
16 COMPUTING IN SCIENCE & ENGINEERING

H I G H - D I M E N S I O N A L
D A T A

The advent of digital archives—en-
abled by quantum leaps in the tech-
nology to publish, distribute, and
mine data over the Internet—has

created a science and engineering data avalanche.
The Human Genome Project (www.ornl.gov/
TechResources/Human_Genome/ home.html)
and the CERN Large Hadron Collider (http://
lhc-new-homepage.web.cern.ch/lhc-new-
homepage) are two examples of very large sci-
entific data sets coming online in the biologi-
cal and particle physics communities, respec-
tively. Astronomy is no exception, and soon
might be deluged with more new data from
current and proposed sky surveys than any
other science. In this age of multiterabyte sci-
entific archives, scientists need to share com-
mon lessons from different disciplines to make
the most of available opportunities and to

avoid being overwhelmed by the flood of data.
The Sloan Digital Sky Survey (SDSS) is a multi-

institution project to map about half of the north-
ern sky in five ultraviolet-to-infrared wavelength
bands (www.sdss.org). Projected for completion in
2005, the survey should image over 200 million ob-
jects and collect spectra (redshifts) for the bright-
est one million galaxies among the objects. A de-
tailed description of the SDSS project appeared in
a previous issue of CiSE.1 To learn more about the
SDSS science archive (SA) discussed in detail here,
go to www.sdss.jhu.edu.

SDSS will revolutionize astronomy in many ways,
but most significantly, it will dwarf current astro-
nomical databases. We expect raw data to exceed 40
Tbytes, with the resulting archive available for sci-
entific research (object catalog) being 2 to 3 Tbytes.
The survey’s information content will be larger than
all the text in the US Library of Congress.

In 1995, we chose a commercial object-oriented
database management system (OODBMS, or
OODB, for short) for our data repository. The
leading OODBs seemed to offer significant ad-
vantages for the anticipated SDSS SA data model
and application. OODBs have a larger set of avail-
able data types and the ability to use object associ-
ations to traverse references (links) between objects
instead of the expensive table joins used in rela-
tional database management system (RDBMS,
hereafter, RDB) models.

MIGRATING A MULTITERABYTE
ARCHIVE FROM OBJECT TO
RELATIONAL DATABASES

ANI THAKAR AND ALEX SZALAY

Johns Hopkins University
PETER KUNSZT

CERN
JIM GRAY

Microsoft Research

A commercial, object-oriented database engine with custom tools for data-mining the
multiterabyte Sloan Digital Sky Survey archive did not meet its performance objectives. We
describe the problems, technical issues, and process of migrating this large data set project
to relational database technology.

1521-9615/03/$17.00 © 2003 IEEE

Published by the IEEE CS and AIP

SEPTEMBER/OCTOBER 2003 17

We based our OODB product selection primar-
ily on its performance, transparent and config-
urable data organization, and binary compatibility
across a range of platforms. But, in spite of these
anticipated advantages, we began to have problems
with the OODB’s performance, vendor support,
and missing features as data volume increased. Af-
ter we could no longer meet our user community’s
demands, we decided to migrate our data to an
RDB. This article details that process.

SA Overview
The SDSS data is collected at Apache Point Ob-
servatory in New Mexico. This raw data is first cal-
ibrated and fed to a pipeline code at Fermi Na-
tional Laboratory that performs several operations
on it before it is stored in the OpDB (OA in Figure
1). After further processing, “survey-quality” data
is exported to the master science archive (MSA).
The total data is expected to be a few terabytes in
size. It is accessible to the entire astronomical com-
munity through specialized tools, and to the pub-
lic at large through the Internet. The SA is repli-
cated at SDSS member institutions, with the
master archive residing at FermiLab. Details of the
data-acquisition process, the software pipeline, and
URLs for the latest public data release can be
found at the main SDSS Web site www.sdss.org.

Data Products
The SA contains several distinct data products, in-
cluding photometric and spectral catalogs, a red-
shift catalog, images, spectra, and maps. We opti-
mized the SA’s data model for fast catalog access;
users can access other data products indirectly.

Table 1 shows the complete list of data products
available through the SA. Figure 1 illustrates the
conceptual SDSS dataflow.

User Community
The SA must serve three types of users:

• Power users. Sophisticated astronomical com-

Glossary
CSV—Comma-separated value
DDL—Data-Definition Language
EDR—Early data release
FITS—Flexible Image Transport System, a binary data exchange format used extensively by astronomers
OID—Object identifier
OODB—Short for OODBMS, object-oriented database management system
OpDB—Operational database in which we deposit raw SDSS data.
OQL—Object Query Language
QET—Query execution tree
QSO—Quasi-stellar object, or quasar
RDB—Short for RDBMS, relational database management system
SA—SDSS science archive
SAQA—Science archive query agent
SDSS—Sloan Digital Sky Survey
SXQL—Science Archive Extended Query Language

A

1 day

1 week

2 weeks

1 month

1 to 2 years

TV

Testing,
operations

Project
participants

Astronomers,
public

LA

T

LA

MPA

WWW

PA

OA

PA

MSA

Figure 1. Sloan Digital Sky Survey (SDSS) dataflow diagram. After initial
testing, the telescope (T) data first will reside in an operational archive
(OA), and be stored in a tape vault (TV). Then, it will be calibrated and
stored in a master science archive (MSA) and local archives (LAs), and
ultimately replicated as public archives (PAs), via a master public
archive (MPA).

18 COMPUTING IN SCIENCE & ENGINEERING

munity users, with lots of resources. Their re-
search is centered on archive data, likely with
a moderate number of very intensive queries,
but mostly statistical queries with large output
sizes.

• General astronomy public. Frequent but casual
lookup of objects and regions. The archives
will help their research, but probably won’t be
central to it. There will be a large number of
small queries and cross-identification requests.

• Wide public. Browsing a “virtual telescope” and
using the data in education (the SkyServer ed-
ucation projects received over one million
Web hits in the past year as students used the
site to do 150 hours of online training). This
access has surprisingly large appeal, which
produced a large number of requests. The
SkyServer is the most popular Web site hosted
at the FermiLab.

The SA OODB Implementation
In this section, we describe the implementation of
the SA on a commercial OODB, and the software

and tools we developed to convert it into an advanced
data-mining facility. We also outline the challenges
we faced once our implementation was completed.

SA User Access
Figure 2 shows the SA’s primary functional units
from a user’s perspective. The astronomical com-
munity can access the SA’s full data and query fa-
cilities via a user account (username and password)
and a client–server interface to the actual database.
Users begin by starting up the SA GUI—the SDSS
query tool, sdssQT, which is a portable Tool Com-
mand Language and GUI toolkit (Tcl/Tk) client
application that communicates with the SA query
agent (SAQA) over a TCP/IP connection.

The sdssQT lets users open multiple, simulta-
neous sessions with different SA servers and sub-
mit multiple parallel queries to each server. sdssQT
queries can direct their output back to the GUI
(default), to a file, or to an analysis tool through a
different socket connection. A proprietary binary
output option provides compact output.

Query Processing
An intelligent SAQA query server manages user ses-
sions, processes (parses, optimizes, analyzes, and ex-
ecutes) user queries, extracts user-requested indi-
vidual object attributes, and routes query output to
the user-specified target.3,4 The query agent uses
several modules to perform its tasks. We describe the
agent architecture and the modules in detail next.

Query Analysis
The SAQA analyzes each query and provides a
query “cost” estimate in terms of the database sub-
set (number of database files and containers) that
will be searched and a time approximation required
to complete the search. The user decides whether
the query is worth running based on its scope and
the time required to search that scope.

We compute the projected query cost by build-
ing a query tree and intersecting it with a precon-
structed multidimensional spatial index—the Hier-

Table 1. Data products available through the SDSS science archive (SA).

Data product Size Comments
(as of Data Release 1)
Photometric Object catalog 800 Gbytes Parameters of more than 108 objects
Spectroscopic Object catalog 150 Gbytes Parameters of more than 106 objects
Atlas images 2 Tbytes Five-color cutouts of more than 108 objects
Spectra 100 Gbytes In a one-dimensional form
Derived catalogs 100 Gbytes Clusters, quasi-stellar object absorption lines
4 × 4 pixel all-sky map 100 Gbytes Heavily compressed

Analysis engine
(user code)

Data warehouse

Science archive

Query agent
(server)

User interface
(client)

Figure 2. Science archive (SA) client–server
architecture. Users can submit queries to the SA
query agent (server) with a GUI client Sloan Digital
Sky Survey query tool (sdssQT) and direct output
from queries to preexisting analysis engines.

SEPTEMBER/OCTOBER 2003 19

archical Triangular Mesh (HTM).5,6 The inter-
section yields the query’s scope in terms of the
number of database files and containers the query
will touch. An entire (generally distributed) data-
base is referred to as a federation in OODB termi-
nology, and each federation consists of many indi-
vidual database files. Each database is further
subdivided hierarchically into containers, pages, and
slots. The query tree, along with the scope obtained
from the intersection, yields a query execution tree
(QET), which is the user’s parsed query in tree
form with scope information included in it. The
query engine executes the execution tree to return
query-selected objects.

The SA Query Language
The SA Query Language—SDSS Extended Query
Language (SXQL)—is an SQL-like language that
implements the clauses and functions necessary to
formulate queries for an astronomy object data-
base. We did not attempt to be Object Query Lan-
guage (OQL) compliant, although we borrowed
some concepts from OQL. SXQL recognizes the
standard SQL SELECT-FROM-WHERE, including
nested SELECT statements. It further allows users
to specify association links in the SELECT, FROM, and
WHERE subclauses. Associations are links to other
objects, and can be to-one (unary) or to-many (n-
ary) links. SXQL also recognizes a proximity query
syntax, which lets users search for all objects close
to a given object in space. Finally, SXQL contains
several astronomy-specific macros (for example,
RA(), DEC(), GL(), and GB()), and complete
mathematical function support (for example, trig
functions, SQRT, LOG, EXP, and so on).

Tag Objects
We defined object classes to speed up query

searches. The tag class encapsulates all the data at-
tributes indexed and requested most often. Included
are spatial coordinates, fluxes (the recorded mea-
sures of object brightness in each wavelength band),
and photometry flags status. The tag objects im-
prove database search speed in the following ways:

• Indexed lookup. Encapsulating the most popu-
lar data attributes means an indexed lookup can
speed up the majority of searches. We worked
hard to develop multidimensional spatial and
flux indexes5,6 specifically for this purpose.

• Caching. Tag objects’ small size ensures that
many can load into the cache, which speeds
up I/O.

• Specialization. We further divided tag into
several subclasses, as Figure 3 shows. Each
tag subclass contains exactly the same data
members, but the class hierarchy narrows
searches on tag objects because all the tags
reside in separate containers in each data-
base, and different subclasses of tags reside
in different containers. Hence, when a user
searches galaxy tag objects, only the galaxy
container in each database file will be
searched.

SAQA Multithreading
The SAQA’s software incorporates multithread-
ing3 at several levels (see Figure 4). At the top, a
continuously running main thread monitors a
socket to accept new user connections. Each new
user session spawns two I/O threads, one each
from–to the GUI. Searches on remote partitions
in a distributed federation execute in parallel re-
motely via multithreaded remote slave servers
(Slave). Figure 5 illustrates the query agent’s dis-
tributed operation.

Tag

Primary

Sky

Star Galaxy

Unknown

Secondary Bad

Bright NonBright

SkySec.

StarSec. GalaxySec.

UnknownSec.

Figure 3. A hierarchy of tag classes narrows searches to the chosen object’s subclass. Data organization is such
that a subclass search is much faster because only the database container corresponding to that subclass is
searched.

20 COMPUTING IN SCIENCE & ENGINEERING

Query Engine
The engine library module implements a multi-
threaded query engine, which executes the SXQL
query and returns a bag of pointers to the selected
objects as output. A bag is a generalization of a set
in that duplicate members are allowed. An extrac-
tor module then chooses selected members from
each object in the bag.

The query engine’s input is the QET. Each
QET node is either a query or a set operation.
Operations are union, intersection, dif-
ference, and distinct (which converts a bag

to a set). The union operation is n-ary, inter-
section and difference are binary, and dis-
tinct is unary.

We used the OODB’s predicate query facility to
perform the SA query primitives, although we
could not use the OODB’s predicate-matching and
had to develop our own predicate facility, as de-
scribed later. Each QET node executes in a sepa-
rate thread, and an ASAP data-push strategy (data
is pushed up the tree using stacks as soon as it be-
comes available from child nodes) ensures rapid re-
sponse even for long queries.

QET
Figure 6 shows an example of a QET. The QET’s
nodes are the SA query primitives and set opera-
tions, which map onto the OODB query primi-
tives. Each node returns a bag of object pointers to
its parent. All nodes have bags as inputs and out-
puts, except the leaves, which only have an output
bag because they operate directly on a database
scope. The different types of query nodes (query
primitives) are

• scoped, which uses the OODB’s scoped query
functionality. A subset of the federation
(scope) is specified for the search in the form
of a node list. The predicate is applied only to
the selected type of objects. The scoped query
is the only type of query primitive that creates
a bag of objects from scratch, hence, it is a leaf
node in the QET. All other query types oper-
ate on at least one bag, and they form the
QET’s interior nodes.

• bag, which applies the given predicate to each
object in the bag that it obtains from its single
child node.

• association, which selects all objects linked
through an association–link to each object in
the bag obtained from its single child node.
The given predicate is then applied to the se-
lected objects.

• proximity, which searches for all objects that are
nearby in space to a given object. Such a query
is very useful and common in astronomy.

Parser, Intersector, and Partition Map
Several other modules play important roles in the
SA machinery. Figure 7 shows the SA software’s de-
tailed architecture, which includes client (GUI),
query support (server), and data warehouse layers.
The parser module parses an SXQL query and
converts it to a query tree, which is then passed to
the intersector. The intersector intersects the query
tree with the spatial and flux indexes.5,6 The parti-

Main
(socket listener)

Session

Query
execution tree

Query
output

Session
I/O

Target
(analysis engine)

Queries

GUI

Thread

Figure 4. Server multithreading in the query agent. Each user session is
in a separate thread, with a separate thread handling each query.

sdssQT
(GUI)

Analysis
engine

DB master
partition

Master Distributed
database server

DB partition
Slave

RAID
DB partition

Slave

RAID
DB partition

Slave

RAID
DB partition

Slave

RAID

Figure 5. Distributed implementation of the science archive (SA) query
agent. Remote slave servers execute parallel searches on remote
database partitions.

SEPTEMBER/OCTOBER 2003 21

tion map tells the query agent how the data is dis-
tributed in the federation by identifying partitions
on local and remote partitions. This partition
knowledge enables parallel data searches on differ-
ent partitions.

Abstract Library
The abstract library module provides a runtime ab-
straction of the SA data model. It allows manipula-
tion of database objects without knowledge of
schema, retrieval of data values, or invocation of
methods (if applicable). In effect, it behaves as a
runtime metadata server, or type manager. The ab-
stract can

• specify an object’s class using a name or alias,
• translate a name or alias to an actual C++ class,

and
• identify a particular member of a persistent

class and retrieve the following information
about it: the kind of member (basic data, array,
function, association link), type of value re-
turned by member (int, float, string, and so
on), size of array or object member, and input
and output formats, and then return a pointer
to the actual object in memory.

The parser, intersector, query engine, and extrac-
tor modules use the abstract library. In addition,
any application or module that accesses the data
model can use the abstract library.

Extractor
The extractor library module extracts individual
or groups of attributes (members) of a given ob-
ject; it executes the SELECT … part of an SXQL
statement. The members that it can extract in-
clude data, function, and association–link mem-
bers. The extractor retrieves data values based on
information provided by the abstract and includes
the required mechanisms for invocation of object
methods.

Port Daemon
The port daemon ensures that the GUI and analy-
sis engine communicate with the server on the cor-
rect port. It also performs process-level authenti-
cation, because firewalls should open only for the
port daemon’s own port and the predetermined
ports configured for the server process.

Data Loader
The data loader is part of the data warehouse layer,
and is the application that loads new data into the
OODB federation. The server opens the federation

SU

BI

BQ

SQ

SQ

AQ

SQ

SU/BU Set/bag union
SI/BI Set/bag intersection
SD/BD Set/bag difference
SQ Scoped query
BQ Bag query
AQ Association query

Bag Bag

BagBag

Bag

Bag

Figure 6. A query execution tree (QET) example. Processing starts at the
leaf nodes (scoped queries) and filters up the branches to the root. The
internal nodes are association queries (AQs), bag queries (BQs), or set
operation nodes (union, intersection, difference). The operand at each
level above the leaf is a bag of object identifiers (OIDs).

OpDB
Data

Schema

Abstract Agent
pool

Parser Intersector Engine Extractor

Server

GUI

Port
daemon

Analysis
engine

Data
loader

Sky
index

Flux
index

Query agent
Partition

map

Remote
slave
server

Figure 7. Science archive (SA) detailed architecture. The components in
the large box comprise the query agent, which does all the query
processing and manages user sessions. The GUI is the user client where
queries are submitted, the port daemon routes users to the proper
server address, and the analysis engines are user-developed
postprocessing applications. The sky and flux indices are the
multidimensional indices that speed up spatial and flux queries. We
developed all the software components shown here with the exception
of the analysis engines.

22 COMPUTING IN SCIENCE & ENGINEERING

in read-only mode, and the OODB addresses con-
currency issues. The incoming data format is hard-
coded into the data loader module to prevent data
mismatches. The latest version of the data loader
also incorporates the ability to store different cali-
brations (versions) of the same data that need to be
accessible through the archive.

OODB Evaluation
Now that we have described SA deployment on the
OODB, it is time to evaluate the OODB’s features
and performance and how those factors influenced
our decision to migrate to an RDB.

Advantages
Early in the planning of the SA, we decided that an
OODB offered significant advantages over a rela-
tional, or table-based, system. In addition to the
conceptual attractiveness of a DBMS that could
store the data in the same way astronomers think
about it, several other considerations made the
choice of an OODB a beneficial one:

• The ability to link objects to each other. An OODB
allows one-to-one, one-to-many, and many-
to-many links between objects.

• Transparent and configurable organization of data
on disk. The OODB has a hierarchical data or-
ganization with the data federation at the top,
followed by database, container, page, and slot.
Each level in the hierarchy can contain up to
approximately 65,000 (216) objects of the next
level. Thus, each database can contain ap-
proximately 65,000 containers, and so on.
More importantly, each database is a disk file,
and a database administrator can configure the
placement of objects into containers.

• Binary data compatibility across platforms.
OODB database and federation files can move
across heterogeneous platforms without com-
patibility issues. This facilitates implementa-
tion and maintenance of distributed archives.

• Object methods. We expected that the OODB
would let us define class methods that would
reside in the database along with the object
data. We thought of these as stored proce-
dures, but on a per-class basis. This feature is,
however, still not available in the latest ver-
sion of the OODB, although we were able to
provide macros and object functions via our
query language.

• Query tools. The OODB community was de-
veloping OQL and promising nonprocedural
access to the data in a standard query language.

• Development tools. The OODB products had

good tools that dovetailed with our chosen de-
velopment environment based on C++.

• Administrative tools. The OODB products had
a complete set of utilities for data definition,
data security, and data replication.

We considered the first four features crucial to
facilitate data-mining performance and make it
possible to run efficient queries for “needle in a
haystack” types of searches.

In spite of these advantages, even during the sur-
vey-commissioning phase we recognized that the
SDSS would be using the OODB in an untested
regime. Other application domains that used the
OODB did not have the data-mining features and
query performance that the SDSS user community
would demand. These problems worsened as our
user community became more sophisticated and fa-
miliar with the query language.

Inadequate Query Language
The OQL supplied with the product fell far short
of what was promised 10 years ago. The current
version of the OODB supports only Boolean user-
defined operators—that is, the only value returned
by the operator is either true or false. These are too
restrictive. It would be efficient to have more ver-
satile operators that can perform arbitrary complex
tasks and return values of arbitrary type. Query
predicates do not support operators for manipulat-
ing individual bits of data members. This func-
tionality would be very useful to us given our ex-
tensive use of bit lists for our indexing.
Furthermore, the ability to directly invoke mem-
ber functions of persistent classes would let us store
analysis and processing code in the archive itself in-
stead of running these methods manually after re-
trieving the objects. In general, the query language
was inadequate, so we had to build our own, with
the incumbent implementation and execution
costs.

Bugs
We found several serious bugs during the three
years of using the OODB that were never re-
solved—we had to devise workarounds for each of
them at considerable development cost to us. The
most critical bug that we encountered was incor-
rect array addressing of single-precision (float32)
floating-point array members in query predicates.
For example, if f is a floating-point array and a user
asks for f [n] (the n-th element of f), the OODB re-
turns f [2n]—that is, the array offset is off by a fac-
tor of 2! This happened only with float32 arrays,
not with float64 arrays, which suggested the prob-

SEPTEMBER/OCTOBER 2003 23

lem was the OODB assumed every floating-point
array to be float64.

Fatal errors generated during a query automati-
cally caused the C++ application to abort with a
core dump. Defining an error handler did not help
because the error handler could not avoid the
abort—it could only report that a fatal error had
occurred. This was unacceptable because a fatal er-
ror caused our entire query agent to crash, throw-
ing off all users logged in at the time. We encoun-
tered a situation in which a division in the query
predicate caused a fatal error (floating exception) if
the value of the object attribute in the denomina-
tor happened to be 0 for one of the objects en-
countered in the search. Although it is reasonable
to expect the query to be aborted by such an error,
it is ridiculous to have to abort the query agent be-
cause of it. There was no way to isolate the error to
the thread that generated it and continue with the
remaining threads.

The missing features and critical bugs just de-
scribed made the OODB’s predicate-query feature
unusable for our application. The lack of reliable
predicate-query functionality obviously crippled
our ability to make effective queries against the SA,
and was a serious blow to our progress with SA de-
velopment. As a result, we had to write our own
predicate functionality, which required several per-
son-months of development effort. Our home-
cooked predicate query served us well and even let
us implement features not available in the OODB
(such as inclusion of object methods in query pred-
icates), but it placed an additional burden on soft-
ware support and maintenance.

Performance Woes
To serve our customers, we needed to be able to ac-
cess data at more than 50MBps (which would be an
hour for a query that examines the entire photo cat-
alog). No matter how much hardware we threw at
it, the OODB could not go much more than 0.5
MBps—100 times too slow for our needs. We even-
tually traced this to the OODB’s use of network file
system and the lack of high-speed sequential access
to the data at the file system level. There was no way
around this without reworking the OODB, some-
thing the vendor refused to consider.

Another serious problem was that if indices were
defined on several quantities in our tag object class,
the order in which the terms appeared in the query
predicate had to be the same as the order in which
the indices were created; otherwise none of the in-
dices was applied! For example, the predicate,

(i < 11 && r < 13 && z < 9),

where i, r, and z are members of the tag object,
would invoke the index only if the index on i was
created first, the index on r was created second, and
the index on z was created last.

Administrative Problems
Inevitably, we had to change the database schema,
adding attributes or classes, creating associations, and
making other schema changes. As often as not, this
required a complete database reload (and the online
schema change often corrupted the current system).
One thing the OODB commu-
nity has yet to address is a co-
herent strategy for evolving the
database schema when applica-
tion programs have such a tight
coupling to the data and when
the data has object pointers that
may be split or merged by a
schema change. In addition, the
OODB lacked the administra-
tion tools typical of more mature
database management systems.

In fairness, other projects—
notably BaBar (www.slac.
stanford.edu/BFROOT/www/
Public/Computing/Data-
bases)—succeeded in building
atop an OODB, but they did it
by writing more than a million
lines of code above the inter-
face and by using the OODB as
a persistent object store
(checkin– checkout data) rather
than as a data warehouse with
ad hoc access.

Migration to RDB
With the bugs and other issues previously discussed
(and additional performance inadequacies that we’ll
describe later on), we had a difficult time justifying
the OODB’s use, in spite of its conceptual attractive-
ness, and the time and effort that we invested in
building a distributed data-mining engine on top of
it. Apart from the issues relating to the particular
database product on which we had deployed the SA,
object persistence was proving to be too expensive
for us because of poor query language support, the
data model’s relative inflexibility to frequent changes,
a total lack of query optimization, and lastly—but
perhaps most debilitating for data mining—inade-
quate I/O efficiency and support for data striping.

Fortunately, in the last 10 years the database
landscape has shifted. RDBs have improved in the
following ways:

To serve our

customers, we needed

to be able to access

data at more than 50

MBps. No matter how

much hardware we

threw at it, the OODB

could not go much

more than 0.5 MBps—

100 times too slow for

our needs.

24 COMPUTING IN SCIENCE & ENGINEERING

• RDBs have matured as the de facto standard
database technology embraced by the com-
puter industry, with wide tools support and
much improved quality and functionality in
language integration and database extension
mechanisms that provide some of the benefits
promised by OODBs.

• Fierce competition among the major RDB
vendors (for example, Oracle, IBM, and Mi-
crosoft) has resulted in superb I/O optimiza-
tion. Seven years ago, when we decided to
adopt an OODB for the SA, object-oriented

(OO) database technology
outperformed existing rela-
tional technology. However, in
the last few years, the leading
OO database vendors have not
kept up with the order-of-
magnitude increase in raw I/O
performance achievable with
redundant array of indepen-
dent disk (RAID) systems.

• The advent of Web services,
SOAP, and XML enables ob-
jects on the fly—that is, we
can retrieve data in object
form irrespective of how the
raw data is stored on disk,
providing dynamic object in-
terfaces to relational data-
bases and making object per-

sistence unnecessary.

These developments prompted us to consider mi-
grating the SA to a commercial RDB to signifi-
cantly improve performance, database administra-
tion, and optimization. Our opportunity came with
the SDSS SkyServer, which we’ll discuss next.

The SDSS SkyServer
We wanted to deploy a version of our data in Mi-
crosoft’s SQL Server (MS-SQL, for short) to pro-
vide an easy-to-use, Web-based option—called
SkyServer—for casual users of the soon-to-be-
available first public distribution of the SDSS early
data release (EDR), which was officially released
in June 2001. The choice of Microsoft’s products
was dictated by the opportunities available—Mi-
crosoft was willing to support the project, and one
of us (Jim Gray) was intimately familiar with the
product. In the absence of that combination, we
probably would have used Apache/DB2 on Solaris.

To load the EDR data into SkyServer, we had
to modify our data loader module to export data
in ASCII comma-separated value (CSV) format

to load into the relational data tables. The origi-
nal version of the data loader fed data directly
into the OODB using the OODB’s proprietary
Data-Definition Language (DDL). Adding the
data loader’s CSV export feature was neither dif-
ficult nor time-consuming, and we had an MS-
SQL EDR database up and running in a matter
of weeks. This CSV interface provides a “blood/
brain” barrier between the two subsystems and
has been invaluable in allowing each component
to evolve independently.

We designed the SkyServer to be a user-friendly
version of the EDR database, with help and docu-
mentation available for novice users, and we pro-
moted it to the lay public and amateur as-
tronomers. Although the interface included an
SQL query submission facility, we geared it more
toward casual users interested in browsing SDSS
data rather than running intensive data-mining
queries. We did not expect heavy use of the SQL
query page.

We were wrong. The SkyServer stole the show
during the first six months of the EDR. Users
quickly realized that this was an easy way to get
data out of the EDR. Some groups used the inter-
face to crawl the entire site and get a complete ex-
tract. Others wrapped the query interface in a col-
lection of Emacs macros and would routinely get
personal data extracts. Still others got private
copies (we distributed about 40 copies of the full
EDR and several hundred copies of the 1 percent
subset called the Personal SkyServer.)

The SkyServer’s popularity—even with profes-
sional astronomers—was because of its versatility,
reliability (99.9 percent uptime over the first six
months of use), and performance. The experience
convinced us that it was a viable alternative as an
advanced data-mining facility.

All this contrasted with the persistent and criti-
cal problems that we experienced with the object
version over the same period, particularly in terms
of stability, reliability, and performance. With ma-
jor data model changes just around the corner, MS-
SQL emerged as a far more attractive option.

But this was not a decision to be taken lightly,
and we undertook a comparative evaluation of the
OODB and MS-SQL with performance bench-
marks to formally ascertain whether MS-SQL
would meet our demanding needs.

Moving to the Relational Data Model
Our main hurdle was translating our object data
model into a relational one. The relational model
is “flat;” there are no subclasses. It does not sup-
port pointer associations; all associations must be

The SkyServer stole

the show during the

first six months of

the EDR. Users

quickly realized that

this was an easy

way to get data out

of the EDR.

SEPTEMBER/OCTOBER 2003 25

via key values. We had to convert the hierarchical
object data architecture to relational tables. Be-
yond the loss of the object data model’s concep-
tual ease, the transformation was not difficult. We
were able to use views to capture the subclass con-
cept. For example, the Galaxy view is the subset
of photo objects that are classified as galaxies and
are primary objects. We modeled associations
with foreign keys. Data import also was easier
partly because we had already written a data
loader for our OODB that read the astronomical
data in its original flexible image transport system
(FITS) format and stuffed it into the OODB us-
ing its DDL. As previously discussed, we were
able to modify the data loader to export data in a
CSV format accepted by MS-SQL for importing
files into the relational tables.

We were sorry to lose some of the object data
model’s benefits:

• Specifying links between objects with straightfor-
ward syntax. For example, using “SELECT
obj.field … ” instead of the less-intuitive
JOIN syntax of relational queries.

• Array (vector) fields. Relational tables cannot
support arrays. Given that most of our fields
are measured in five wavelength bands, it was
really convenient to have an array5 of each
quantity instead of five columns in the table
for each quantity measured in all bands.

• Approachability. The user community found
our simplified SQL less imposing and confus-
ing than standard SQL.

However, the loss of these OODB advantages was
not a high price to pay for MS-SQL’s considerable
advantages.

MS-SQL Advantages
We gained many benefits by migrating to MS-
SQL. The following is not a complete list—rather,
it describes those advantages that are most relevant
to our application regime.

Performance and Stability
MS-SQL query performance on a representative
sample of astronomical queries is an order of mag-
nitude superior to the best performance that we
could squeeze out of the OODB after all our query
engine’s optimization and parallelization. Loading
performance is much faster with MS-SQL; we can
load our current data in several hours rather than
several days with the OODB. Subsequently, we
have achieved another 10-fold speedup in most of
these areas by better design and more modern

hardware. We are nearing data rates of 1 GBps and
load rates of 50 MBps.

The MS-SQL RDB’s stability also is much bet-
ter than we experienced with the OODB; uptime
is consistently more than 99 percent with the Sky-
Server RDB, while we have had daily restarts and
downtime with the SA. These OODB failures have
been due primarily to the fatal error-handling bug
and multithreading issues specific to the SGI plat-
form on which we deployed the OODB. The
OODB schema evolution problems and longer
loading times also contributed to the downtime.

Query Language
In contrast with the limited SQL functionality that
we were able to implement using SXQL, MS-SQL
offers full SQL compatibility and the added fea-
tures of Transact SQL (T-SQL), such as the abil-
ity to define variables and temporary tables. MS-
SQL contains many features requested by our user
community. Unfortunately, we have not been able
to implement them in SXQL because of our lim-
ited software development budget.

MS-SQL’s three most useful features are GROUP
BY, ORDER BY, and COUNT(*). Their absence in
SXQL had hampered our development of a suite
of test queries for our performance benchmarks be-
cause we were unable to translate several test
queries—originally developed for a different pur-
pose—into SXQL. SDSS users want to sort, group,
and bin query results, which would eliminate a
fairly time-consuming data analysis step.

Advanced Query Optimization
Two of MS-SQL’s greatest strengths are its opti-
mization ease and its self-optimizing capabilities.
In a comparison of major RDB products featured
in a PC Magazine report,7 MS-SQL outscored its
competitors in this aspect, although optimization
is a core strength of all the major commercial
RDB products. A graphical query plan that’s view-
able before submitting an MS-SQL query pro-
vides details on which query steps take the largest
fraction of execution time and—in most cases—
gives users all the information necessary to im-
prove query performance.

Administration Features
MS-SQL features, such as triggers, stored proce-
dures, and dynamic indices, provide a level of con-
venience and ease for database administration that
we did not have with the OODB. In addition, we
can do many optimization tasks, including index
management and data reorganization, while the
database is online. With the OODB, we found this

26 COMPUTING IN SCIENCE & ENGINEERING

problematic enough to be virtually unusable.

Schema Design and Evolution
MS-SQL’s built-in data model design tools simplify
complex schema development. With the OODB,
we had to use a separate software product (Para-
digm Plus) to develop a diagrammatic data model
before translating it into schema files that the
DBMS could understand (the DDL).

The benefits of schema development in MS-
SQL crystallized when we contemplated major
data model changes to bring detailed information
about the SDSS spectroscopic plates’ tiling proce-
dure into the OODB. We realized that adding
these changes would stretch our existing database
to the breaking point.

Schema evolution is another feature that we
should have been able to take for granted with a
DBMS but have been unable to use in practice with
the OODB. Even small schema changes corrupted
the existing database data and required a complete
data reload.

After several unsuccessful attempts at it—and
lacking adequate vendor technical support—we
abandoned schema evolution. Instead, we mini-
mized schema changes and always reloaded the
entire database when a change was absolutely nec-
essary. This was a significant drain on our limited
operations resources because it required several
days to implement even a minor schema change.
We anticipate that this will not be a problem with
MS-SQL because already we have successfully
completed several EDR SkyServer schema
changes.

Performance Benchmarks
Performance was not the only reason we switched
to MS-SQL, but it probably was the most impor-
tant one. With data volume expected to quadru-
ple over the next three years, we were concerned
that all the optimization we had built into our
OODB query engine would not be enough if the
DBMS itself could not meet certain I/O perfor-
mance benchmarks. Almost all the queries that
had performed poorly on the OODB were
I/O–bound.

Before we carried out the performance bench-
marks described here, we knew that our SQL
server database (the SDSS SkyServer) performed
better than the OODB version for certain types of
queries. However, we wanted to achieve some ob-
jectives by conducting formal benchmarks:

• document that MS-SQL was performing
much better with indexed queries;

• ensure that we were giving the OODB a fair
shake (we hoped to find that the OODB
would perform better with complex queries
due to its hierarchical data organization);

• provide a level playing field by running the
benchmarks on identical hardware; and

• make every attempt to ensure that the opti-
mization and parallelization features that we
built into our OODB server software would be
utilized in executing the test queries.

We formulated a set of 25 test queries that ranged
from simple index lookups to queries with complex
constraints on nonindexed quantities and multiway
joins. These queries (available at www.sdss.jhu.edu/
sx/pubs and http://computer.org/cise/cs2003/c5tha.
htm) are a subset of the 35 queries we used to
benchmark the SkyServer.9

Benchmark Performance Results Analysis
Figure 8 shows the test queries’ execution times for
three database configurations: MS-SQL, a single-
disk OODB (OO-single), and a three-disk parti-
tioned OODB (OO-striped).

On average, MS-SQL is three to 10 times faster
than OO-single, and one to three times faster than
OO-striped. Figure 9 shows this more clearly, and
compares the OO-single system and the OO-
striped system execution times to MS-SQL execu-
tion times. The OO-striped’s three-way data strip-
ing yielded a performance improvement of up to a
factor of three because of our multithreaded query
agent design.

On queries that return very large numbers of ob-
jects, the distributed version of the OODB (OO-
striped) starts to bog down while extracting re-
quested data fields from matching objects. This is
especially evident for tag object queries, because
many of the small tag objects load into the cache at
the same time. The main thread then must extract
the required data fields from the cache, so main-
thread CPU use quickly gets into the 80 to 90+ per-
cent range, which limits query execution speed. Fig-
ure 10 illustrates the process, and shows the ratio of
the times taken to return just an aggregate count of
the objects (with COUNT(*)) to the total time
taken (to return all objects) for each query. The ra-
tio is lowest—that is, the count is much faster than
the whole query—when the total number of objects
is in the millions. This is a limitation of our distrib-
uted-design query agent, which distributes the
query search but not the object data extraction.

The joins on the MS-SQL version were fast for
all the reasonable queries we formulated. In fact,
finding a query that would take more than a few

SEPTEMBER/OCTOBER 2003 27

minutes to execute on the MS-SQL version was
hard. The only time the execution was relatively
slow was when there was no constraint on an in-
dexed quantity in the query predicate. An exam-
ple of this situation is in test query Q31, which is
a version of Q30 with a much larger limiting
value of a nonindexed field in the photoobj
table. The largest table in our database, pho-

toobj contains the measured parameters of each
object observed by the SDSS telescope’s imaging
camera. Figure 11 shows the Q31 execution time
differences for MS-SQL, OO-single, and OO-
striped. The execution times are almost two or-
ders of magnitude higher, but such a query is rare
because users can narrow the search using one of
the indexed fields.

Q11 Q15 Q16Q17 Q18 Q19Q20 Q21 Q22 Q23 Q24 Q25

MS-SQL

OO-single

OO-striped

2,000

1,750

1,500

1,250

1,000

750

500

250

0

MS-SQL

OO-single

Q1

Ex
ec

ut
io

n
tim

e
(s

ec
.)

Q2 Q3 Q4 Q5 Q8 Q9 Q10 Q27Q26 Q28 Q29Q30

0.2 13 157 22 184 1 2 9 36 185 169 158 181 3 409 3 390 409 188 157 184 104 163 39 182

1 266 569 848 409 52 48 73 1611,090595969 1,709 15 1,946 15 950 375 388 416 3836931,098194 271

1 161 327 262 186 12 11 26 97 298 283301 659 13 933 15 783 160 160 180 175 314 481 104 280OO-striped

Figure 8. Results of running the 25 test queries listed at www.sdss.jhu.edu and http://computer.org/cise/cs2003/c5tha.htm on
Microsoft SQL server (MS-SQL), a monolithic object-oriented database management system (OODB) (OO-single), and a data-
striped OODB (OO-striped).

OO-single/MS-SQL

OO-striped/MS-SQL

0

10

20

30

40

Q1 Q3 Q5 Q8 Q9 Q11 Q15 Q16 Q17 Q23 Q28 Q29 Q30

50

60

Figure 9. Comparison of query execution times on MS-SQL, with those on the single-disk object (OO-single),
object-oriented database management (OODB) system, and the three-disk (OO-striped) OODB. The graphs
show the execution times’ ratios plotted for each query.

28 COMPUTING IN SCIENCE & ENGINEERING

After initially adopting an object data-
base and expending considerable time
and development effort converting it
into an advanced data-mining facility,

we were forced to abandon it and migrate to a

relational database system. The OODB concept
was great—and probably the right decision at
the time—but the actual implementation lacked
the robustness, the tools, and the scalability our
project demanded.

The detailed description of our object-based
implementation substantiates the concerted at-
tempt we made to achieve the data-mining objec-
tives of the SA using an OODB. In the end, how-
ever, we had to acknowledge that relational
database technology and Web-based protocols
had advanced to the point where we could satisfy
many of our original reasons for adopting an ob-
ject database with a relational solution, and the
dominant manageability, quality, performance,
and usability requirements mandated that we use
a mainstream product.

Although we only tested Microsoft’s SQL Server,
all the major commercial RDBs now offer superb
query optimization, excellent I/O performance on
RAID systems, and advanced support for data-min-
ing applications and data-intensive science. In par-
ticular, the ability to encode complex mathemati-
cal and statistical analysis directly in a database
within stored procedures and functions is crucial
for the anticipated need in many branches of sci-
ence to keep the compute-intensive processing as
close to the data as possible to avoid network bot-
tlenecks as the data volumes explode.

As the volume of the SDSS data more than
quadruples over the next two to three years, we aim
to maintain current data-mining performance by
deploying the SDSS databases over a cluster of

10

8

6

4

2

0
Q31 Q30

Lo
g

of
 e

xe
cu

tio
n

tim
e

(×
 1

,0
00

)

MS-SQL

OO-single

OO-striped

Figure 11. Comparing execution times for two versions of test query
Q30. Q31 is a version of Q30 with a much larger limit on a nonindexed
quantity.

Q11 Q15 Q16 Q17 Q28Q1 Q2 Q3 Q4 Q5 Q8 Q9 Q10 Q23 Q29 Q30

1.2

1.0

0.8

0.6

0.4

0.2

0.0

C
ou

nt
 (

*)
 t

ot
al

 t
im

e

0

10

200

300

400

500

600

N
um

be
r

of
 o

bj
ec

ts
 (

×
1,

00
0)

Single counts Striped counts Number of objects

Figure 10. Comparison of query time saved by requesting aggregate counts versus total time for the OO-single and OO-striped
versions with respect to the total number of objects returned by each.

SEPTEMBER/OCTOBER 2003 29

linked DB servers. We will achieve load-balancing
by either distributing the number of queries over
the cluster, partitioning the data across the cluster,
or both. We anticipate that this will be quite a chal-
lenge, but we are much better positioned to over-
come it now that we have the performance and
support that we should rightfully expect from our
database layer.

References
1. A. Szalay, “The Sloan Digital Sky Survey,” Computing in Science

& Eng., vol. 1, no. 2, 1999, pp. 54–62.

2. A. Szalay et al., “Designing and Mining Multiterabyte Astronomy
Archives, The Sloan Digital Sky Survey,” Proc. Special Interest
Group Management of Data Conf. (SIGMOD), ACM Press, 2000,
pp. 451–462.

3. A. Thakar et al., “Multi-Threaded Query Agent and Engine for a
Very Large Astronomical Database,” Proc. Astronomical Data
Analysis Software & Systems IX (Astronomical Soc. Pacific Conf.
series, ADASS), vol. 216, D. Crabtree, N. Manset, and C. Veillet,
eds., Astronomical Soc. Pacific, 2000, pp. 231–234.

4. A. Thakar, P. Kunszt, and A. Szalay, “Case Study of Handling Sci-
entific Queries on Very Large Data Sets: The SDSS SA, “Mining
the Sky,” Proc. Max-Planck-Institut für Astrophysik/European South-
ern Observatory/Max-Planck-Institut für Extraterrestrische Physik
Workshop, A. Garching et al., eds., Springer-Verlag, 2001, pp.
624–630.

5. P. Kunszt et al., “The Indexing of the SDSS SA,” Proc. Astronom-
ical Data Analysis Software & Systems IX (Astronomical Soc. Pa-
cific Conf. series, ADASS), vol. 216, D. Crabtree, N. Manset, and
C. Veillet, eds., Astronomical Soc. Pacific, 2000, pp. 141–144.

6. P. Kunszt, A. Szalay, and A. Thakar, “The Hierarchical Triangular
Mesh,” Mining the Sky: Proc. MPA/ESO/MPE Workshop, A. Garch-
ing et al., eds., Springer-Verlag, 2001 pp. 631–637.

7. T. Dyck, “Clash of the Titans,” PC Magazine, vol. 21, no. 6 , 26
Mar., 2002, pp. 122–138.

8. A. Thakar, P. Kunszt, and A. Szalay, “A Parallel, Distributed
Archive Template for the NVO,” Proc. Astronomical Data Analysis
Software & Systems X (Astronomical Soc. Pacific Conf. series,
ADASS), F. Harnden, F. Primini, and H. Payne, eds., Astronomi-
cal Soc. Pacific, 2001, pp. 238–240.

9. J. Gray et al., Data Mining the SDSS SkyServer Database, tech. re-
port MSR-TR-2002-01, Microsoft Research, 2002, ftp://ftp.
research.microsoft.com/pub/tr/tr-2002-01.pdf.

Ani Thakar is a research scientist in the Center for As-
trophysical Sciences at Johns Hopkins University. His
research interests include data mining, Grid com-
puting, VLDB, virtual observatories, scientific pro-
gramming, high-performance computing, interact-
ing galaxies, and astrophysical simulations. He has a
BS in physics and computer science from Carleton
University, and an MS and a PhD (both in astronomy)
from Ohio State University. He is a member of the
IEEE Computer Society, the American Astronomical
Society, the Astronomical Society of the Pacific, and
the Phi Kappa Phi Honor Society. Contact him at the
Ctr. for Astrophysical Sciences, Dept. of Physics and
Astronomy, The Johns Hopkins Univ., 3701 San Mar-
tin Dr., Baltimore, MD 21218-2695; thakar@pha.
jhu.edu.

Alex Szalay is Alumni Centennial Professor of Physics
and Astronomy at John Hopkins University. His research
interests include cosmology, large-scale structure of the
universe, data mining, Grid computing, VLDB, and vir-
tual observatories. He has a PhD in astrophysics from
Eötvös University, Hungary. He is a member of the IEEE
Computer Society, the American Astronomical Society,
and the ACM. Contact him at the Ctr. for Astrophysi-
cal Sciences, Dept. of Physics and Astronomy, The
Johns Hopkins Univ., 3701 San Martin Dr., Baltimore,
MD 21218-2695; szalay@jhu.edu.

Peter Kunszt is a member of the database group (IT
division) at the European Organization for Nuclear Re-
search (CERN). His research interests include data min-
ing and Grid computing. He has a PhD in theoretical
physics from the University of Berne, Switzerland. Con-
tact him at CERN, 1211 Geneva 23, Switzerland;
peter.kunszt@cern.ch.

Jim Gray is a distinguished engineer in Microsoft’s
Scaleable Servers Research Group and manager of Mi-
crosoft’s Bay Area Research Center (BARC). His tech-
nical interests include databases, data mining, and
transaction processing. He has a PhD in computer sci-
ence from University of California, Berkeley. He is a
member of the ACM, the National Academy of Engi-
neering, the National Academy of Sciences, and the
American Academy of Arts & Sciences. Contact him at
Microsoft Research, 455 Market St., Ste. 1690, San
Francisco, CA 94105; gray@microsoft.com.

DON’TGET CUT OFF

Take your e-mail address with you

Get a free e-mail alias

from the IEEE

Computer Society

and

Take your e-mail address with you

Get a free e-mail alias

from the IEEE

Computer Society

and

Sign up today at

computer.org/WebAccounts/alias.htm

Sign up today at

computer.org/WebAccounts/alias.htm

you@computer.orgyou@computer.org

