fields:
Chunk.chunkNumber
CrossID.(objID,surveyID,surveyObjID)
First.objID
Field.FieldID
FieldProfile.(fieldID, bin, band)
Frame.FieldID
PhotoObj.objID
PhotoProfile(objID, bin, band)
PhotoZ.objID
Rosat.objID
Segment.segmentID
StripeDefs.stripe

Test Uniqueness
Of Primary Keys
Test Uniqueness
Of Primary Keys

Test
Foreign Keys

Test
Foreign Keys

Test
Cardinalities

Test
Cardinalities

Test
HTM IDs

Test
HTM IDs

Test parent-child
consistency

Test parent-child
consistency

Test the unique
Key in each table

Test for consistency
of keys that link tables

Test consistency of
numbers of various
quantities

Test the Hierarchical
Triamgular Mesh IDs
used for spatial
indexing

Ensure that all parents
and children and linked

Test Uniqueness
Of Primary Keys
Test Uniqueness
Of Primary Keys

Test
Foreign Keys

Test
Foreign Keys

Test
Cardinalities

Test
Cardinalities

Test
HTM IDs

Test
HTM IDs

Test parent-child
consistency

Test parent-child
consistency

Test the unique
Key in each table

Test for consistency
of keys that link tables

Test consistency of
numbers of various
quantities

Test the Hierarchical
Triamgular Mesh IDs
used for spatial
indexing

Ensure that all parents
and children and linked

Figure 4. Data validation checks
performed by the Validator

Survey.surveryID
Synonym.(objID, matchID)
USNO.objID

2. It creates the following temporary indices to make subsequent tests run faster:
 PhotoObj(objID),

Field(FieldID),
PhotoObj(HTMid, ObjID,cx,cy,cz,type, status)

3. It then tests the following foreign keys:

 Chunk.stripe StripeDefs.stripe
 CrossID.objID PhotoObj.objID
 CrossID.surveyID Survey.SurveyID
 Field.segmentID Segment.segmentID
 FieldProfile.fieldID Field.fieldID
 First.objID PhotoObj.objID
 Frame.fieldID Field.fieldID
 PhotoObj.fieldID Field.fieldID
 PhotoProfile.objID PhotoObj.objID
 PhotoZ.objID PhotoObj.objID
 Rosat.objID PhotoObj.objID
 Segment.chunkNumber Chunk.chunkNumber
 Synonym.ObjID PhotoObj.objID
 Segment.stripe StripeDefs.stripe
 USNO.objID PhotoObj.objID

4. Next, it checks to see if the advertised populations match the real populations:
 Segment.nFields = count(fields) group by segmentID
 Field.nObjects = count(PhotoObj) group by fieldID
 PhotoObj.Nprofiles = count(PhotoProfile) group by objID

5. It then looks at the PhotoObj parents (who was deblended from whom) and tests
to see that PhotoObj(nChild) = count(PhotoObj) with that Parent for for the
first 1000 non-null parents.

6. It also tests the first 1,000 to see that the external HTM calculation is similar to
the internal one (a few errors are allowed due to rounding, but 99% of the results
should agree exactly).

Frame.htmID
Mosaic.htmID
PhotoObj.htmID

7. Next it computes the neighbors of each object. For a Best database a 30 arc
second neighborhood is computed. Target and Runs databases use a 3 arcsecond
radius. The neighbors computation is complex enough that it has its own writeup
(spNeighbors) as a separate memo. But the idea is the following:

a. the zone table is built from PhotoObj
b. it is augmented with “visitors” from the target area who might contribute

neighbors.
c. the margins are added in

d. the 3 zone-joins are done to compute the neighbors.
e. the zone and foreigners tables are dropped.

This is the longest step of the validation process.

8. Lastly, the validator drops the indices it created for the validation work, namely
PhotoObj.I, PhotoObj.HTM, Field.I

spValidatePhoto then returns to spValidate. If there is spectroscopic data in the
database, it will be validated next.

5.3 spValidateSpectro

Testing spectroscopic data is simpler. This data is always destined for the Spectro part`of
the database schema and there are many fewer tests.

1. spValidateSpectro first tests the uniqueness of the primary keys.
Plate.plateID,
SpecObjAll.SpecObjID
ELRedshift.ELRedshiftID
XCRedshift.XCRedshiftID
SpecLine.SpecLineID
SpecLineIndex.SpecLineIndexID

2. It then creates two indices to make the subsequent tests run much faster:

SpecObjAll(SpecObjID), Plate(PlateID)

3. It then tests the following foreign keys:
SpecObjAll.plateID Plate.plateID

 ElRedshift.specObjID SpecObjAll.specObjID
SpecLine.specObjID SpecObjAll.specObjID
SpecLineIndex. specObjID SpecObjAll.specObjID,
XCredshift.specObjID SpecObjAll,specObjID.

4. It also tests the first 1,000 HTM IDs in the SpecObj table (SpecObj.htmID) to
check that the external HTM calculation is similar to the internal one.

5. Lastly it drops the working indices and returns.

6 Setting Up the Loader Framework

The following steps must be performed to set up and install the sqlLoader so that data can
be loaded into the databases. Most of these steps (#1-9) are things that typically only
have to be executed once, the first time that the loader is installed on the loadserver. If
the loadserver has already been configured, proceed directly to step 10.

1. Set the SQL Server security on the master loadserver (loadadmin) machine to
mixed security, i.e. Windows and SQLServer authentication. This is necessary
for the webagent user to be able to connect to the loadadmin server.

2. Ensure that the SQL Server Agent is running on the master loadserver
(loadadmin).

3. On the loadadmin machine, check out a copy of the sqlLoader module in the C:\
drive.

4. Make sure that the tempDB properties are set up correctly. In Enterprise
Manager under the Databases tab, select tempDB and then select Taskpad from
the View menu. This will show the DB properties at a glance. You need to
check/set the following:

o The data file for the DB on the D: drive needs to be set to grow
automatically.

o Make sure that the data file for the DB on the C: drive is not set to grow
automatically.

o The size of the data file should be at least 10GB (10000MB), preferably
20GB (20000MB) if there is room to spare. You can only increase the
size of the data files from the initial size (you cannot decrease the size
below the initial size the DB was created with).

Once you are done, press the Ok button at the bottom to apply the changes. It
will take a while to increase the size of the data file (few minutes to half hour).

5. Set up the load monitor web interface on a Windows webserver (running IIS):
1. Copy/move the admin subdirectory of sqlLoader to the web tree where

the admin pages will be served from.
2. Set up a virtual directory in IIS to point to this directory.
3. Modify the connection.js file (edit with Notepad) in the admin directory

to replace the xxx-ed out password for the webagent user with the real
password, and change the Data Source to point to the master loadserver
machine.

6. Tweak the loadadmin/loadadmin-local-config.sql file as per the local
configuration parameters (see Loader Admin Framework section above). Make
sure that all the directory paths that are specified in this file actually exist! For the
backup directory path, also make sure that the Sharing (not NTFS Security)
privileges for the backup directory allow Full Control for Everyone.

7. Create a share for the master sqlLoader directory on the web server and the slave
servers.

8. Edit loadadmin/set-loadserver.bat to set the name of the master loadserver
machine.

9. Edit the loadadmin/loadsupport-build.sql file to update the domain account
names, if necessary.

10. If this is not the first time, and a previous loadadmin/loadsupport environment
exists on this machine, delete it by doing the following:

o Kill any tasks that may be running in the previous Load Monitor.
o In Enterprise Manager, go to the local SQL Server Group and open the

Databases tab. Then delete each of he following databases by right-
clicking the mouse on the database and selecting Delete to delete it:

 The publish DBs, called <export type><dataset>, e.g., BESTTEST
and TARGTEST or BESTDR1 and TARGDR1

 Any temporary load DBs <dataset>_<export type><xid>, e.g.
TEST_BEST1_35_471938

 The loadadmin DB.
 The loadsupport DB.

11. Run the following scripts from a command shell (Start->Run...->cmd). Note that
step 4 should be run on each loadserver in the configuration (including the
master), each of which will have the sqlLoader directory shared.

o C:
Make sure you are on the C: drive.

o cd C:\sqlLoader\loadadmin
Go to the loadadmin subdirectory in the loader.

o build-loadadmin.bat
This will create the loadadmin environment and DB.

o build-loadsupport.bat -LP (on loadadmin/master)
build-loadsupport.bat -L (on each loadserver/slave other than master)
Run this on each loadserver in the configuration. On all but the master
(loadadmin) server, the sqlLoader directory is shared. This will create the
loadsupport environment and DB and set this loadserver's role to both
LOAD and PUBLISH. If the last message from running the above 2 steps
says "Access denied..." rather than "1 file(s) moved", this means that the
log file could not be moved to the loadlog directory. You will need to
right-click on the C:\loadlog directory, select Properties or Sharing and
Security and go to the Sharing tab. In the Sharing permissions screen,
select Everyone and turn on Full Control. After doing this, you will have
to restart the setup at step 9 above.

o build-publish-db.bat <dataset> <db-data-size> <db-logsize>
This script should be run on the master only. It will automatically create
publish DBs for the BEST and TARGET skyversions for each dataset.
This will take some time to run for multi-GB sizes. The sizes you pick

for the DB and log files should be approximately:

<db-data-size> = the total size of the input data + 50%, in MB.
<db-log-size> = at least 50% of the data size, in MB. e.g.,

build-publish-db.bat TEST 20000 10000

These are just the initial sizes - SQL Server will expand the file sizes as
needed, but this comes at a performance cost so it's better to allocate
enough space to begin with.

7 Load Monitor or Admin Webpage (admin/ subdir)

The admin subdirectory contains the web pages and associated files and scripts for the
loader administration web interface (the Load Monitor). This subdirectory should be
copied or moved to the web tree where the load monitor is to be accessed from. Note that
currently the admin web pages must be installed on a Windows machine (running IIS)
since they use ASP (active server pages) technology. The security setup is Windows
authentication at the moment and this requires that the pages be accessed also from a
Windows machine. The web-server connects to the loadsupport DB of the loadserver.

There are 4 kinds of files in this directory:

1. Active Server Pages (.asp files) that correspond to actual web pages.
2. Cascading Style Sheets (.css files) that are used by the web pages to set up the

look and feel.
3. Javascript (.js) files that contain functions in jscript to perform loader admin

procedures.

4. Include (.inc) files that are included in other files above.

There is a docs.asp file that contains an overview of the loading process and
framework. It is the page linked to the "Help" link on the admin page. The img
subdirectory contains the JPG and GIF images used in the web pages. There are ASP

Figure 5. Load M onitor showing the All Tasks display page.

files corresponding to each of the commands listed in the menu on the main sqlLoader
page. Each of these ASP scripts formulates and submits a SQL query to the loadsupport
database on the loadadmin server, which sees the query as being submitted by the
webagent user. The query may execute a stored procedure in the loadsupport DB or
request rows from a loadsupport table.

The functions of the ASP scripts are as follows:
1. default.asp – this is the main sqlLoader page, showing the current software

version number and the menu of available commands.
2. tasklist.asp shows the All Tasks display page. Every task that is listed in the Task

table regardless of its status is shown in a tabular display (Fig. 3).
3. activetasks.asp lists only the currently active tasks from the Task table in tabular

format (Fig. 5).
4. showtask.asp, showsteps.asp, showfiles.asp, showlog.asp – these scripts display

information in different tables corresponding to a particular task: the Task table,
the Step table, the Files table and the Phase table (showlog.asp provides a display

of all the phases for a given task).

In order to set up the admin web pages for the SQL Loader, you need to do the
following:

Figure 6. Load Monitor Active Tasks page showing the color-coding used to
indicate the status of each step.

1. Copy/move the admin subdirectory of sqlLoader to the web tree on the admin
webserver where the admin pages will be served from.

2. Set up a virtual directory in IIS to point to this directory.
3. Modify the connection.js file (edit with Notepad) to set the password for the

webagent user, and set the DB server name to the loadadmin server name.

Once the admin web interface is set up in this way, typing the URL corresponding to
the admin virtual directory set up in step 2 should bring up the main sqlLoader page that
displays the current version number and the menu of available tasks. You are then ready
to submit load tasks.

7.1 Running the Loader

The loading is launched and controlled from the Load Monitor web interface. A new task
must be created and launched for each unit of the loading, and this is done using the New
Task or the Upload pages.

7.1.1 Task Management

The basic unit of loader processing at the top level is a task. Tasks are further divided
into steps, which are in turn subdivided into phases. Steps have a well-defined start and

Figure 7. Load Monitor Statistics page. Average and cumulative stats for all jobs
are displayed.

end, whereas a phase does not have a start or end associated with it. A step also has a
SQL stored procedure associated with it. The tasks display pages ("Active Tasks", "All
Tasks", “Finished” and “Killed”) display task tables containing the taskid, the stepid and
the phaseid, hence the granularity of the task display is a single phase.

7.1.2 Creating a New Task

The Add New Task page creates a new loading task. The user must enter the following
parameters of the task:

1. dataset - this is the
release that is being
loaded, example DR1,
DR2 (or TEST for
testing). It is the same
as the first parameter
given to the build-
publish-db.bat script.

2. export type - the
dataset that this is being
exported to. The
choices are BEST,
RUNS of TARGET for
an imaging load,
PLATES for spectro,
TILES for tiling, and a
special export type
called FINISH for the

last step that merges all
the data streams (photo,

spectro, tiling) and computes the indices.
3. xroot - this is the root of the exported CSV directory tree on the LINUX side

(Samba-mounted), in Windows notation (\\hostname\directory\subdir...).
4. xid - the identifier of this export or load unit, i.e. the chunk, plates or tiles that

need to be loaded. This is basically the name of the subdirectory in the CSV
directory tree that contains the runs, plates or tiles that are to be loaded.

5. user - the name of the person who is running this load task.
6. comment - an optional comment to describe the purpose or content of this load.

7.1.3 Submitting Multiple Load Tasks (File Upload)

Multiple load tasks can be submitted at once by building an upload file containing the
task parameters values in CSV format. An example of the contents of a load file are:

DR2,BEST,\\sdssdp23\dp23.b\data\csv\phCSV\best\1-82-1176576\,JohnDoe,best34
DR2,BEST,\\sdssdp23\dp23.b\data\csv\phCSV\best\1-86-1184468\,JohnDoe,best35
DR2,BEST,\\sdssdp23\dp23.b\data\csv\phCSV\best\1-86-1257369\,JohnDoe,best36

Figure 8. Load Monitor Add New Task page.

DR2,BEST,\\sdssdp23\dp23.b\data\csv\phCSV\best\1-86-1375980\,JohnDoe,best37
DR2,BEST,\\sdssdp23\dp23.b\data\csv\phCSV\best\1-86-1402340\,JohnDoe,best38
DR2,BEST,\\sdssdp23\dp23.b\data\csv\phCSV\best\1-86-1422868\,JohnDoe,best39
DR2,TARGET,\\sdssdp23\dp23.b\data\csv\phCSV\target\0-32-

676160\,JohnDoe,targ34
DR2,TARGET,\\sdssdp23\dp23.b\data\csv\phCSV\target\0-32-

462086\,JohnDoe,targ35
DR2,TARGET,\\sdssdp23\dp23.b\data\csv\phCSV\target\0-34-

705815\,JohnDoe,targ36
DR2,TARGET,\\sdssdp23\dp23.b\data\csv\phCSV\target\0-37-

477561\,JohnDoe,targ37
DR2,TARGET,\\sdssdp23\dp23.b\data\csv\phCSV\target\0-37-

581100\,JohnDoe,targ38
DR2,TARGET,\\sdssdp23\dp23.b\data\csv\phCSV\target\0-37-

718022\,JohnDoe,targ39
DR2,TARGET,\\sdssdp23\dp23.b\data\csv\phCSV\target\0-82-

1113106\,JohnDoe,targ40

7.1.4 Killing a Task

A task can be killed by clicking on the last column of the task display in the tasks table.
The user is prompted for confirmation. The loader cleans up when a task is killed, but
some files and especially the temporary task DBs created will not be deleted until the
same task (with the same parameters but of course a different taskID) is run again. This is
intentional because recreating a DB is a time-consuming process and the assumption is

Figure 9. Load Monitor File Upload page to submit multiple tasks in one shot.
Tasks can be entered in the upload window or a file upload can be specified.

that in the vast majority of cases, a task that is killed will be rerun at a later date, since
that data must be loaded into the database eventually. Of course, the task DB can always
be manually deleted in EM after the task is killed.

7.1.5 Monitoring the Load

Selecting the Active Tasks or All Tasks links in the Load Monitor shows you the tasks
that are currently running. The color-coding for the task status is shown below the task
table. For each task, the taskid, the stepid and the phase number are shown, along with
the name of the task and step that is currently being executed. The task display is updated
once every minute.

For each task, you can
select the Steps, Files or Log
links to look at the steps, files
and phases logged
(completed) for that task.

The PRELOAD step of a
loading task usually takes the
longest time, as the CSV files
are loaded into the load-DB
in this step. The largest of the
CSV files for each run - the
PhotoObj*.csv files - each
will take 10-15 mins each to
load, and the preload step for
one imaging chunk can take
more than an hour to
complete. You can monitor
the progress of the preload
step by selecting the Files
display for that task.

7.2 Storage Requirements for Loading

In order for the loading to proceed smoothly and expediently, a certain minimum
amount of disk storage is recommended. As Fig. 11 shows, in addition to the loadserver,
there are 3 copies of each dataset that are kept spinning on disk – the 2 production copies
(one live and one warm spare) and the legacy copy that contains all the data served up to
date. We maintain a pingpong configuration for the loading, i.e. we alternate between 2
servers so that while one of them is being loaded, the other is pressed into service as the
live production server. Each of these servers must have twice the amount of storage
required to store one copy of the archive, in order to store backups of the task DBs that
are created during the loading process. It is generally also a good idea to have this
amount of spare storage if it is necessary to recover the DB from a backup (recovery

Figure 10. Load Monitor Servers page. The loader-admin
can monitor, stop and restart servers from this page.

temporarily requires
twice the amount of
space). This means
that in addition to the
space required for the
legacy copies, disk
storage equal to at
least 5 times the size
of the archive must be
available. Our
experience has shown
that even this is not
sometimes enough if
we allow for disk
fragmentation, disk
errors etc., and
actually we
recommend having 6
times the space

required for one instance of the archive to be available. This may sound like a lot, but
when dealing with Terabyte datasets, one wants to avoid having to reload the databases
or having to copy them from one server to another as much as possible. Shuffling data
between servers in order to make room is just not a good option.

8 Future Work

There are three main areas where we intend to concentrate future development on the
sqlLoader product:

 Making the loading completely automated.
 Making it scalable to petabyte-scale archives.
 Generalizing the sqlLoader to any schema.
 Extending the pipeline to other DBMS environments beyond SQL Server.

Both are challenging objectives, but the second goal definitely entails a lot more
work. We describe in more detail the steps that we will have to undertake for each of
these objectives.

8.1 Making sqlLoader Fully Automated

The following are some of the situations in which manual intervention is still required for
sqlLoader operation, so we are working on including them in the automated machinery.

1. Setting up user privileges – The first time that a newly published database is
accessed, the user privileges are often not set correctly for users to access the
various tables, stored procedures and functions. The problem has to do with
mapping the preexisting login for the web user to the username defined in the
publish database. This is referred to as the “orphaned user” problem, i.e. database

Deep Store

T

B
Legacy

Target”Target” BestBestBestBestBest”Best”

TargetTarget BestBest

Target’Target’ Best’Best’

LoadServer
Target
LoadDB
Target
LoadDB

Best
LoadDB
Best

LoadDB

ReplicationReplication BackupBackup

Backup

IDE Disks (Slow)SCSI Disks (Fast)

Spectro
LoadDB
Spectro
LoadDB

SpectroSpectro

Spectro’Spectro’

Spectro”Spectro”

Production
S

Deep Store

T

B
Legacy

Target”Target” BestBestBestBestBest”Best”

TargetTarget BestBest

Target’Target’ Best’Best’

LoadServer
Target
LoadDB
Target
LoadDB

Best
LoadDB
Best

LoadDB

ReplicationReplication BackupBackup

Backup

IDE Disks (Slow)SCSI Disks (Fast)

Spectro
LoadDB
Spectro
LoadDB

SpectroSpectro

Spectro’Spectro’

Spectro”Spectro”

Production
S

Figure 11. Copies of the SDSS Archive that are necessary for the
loading and production configuration, including a warm spare, a
legacy backup and offline tape (deep store) backup.

users are orphaned because they do not match up with the SQL server logins
defined for that database server.

2. Incremental loading – the ability to checkpoint a published database and continue
loadind data incrementally above it is crucial for efficient archive operations and
quick availability of the data to scientists.

3. Backing out and reloading data – there will inevitably be errors in the input data,
and hence the need will arise occasionally to back out a defective chunk of data
and reload it.

4. Error handling – errors encountered during loading currently require manual
intervention for the most part.

8.2 Scalability – Partitioning the Loaded Data

At JHU, we are developing a partitioning algorithm to horizontally partition the SDSS
database tables, as part of a NASA AISRP-funded project to develop a high-speed
parallel data access prototype for the NVO. The motivation for partitioning data springs
mainly from the following performance considerations:

8.2.1 Speeding up spatial query execution

We would like to speed up query execution for spatial queries that are frequently
submitted in astronomical data mining applications. By horizontally partitioning the
data, we aim to achieve the following results:

 Queries looking at different parts of the sky are distributed among servers. This
would speed up the bulk of normal astronomy queries by providing a type of load
balancing.

 Queries covering wide areas are executed in parallel by different servers.
Sequential scans fall naturally in this range.

 Proximity searches (neighborhood queries) are “isolated” and processed in
parallel. Searches involving gravitational lenses and galaxy clusters are in this
group.

8.2.2 Speeding up cross-matching queries

The worldwide federation of archives promised by the international Virtual Observatory
effort will give rise to virtual data grids that will enable VO users to submit cross-
matching requests over substantial spatial subsets of the individual archives through
distributed VO queries. As part of another AISRP-funded project, we have already built
a prototype distributed query service, SkyQuery (www.skyquery.net), that performs
cross-matches through probabilistic joins between geographically distributed archives.
However, the cross-match intersection area that can be specified with SkyQuery is at
present practically limited due to performance constraints to a few square degrees.

In spite of the ingenious recursive cross-matching algorithm that SkyQuery employs,
it is prohibitively expensive to perform a cross-match over a substantial fraction of the
area covered by the largest archives. Speeding up cross-match requests from other NVO

data nodes is therefore the second big motivation behind spatial partitioning of the data in
large archives like SDSS.

8.2.2.1 Partitioning Strategy

Partitioning works well if the following two requirements are met.
1. Data is partitioned uniformly and symmetrically across the different servers.
2. Tables in the database are naturally divisible into similar partitions where all rows

accessed by the query are on the same server.
Our partitioning strategy is therefore the following:

 Distribute data homogenously among servers. This implies two things:
o Each server has roughly the same amount of objects.
o Objects inside a given server are spatially related. We define buffers

to build neighborhoods, and margins for “fuzziness” around each zone
in which objects from other servers are duplicated, so as to avoid
queries that need data from more than one server.

This distribution balances the workload among servers so that queries are
redirected to the server holding the data.

 Define zones inside each server dynamically. Zones are defined according to
some search radius to solve specific problems, such as finding galaxy clusters,
gravitational lenses, etc. This facilitates cross-match queries from other NVO
data nodes.

Once we have developed and tested a partitioning system with our SDSS data, the
main task will be to incorporate this algorithm into the data import pipeline. The most
logical place to add this functionality in the pipeline will be in the final Finish stage,
before the database indices are created. A secondary task will be translating this logic to
standard SQL or other SQL dialects if necessary.

8.3 Schema Independence

Extending the current data import pipeline to non-SDSS schemas will require a
significant amount of work, but we do not see any major technical hurdles in achieving
this. The details of the schema can be parameterized by reading the DDL from files that
are set up locally at each installation. The schema currently is already localized to a
schema subdirectory within the sqlLoader files.

Coupling to the SDSS schema exists currently in the following parts of the loader
pipeline:

 Schema creation in the task (temporary) DBs – each of the temporary DBs has
a replica of the full SDSS schema in them.

 Schema creation in the publish DBs – this is the place where all the data ends
up.

 Data validator – some of the validating tests are SDSS-specific and tied to the
existing schema.

 Finish/merge step – where database indices, pre-computed joins and ancillary
tables and views are created.

For the schema creation, extension to other schemas should be straightforward
because these files are simply executed as SQL scripts each time the databases are

created. Making the validator and finish step generic will require the changes discussed
below.

8.3.1 Data Validator

The uniqueness tests in the Validator are already set up so that individual tests call a
primitive stored procedure spGenericTest to actually perform the test. However, the
foreign key tests are hard-coded with the name of each foreign-key that needs to be
tested. The list of foreign keys to be tested needs to be driven by a single indexMap
table, which contains the list of all primary and foreign keys in the database. Then the
same table will drive the creation of indices.

There are also HTM-ID tests and parent-child link consistency tests that are specific
to the SDSS schema tables. These tests will be set up in such a way that the table names
and other parameters can be obtained from another table.

We plan to add a Validator Setup Script that will allow the archive administrator to
select, add or remove different kinds of validation tests and adjust the parameters for each
test as applicable. This script will provide an easy interface to customize the validation
for each schema and installation site. An ASCII script interface is chosen rather than a
GUI setup tool so as to make this a versatile and platform-independent facility.

8.3.2 Finish/Merge Step

The Finish/Merge step is currently a stored procedure that creates all the database indices,
creates tables that are pre-computed joins of other tables, and ties up all the loose ends
from the previous loading steps. The index creation will also be driven from the
IndexMap table created in the publish DB. By another stored procedure that manages all
the indices. To make the index creation customizable to other schemas, this procedure
will have to be modified so that it fills the IndexMap table from a locally built file that
contains all the index names and parameters.

As in the case of the Validator, we will provide a setup script for the Finish step that
will enable archive administrators to specify:

 the file from which to read in the index parameters
 the names of scripts or procedures to execute for remaining Finish tasks.

These will have to be written by the archive administrator to suit the schema
for that archive.

Thus there will be three tasks related to schema independence:
1. Parameterize the schema creation procedures – load the schema from configurable

files.
2. Rewrite the Validator so that the various tests are configured in a Validator Setup

Script.
3. Rewrite the Finish so that indices and final tasks are configured in a Finish Setup

Script.

8.4 DBMS Independence

This will be a very challenging task, therefore we have decided to initially focus our
efforts on the IBM DB2 DBMS as the primary test of our ideas. If we are successful in
deploying our data import pipeline on DB2, we will have made sufficient changes to
make migration to other systems such as Oracle an incremental effort beyond DB2. Our
choice of DB2 is motivated by its multi-platform support, its reasonable licensing terms
and (not unrelated) popularity within the NVO community.

There are two main aspects in which we will need to change the current pipeline in
order to migrate it to a different DBMS:

1. Administrative functions – the administrative functions like scheduling tasks,
setting up user privileges will be different on DB2.

2. Dialect of SQL – we will have to translate the scripts and stored procedures
currently written in T-SQL (Transact-SQL, the SQL Server dialect of standard
SQL) to DB2’s dialect, which is simply called DB2 SQL dialect. The latter is
more powerful than T-SQL, so we do not anticipate running into major
roadblocks (i.e., things that cannot be done in DB2 SQL dialect).

There are several ways in which the current pipeline is tied to the SQL Server DBMS
and to T-SQL (the SQL Server SQL dialect). These are discussed below in increasing
order of difficulty of migrating them to a different DBMS with a different dialect of SQL.
Each of them will generate a well-defined task for the project plan.

8.4.1 Translation of Stored Procedures

T-SQL stored procedures will be translated into the DB2 SQL dialect equivalent. We
will decide whether it is better to translate them to Java stored procedures or SQLJ which
DB2 supports. The main reason for not having Java stored procedures for our current
SQL Server is the loss of speed with the JDBC interface.

The translation will be more of a tedious than a difficult task, especially if done
manually. We plan to write a translator (a Perl or VB script) to do it.

8.4.2 SQL Server Agent job scheduling

The loader workflow is maintained by defining two jobs for the SQL Server Agent
process. Both jobs are set up to run once a minute and pick up the next batch of work
when they run. The creation of these jobs is scripted in the loader stored procedures.
These commands will have to be translated to the equivalent commands on other
DBMSs.

8.4.3 HTM SQL Interface

The Hierarchical Triangular Mesh (HTM) is a spatial indexing scheme developed at JHU
to partition the sky recursively into spherical triangles with unique HTM IDs and storing
the IDs in a quad-tree [Kunszt00]. The HTM is available as an open-source library
(http://www.sdss.jhu.edu/htm/) in C++ and Java (and C# soon). We have incorporated
the HTM into SQL Server by writing a SQL interface to the HTM functions.

http://www.sdss.jhu.edu/htm/

There are a handful of SQL functions that provide this interface between the
database and the HTM software. Some of these are extended stored procedures that
interface to primitives in the HTM DLL. These glue functions will have to be ported to
the new dialect of SQL.

8.4.4 The Zones Algorithm

The Zones algorithm [Gray02] is an even faster alternative to HTM spatial lookups that
uses SQL operators and a subdivision of the sky into declination zones to perform a
spatial search. The HTMSQL interface is a lot slower than using direct SQL operators
because every HTM call is an expensive call to an external function. Although this will
change once C# is integrated into SQL Server with the Yukon release (so that the HTM
DLL can be moved into the database), the Zones algorithm still provides a quick and
convenient (low overhead, no need to implement HTM) way of subdividing the spatial
area, and is very useful for horizontally partitioning the database tables.

8.4.5 Security and User Administration

The loader pipeline sets up the Web access privileges to the published databases also as
part of the schema creation. This includes creating and setting up the privilege level
(handled through user roles in SQL Server) for the Web access user, setting accessibility
levels for individual tables, stored procedures and functions. This is currently done with
T-SQL statements, and we expect that we will be able to translate these to DB2 SQL
dialect quit easily. It remains to be seen whether privileges for the “loadagent” user,
which our pipeline uses to perform administrator level tasks currently, can be set in the
same way on DB2 and other systems.

8.4.6 DTS packages

The Data Transformation Services subsystem in SQL Server allows several types of data
operations. This will probably be the hardest subtask within this task because there may
or may not be an equivalent tool on other DBMSs. Currently the DTS tasks are set up
interactively using SQL Server’s DTS wizard, and the package is saved to disk once the
setup is completed. The saved package is then programmatically invoked from within the
loader pipeline code. In all likelihood, DTS packages will have to be rewritten as SQL,
Jscript or Perl (for UNIX/Linux) scripts on other systems like DB2.

9 Appendices
9.1 sqlLoader Workflow

There are three distinct stages in the loader workflow:
1. Load-Validate-Publish – this stage includes checking the input CSV files, loading

them into temporary task DBs, validating the data in the task DBs and publishing
the data to the publish DB.

2. Merge – Merging of the various data streams (imaging, spectro, tiling) in the
publish DB and creating the indices on the main tables.

3. Finish – running the final tests, creating the derived tables and precomputed joins,
and the corresponding indices.

Stages 2 and 3 must be run in sequential at the moment, whereas stage 1 can be run
in parallel on a cluster of load servers. The workflows for the different stages are
described in detail below.

9.2 LOAD Workflow for a TASK Database

1. Export
1. Start Step
2. Verify that task does not exist
3. Create new entry in loadadmin.Task
4. End Step

2. Check
1. Start Step
2. Check for the existence of root directory
3. Compare root path to export-type

1. Verify existence of csv_ready
2. Check each CSV file vs csv_ready
3. Insert each CSV filename into loadadmin.Files

4. Check each subdirectory (Run or Plate)
1. Verify existence of csv_ready file
2. Check each CSV file vs csv_ready
3. Insert each CSV filename into loadadmin.Files
4. Check for Zoom or Gif subdirectories
5. Count the number of files
6. Insert subdirectory name, if Zoom into loadadmin.Files

5. End Step
3. Build

1. Start step
2. Create TaskDB

1. Drop database if already exists
2. Delete DB files, if they exist
3. Create the database
4. Configure DB options

5. Schema
1. Execute 'dataConstants.sql'
2. Execute 'constantSupport.sql'
3. Execute 'metadataTables.sql'
4. Execute 'photoTables.sql'
5. Execute 'spectroTables.sql'
6. Execute 'views.sql'
7. Execute 'spHTM.sql'
8. Execute 'nearFunctions.sql'
9. Execute 'zoomTables.sql'
10. Execute 'webSupport.sql'
11. Execute 'boundary.sql'
12. Execute 'myTimeX.sql'
13. Execute 'spSetValues.sql'
14. Execute 'spValidate.sql'
15. Execute 'spManageIndices.sql'
16. Execute 'spBackup.sql'
17. Execute 'spPublish.sql'
18. Execute 'spFinish.sql'
19. Execute 'spGrantAccess.sql'

3. End Step
4. Preload

1. Start step
2. spFileLoop

1. Load each CSV file
2. Load each Zoom directory
3. Load each plate
4. Load each tileRun
5. Test if all files loaded

3. Test row count against total number of lines listed in csv_ready file(s)
4. Set Values

1. Get Task type
2. Set loadVersion

1. for PlateX
2. for HoleObj
3. for Tile
4. for TileBoundary
5. for TiledTarget
6. for TileInfo
7. for TileRegion
8. for Chunk
9. for Segment
10. for Field
11. for Target
12. for TargetInfo

3. SetValues (Plates)
1. Update SpecObjAll(objType, loadVersion)

4. Set Values (Photo)
1. Set simplified mags (u,g,r,i,z, Err_*, dered_*, loadVersion)
2. Remove ObjMask rows in hole fields
3. Exec spComputeFrameHTM
4. Exec spTargetInfoTargetObjId
5. Update Mask(cx,cy,cz)
6. Update Mask(htmId)
7. -- Compute Boundaries should move to Finish

5. Check that each file/directory in Files is DONE
6. Check that the number of lines for each file adds up
7. End Step

5. Validate
1. Start Step
2. Validate Photo

1. Test unique keys
1. Chunk(chunkId)
2. Segment(segmentID)
3. StripeDefs(stripe)
4. Field(FieldID)
5. FieldProfile(fieldID, bin, band)
6. Frame(FieldID,Zoom)
7. PhotoObj(objID)- this takes pretty long (20mins-half hour ballpark)!!
8. PhotoProfile(objID, bin, band) - this takes even longer (nearly an hour

or more)!!
9. PhotoZ(objID,rank, pid)
10. First(objID)
11. Rosat(objID)
12. USNO(objID)
13. Mask(maskID)
14. ObjMask(objID)
15. Target (targetID)
16. TargetInfo(skyVersion,targetID)
17. TargetInfo(targetObjID) (not valid for South)
18. TargetParam(targetVersion,paramName)

2. Test Foreign keys
1. Chunk(stripe) -> StripeDefs(stripe)
2. Segment(stripe) -> StripeDefs(stripe)
3. Segment(ChunkID) -> Chunk(chunkID)
4. Field(segmentID) -> Segment(segmentID)
5. Frame(fieldID) -> Field(fieldID)
6. FieldProfile(fieldID) -> Field(fieldID)
7. PhotoObj(fieldID) -> Field(fieldID)
8. PhotoProfile(ObjID) -> PhotoObj(ObjID)
9. PhotoZ(ObjID) -> PhotoObj(ObjID)
10. ObjMask(ObjID) -> PhtoObj(ObjID)
11. First(ObjID) -> PhotoObj(ObjID)
12. Rosat(ObjID) -> PhotoObj(ObjID)
13. USNO(ObjID) -> PhotoObj(ObjID)

14. TargetInfo(targetID) -> Target(targetID)
3. Test cardinalities, also against the files table

1. Mask(run, rerun, camcol, field) -> Field(run, rerun, camcol, field)
2. Segment(nFields) = count(Fields) on segmentID
3. Field(nObjects) = count(PhotoObj) on fieldID
4. count(Field) * 7 = count(Frame) on fieldID (tests zoom levels)
5. PhotoObj(nProf_ugriz) = count(PhotoProfile) on objID

4. Test HTM id's
1. Frame(HTM)
2. Mask(HTM)
3. PhotoObj(HTM)

5. Test parents (nChild consistency)
6. Write summary

3. Validate Plates
1. Test unique keys

1. PlateX(plateID)
2. SpecObjAll(specObjID)
3. ELRedshift(ELRedshiftID)
4. SpecLineAll(SpecLineID)
5. SpecLineIndex(SpecLineIndexID)
6. XCRedshift(XCRedshiftID)
7. HoleObj(holeID)

2. Test Foreign keys
1. SpecObjAll(plateID) -> PlateX(plateID)
2. ElRedshift(specObjID) -> SpecObjAll(specObjID)
3. SpecLineAll(specObjID) -> SpecObjAll(specObjID)
4. SpecLineIndex(specObjID) -> SpecObjAll(specObjID)
5. XCredshift(specObjID) -> SpecObjAll(specObjID)
6. HoleObj(plateID) -> PlateX(plateID)

3. Test HTM id's
1. SpecObjAll(HTM)

4. Validate Tiles
1. Test unique keys

1. Tile(tile)
2. TileBoundary(tileBoundID)
3. TiledTarget(targetID,tile)
4. TileInfo(tileRun, tid)
5. TileNotes(tileNoteID)
6. TileRegion(tileRun)

2. Test Foreign keys
1. Tile(tileRun) -> TileRegion(tileRun)
2. TileBoundary(tileRun) -> TileRegion(tileRun)
3. TileBoundary(Stripe) -> StripeDefs(stripe)
4. TileInfo(tileRun) -> TileRegion(tileRun)
5. TileNotes(tileRun) -> TileRegion(tileRun)
6. TiledTarget(tile) -> Tile(tile)

5. Write summary
6. End Step

6. Backup
1. Begin Step
2. Backup TaskDB to brick for archival storage
3. End Step

7. Detach
1. Begin Step
2. Detach TaskDB
3. End Step

9.3
PUB Workflow for a TASK Database

1. Publish
1. Start Step
2. Start Step in PubDB
3. Attach TaskDB to publish server
4. Insert/transform each table into destination

1. Publish Photo
1. publish Chunk
2. publish Segment
3. publish Field
4. publish Frame
5. publish FieldProfile
6. publish PhotoObj
7. publish PhotoProfile
8. publish PhotoZ
9. publish First
10. publish Rosat
11. publish USNO
12. publish Mask
13. publish ObjMask
14. publish Target
15. publish TargetInfo
16. publish TargetParam

2. Publish Plates
1. publish PlateX
2. publish specObjAll
3. publish Elredshift
4. publish specLineAll
5. publish specLineIndex
6. publish Xcredshift
7. publish HoleObj

3. Tiling Publish
1. publish Tile
2. publish TileBoundary
3. publish TiledTarget

4. publish TileInfo
5. publish TileNotes
6. publish TileRegion

5. Detach TaskDB
6. Update LoadHistory
7. End Step in PubDB
8. End Step

2. Cleanup
1. Begin Step
2. Delete TaskDB
3. End Step

9.4 Workflow for a PUB Database

1. Build PubDB
1. Start Step
2. Create PubDB
3. Build schema (See TaskDB.Build.Schema)
4. Load metadata tables

1. DBColumns
2. DBObjects
3. DBViewcols
4. Glossary??

5. End Step
2. Publish

1. See TaskDB.Publishâ€¦
3. Finish

1. Begin Step in PubDB
2. Get DB parameters
3. Drop all indices
4. Build all indices

1. Build Primary keys
1. Chunk(chunkId)
2. Segment(segmentID)
3. StripeDefs(stripe)
4. Field(FieldID)
5. Frame(FieldID,Zoom)
6. FieldProfile(fieldID, bin, band)
7. PhotoObj(objID
8. PhotoProfile(objID, bin, band)
9. PhotoZ(objID,rank, pid)
10. First(objID)
11. Rosat(objID)
12. USNO(objID)

13. Mask(maskID)
14. ObjMask(objID)
15. Target (targetID)
16. TargetInfo(skyVersion,targetID)
17. TargetParam(targetVersion, paramName)
18. PlateX(plateID)
19. SpecObjAll(specObjID)
20. ELRedshift(ELRedshiftID)
21. SpecLineIndex(SpecLineIndexID)
22. SpecLineAll(SpecLineID)
23. XCRedshift(XCRedshiftID)
24. HoleObj(holeID)
25. Tile(tile)
26. TileBoundary(tileBoundID)
27. TileInfo(tileRun, tid)
28. TileNotes(tileNoteID)
29. TileRegion(tileRun)
30. TiledTarget(targetID) *** no key known yet
31. Globe(globeId)
32. Frame(fieldID,zoom)
33. Glossary(key)
34. History(version)
35. DbObjects(name)
36. DBColumns(tableName,name)
37. DBViewCols(viewName,name)
38. DataConstants(field,name)
39. Diagnostics(name)
40. SDSSConstants(name)
41. SiteConstants(name)
42. SiteDiagnostics(name)
43. LoadHistory(loadVersion, tStart)
44. ProfileDefs(bin)
45. Area(areaID)
46. if Build all: Neighbors(objID, NeighborObjID)
47. if Build all: Zone(ZoneID, ra, objID)
48. if Build all: TiBound2tsChunk(tileBoundID)
49. if Build all: Sector(SectorID)
50. if Build all: Best2Sector(bestObjID)
51. if Build all: Target2Sector(targetID)
52. if Build all: Sector2Tile(SectorID, tile)

2. Build the other indices
1. ELRedShift(specObjID,elRedShiftID)
2. Field(field,camcol,run,rerun)
3. Frame(field,camcol,run,zoom,rerun)
4. Frame(htmID,zoom,cx,cy,cz,a,b,c,d,e,f,node,incl)
5. PhotoObj(mode,cy,cx,cz,htmID,type,flags,status,ra,dec,u,g,r,i,z,rho)
6. PhotoObj(htmID,cx,cy,cz,type,mode,flags,status,ra,dec,u,g,r,i,z,rho)

7. PhotoObj(field,run,rerun,camcol,type,mode,flags,rowc,colc,ra,dec,u,g,r
,i,z)

8. PhotoObj(fieldID,objID,ra,dec,r,type,status,flags)
9. PhotoObj(SpecObjID,cx,cy,cz,mode,type,flags,status,ra,dec,u,g,r,i,z,rh

o)
10. PhotoObj(parentID,cx,cy,cz,mode,type,flags,status,ra,dec,u,g,r,i,z,rho)
11. PhotoObj(cx,cy,cz,htmID,mode,type,flags,status,ra,dec,u,g,r,i,z,rho)
12. PhotoObj(run,mode,type,status,flags,u,g,r,i,z,Err_u,Err_g,Err_r,Err_i,E

rr_z)
13. PhotoObj(run,camcol,rerun,type,mode,status,flags,ra,dec,fieldID,field,u

,g,r,i,z)
14. PhotoObj(run,camcol,field,mode,parentID,q_r,q_g,u_r,u_g,isoA_r,

 isoB_r,fiberMag_u,
fiberMag_g,fiberMag_r,fiberMag_i,fiberMag_z)

15. unique SpecLineAll(specobjID,specLineID)
16. unique SpecLineIndex(specobjID,speclineindexID)
17. unique

SpecObjAll(TargetObjID,objType,objTypeName,sciencePrimary,
specClass,
htmID,ra,dec,fiberMag_u,fiberMag_g,fiberMag_r,fiberMag_i,
fiberMag_z)

18. SpecObjAll(BestObjID,objType,objTypeName,sciencePrimary,specCla
ss,htmID,
 ra,dec,
fiberMag_u,fiberMag_g,fiberMag_r,fiberMag_i,fiberMag_z)

19. SpecObjAll(specClass,zStatus,zWarning,z,sciencePrimary,primTarget,
secTarget,
 plateId,bestObjID,targetObjId,htmID,ra,dec)

20. unique XCRedshift(specObjID,xcRedShiftID)
21. DataConstants(value)

3. Build foreign keys
1. Chunk(stripe) -> StripeDefs(stripe)
2. Segment(stripe) -> StripeDefs(stripe)
3. Segment(ChunkID) -> Chunk(chunkID)
4. Field(segmentID) -> Segment(segmentID)
5. Frame(fieldID) -> Field(fieldID)
6. FieldProfile(fieldID) -> Field(fieldID)
7. PhotoObj(fieldID) -> Field(fieldID)
8. PhotoZ(ObjID) -> PhotoObj(ObjID)
9. PhotoProfile(ObjID) -> PhotoObj(ObjID)
10. ObjMask(ObjID) -> PhtoObj(ObjID)
11. First(ObjID) -> PhotoObj(ObjID)
12. Rosat(ObjID) -> PhotoObj(ObjID)
13. USNO(ObjID) -> PhotoObj(ObjID)
14. TargetInfo(targetID) -> Target(targetID)
15. SpecObjAll(plateID) -> PlateX(plateID)
16. ElRedshift(specObjID) -> SpecObjAll(specObjID)
17. SpecLineAll(specObjID) -> SpecObjAll(specObjID)
18. SpecLineIndex(specObjID) -> SpecObjAll(specObjID)
19. XCredshift(specObjID) -> SpecObjAll(specObjID)

20. HoleObj(plateID) -> PlateX(plateID)
21. Tile(tileRun) -> TileRegion(tileRun)
22. TileBoundary(tileRun) -> TileRegion(tileRun)
23. TileBoundary(Stripe) -> StripeDefs(stripe)
24. TileInfo(tileRun) -> TileRegion(tileRun)
25. TileNotes(tileRun) -> TileRegion(tileRun)
26. TiledTarget(tile) -> Tile(tile)
27. PlateX(tile) -> Tile(tile)
28. if Build all: Neighbors(objId)-> PhotoObh(objId)
29. if Build all: Target(BestObj) will be computed at finish
30. if Build all: TileBoundary(tileBoundID) -> TiBound2tsChunk

(tileBoundID) ** TiBound2tsChunk is empty
31. if Build all: Target2Sector(sectorID) -> Sector(sectorID)
32. if Build all: Target2Sector(targetID) -> Target(TargetID)
33. if Build all: TiBound2tsChunk (tileBoundID)->

TileBoundary(tileBoundID)
34. if Build all: TiBound2tsChunk (chunkID)-> Chunk(chunkID)
35. if Build all: Best2Sector(SectorID) -> Sector(SectorID)
36. if Build all: Sector2Tile(SectorID) -> Sector(SectorID)
37. if Build all: Sector2Tile(tile) -> Tile(tile)

5. If BEST-PUB: Finish Plates
1. Get TARGET-PUB name
2. Drop Target* indices
3. Copy Target into BEST-PUB (incremental)
4. Copy TargetInfo into BEST-PUB (incremental)
5. Copy TargetParam into BEST-PUB (incremental)
6. Mark TiledTarget duplicates
7. Set Target(bestObjId) with nearest PhotoObj in BEST-PUB
8. Rebuild Target* indices
9. Set SpecObjAll(targetObjid) to TargetInfo(targetObjid)
10. Set SpecObjAll(sciencePrimary) flag
11. Run SpectroPhoto matchup

1. Create TAB variable using fGetNearestObjIdEq
2. Update distance
3. Delete orphans (no match)
4. Update SpecObjAll(bestObjid)
5. Update PhotoObj(specObjId)

12. Do Sector computations
13. Build Sector indices
14. Compute sampling probabilities for Sectors

6. Finish Photo
1. Compute Neighbors

1. Set radius according to type (30 arcsec if BEST, 3 arcsec else)
2. Build zone table (30 arcsecond zones)
3. Build Primary Key for Zone
4. Truncate Neighbors table
5. Compute -1, 0, 1 zone
6. Add in neighbor mirrors

7. Build Primary Key index on Neighbors(objid, neighborObjid)
2. Compute Chain table

7. Update Statistics: *** commented out for now
8. End Step in PubDB

9.5 Workflow to Synchronize the PUB Databases

1. FINISH - run on each PubDB
1. Begin Step in PubDB
2. Drop all indices
3. Build (almost) all indices
4. Compute Neighbors (instead of FinishPhoto)
5. Compute Chains
6. Compute inMask stuff
7. End Step in PubDB

2. LINK RUNS
1. Compute RUNS-BEST cross-links into RUNS

1. link the heads of chains together
3. LINK TARGET

1. Compute BEST-TARGET cross-links into BEST
1. link the heads of chains together

4. SYNC BEST
1. Update from Target

1. Copy Target
2. Copy TargetInfo
3. Copy TargetParam

2. Update SpecObjAll
3. SpectroPhoto matchup
4. Sector computations

1. Compute sector boundaries
5. Build remaining indices

1. Build Target* indices
2. Build Sector* indices

6. Compute Sampling Probabilities
5. REPARTITION

Should this not be done at publish already?

6. REORG
1. Run spReorg
2. Update statistics

3. Run Checksum, insert into SiteDiagnostics
7. TABLES THAT WE ARE IGNORING NOW

1. Area -- needed for the boundary stuff
2. Edge
3. Rmatrix
4. Chain need to create it

We will need to deal with MOSAIC stuff

