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Karhunen–Loève procedure for gappy data
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The problem of using the Karhunen–Loève transform with partial data is addressed. Given a set of empirical
eigenfunctions, we show how to recover the modal coefficients for each gappy snapshot by a least-squares
procedure. This method gives an unbiased estimate of the data that lie in the gaps and permits gaps to be
filled in a reasonable manner. In addition, a scheme is advanced for finding empirical eigenfunctions from
gappy data. It is shown numerically that this procedure obtains spectra and eigenfunctions that are close
to those obtained from unmarred data.
1. INTRODUCTION
A primary purpose of this paper is to address the following
question: How much image information is necessary for
the restoration of a full image from a partial image, if it
is known that the image belongs to a certain well-defined
class of images? (Alternatively, how much degradation,
by deletion of pixels, can such an image suffer and still be
recovered?) Such questions are prompted by a number
of applications in which image information is collected
as an ensemble of like images and, owing to technical
or natural circumstances, some or all of the images are
marred by gaps in the data. Many examples of this sort
occur for data gathered from remote-sensing satellites.
As an illustration we mention the presence of cloud cover
as a natural obstruction that leaves gaps in data records.1

Although the language and illustrations presented here
come from image analysis, the methodologies apply to
the wider arena of databases having support in higher
dimensions. Although our deliberations may be relevant
to image compression, this subject is not pursued here.

First we address the problem of recovering a full im-
age from a marred image when the properties of an en-
semble of like images are known. The methods rely on
the Karhunen–Loève (K–L) expansion for the ensemble,
and in Section 2 we address the problem of finding the
(K–L) expansion from a marred ensemble.

In order to deal with the issues involved, we reconsider
the Rogues’ Gallery problem, which was formulated and
solved in Refs. 2 and 3. Briefly stated, this is the prob-
lem of analyzing an ensemble of images of human faces.
A snapshot of a face will be denoted f ­ fsxd, where f

represents the deviation in gray level from the ensemble
mean gray level at pixel location x ­ sx, yd. If the faces
are indexed by n, the ensemble is denoted hfnj, where
1 # n # N , and N represents the number of faces in the
ensemble. Normalization and other related details may
be found in Refs. 2 and 3. It was shown there that there
exists an optimal representation in the sense that the av-
erage error,

e ­

*á
f 2

MP
n­1

ancnsxd

á 2+
, (1)

is minimal for all M . Here k?k2 denotes the usual L2
0740-3232/95/081657-08$06.00 
norm and k?l denotes the average over the ensemble. The
minimal value of e is obtained if the basis elements cn

satisfy the eigenfunction problem,

Z
Ksx, y dcns y ddy ­ lncnsxd , (2)

scn, cmd ­
Z

cnsxdcmsxddx ­ dnm , (3)

where

Ksx, y d ­ kfsxdfsy dl ­
1
N

NX
n­1

fsxdfsy d (4)

is the two-point correlation function. This is the essence
of the K–L procedure or principal components analy-
sis, also known under a variety of other designations,
and yields to standard numerical procedures. In what
follows, hcnsxdj, which appears as eigenfunctions of the
correlation operator, will be referred to as the empirical
eigenfunctions. The K–L procedure and variations of it
have been rediscovered a number of times. A modern
form of it goes back to Schmidt.4 (For a description and
extension see Sirovich and Everson.5) Stewart6 has re-
cently reviewed the history of the method, and a review of
its use in turbulence theory was made by Berkooz et al.7

Turk and Pentland8 subsequently made calculations simi-
lar to those presented in Refs. 2 and 3 and used empiri-
cal eigenfunctions for face recognition. O’Toole et al.9,10

used empirical eigenfunctions to investigate perception
of race and sex.9,10 A related application to an oceano-
graphic problem has been presented by Kelly.11

2. MARRED FACES
With the use of the empirical eigenfunctions, cn, which
here we may call eigenfaces, only a relatively small num-
ber of parameters enter into the specification of a par-
ticular face. In quantitative terms it was found that on
average 50 eigenfaces account for approximately 93% of
the variance based on departures from the mean2 for
a description of the ensemble and normalization. This
should be compared with the O(104) gray levels required
for specification of each snapshot.
1995 Optical Society of America
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This result implies that for a face fsxd, a suitable ap-
proximation can be obtained from a limited summation,

fsxd ø
NP

n­1
ancnsxd , (5)

where the coefficients an are obtained from the usual
inner product,

an ­ sf, cnd , (6)

and N represents the number of basis functions needed
to meet some specified error bound. Relation (5), looked
at in another way, states that in the presence of perfect
information (zero noise) we need to know only the gray
levels fsxd at N pixel locations.

To investigate this assertion we will consider marred
faces and then investigate how well they can be recon-
structed. We express a masked face by

f̃sxd ­ msxdfsxd , (7)

where m ­ 0 on the mask and m ­ 1 elsewhere. The
challenge is to write f̃sxd in the form of relation (5),

f̃sxd ø msxd
NP

n­1
ãncnsxd , (8)

and from this to determine a best set of coefficients ãn.
Once this is done we can inquire how well f is captured
by

PN
n­1 ãncn. Part of the problem involves the choice

of N .
The inner product [Eq. (6)] can no longer be used to find

the coefficients, because it requires information from the
full range of x; i.e., the fn are not necessarily orthogonal
over the support of f̃, sff̃g. However, we can then use
a least-squares criterion to achieve a best fit of form (5).
That is, we minimize the error

E ­
Z

sff̃g
dx

24f̃sxd 2

NX
n­1

ãncn

352

. (9)

The minimization of E leads to0@f̃ 2
NP

n­1
ãncn, ck

1A
sff̃g

­ 0 , (10)

which requires that the residual be orthogonal to ck for
k ­ 1, . . . , N , where as indicated the inner product is over
the support of f̃, sff̃g. The Hermitian matrix

Mkn ­ sck, cndsff̃g (11)

is nonnegative and is in principle OsN d.
If we write

fk ­ sf, ckdsff̃g , (12)

then in vector notation we seek the unknown coefficients
ãk from

Mã̃ãa ­ f . (13)

In the event that sff̃g is sufficiently dense in the space,
then M ø I, which among other properties says that the
eigenvalues of M are close to unity, and ãk ø sf, ckdsff̃g.
In the present instance, if we denote the eigenvalues mn

and the corresponding orthonormal eigenvectors vn, the
solution to Eq. (13) is then given by

ã̃ãa ­
NP

k­1

1
mn

svn, fdvn . (14)

Thus on intuitive grounds the construction becomes ques-
tionable if the mk depart significantly from unity; this is
made explicit in Appendix A.

To illustrate the nature of this construction, we con-
sider the mask shown in Fig. 1a. This is a relatively
extreme mask that obscures 90% of the pixels in a ran-
domly chosen way. This was used to mask a face that did
not belong to the original ensemble that was used to de-
termine the eigenfunctions. The result of applying the
above procedure, finding the ã from Eq. (13) and using
N ­ 50 eigenfunctions, is shown in Fig. 1b. The origi-
nal unmasked face is shown in Fig. 1c, and the projection
of the original face onto 50 eigenfunctions is shown in

Fig. 1. Reconstruction of a face, not in the original ensemble,
from a 10% mask. The reconstructed face, b, was determined
with 50 empirical eigenfunctions and only the white pixels shown
in a. The original face is shown in c, and a projection (with all
the pixels) of the face onto 50 empirical eigenfunctions is shown
in d.
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Fig. 2. Reconstruction of a face from a 10% mask. The recon-
structed face b was determined with 50 empirical eigenfunctions
and only the white pixels shown in a. The original face, which
was a member of the original ensemble, is shown in c and a
projection (with all the pixels) of the face onto 50 empirical
eigenfunctions is shown in d.

Fig. 1d. Though the procedure does not recover the origi-
nal face exactly, the construction is visually close to the
projection onto 50 eigenfunctions, which utilizes the en-
tire area and is the best that may be achieved with 50
functions.

We underline the fact that the masked face did not
enter into the determination of the eigenfaces. When the
face to be reconstructed is a member of the ensemble used
to construct the eigenfunctions, both the reconstructed
face and the projected face are closer to the original.
Figure 2 shows the result of a reconstruction for a face
that was a member of the original ensemble.

In carrying out this construction, we have taken N ­ 50
in Eq. (10). This, as Fig. 3 shows, is an optimal choice for
the number of fitting functions when the fraction of unob-
scured pixels p ­ 0.1. Figure 3 shows the mean squared
error,

R
jf 2

PN
n­1 ãncnj2dx, averaged over 48 faces not

part of the original ensemble. The bottom curve corre-
sponds to p ­ 1. Here the entire face is unmasked, the
coefficients are determined by the simple inner product,
and the error is the best that may be attained for a par-
ticular N , though it is necessarily larger than
P

n­N11 ln.
When p $ 0.2 the least-squares procedure performs well
for all N .

In Fig. 4 we show the mean squared error versus N
averaged over the 238 faces constituting the original en-
semble. The errors are significantly smaller here than
for those shown in Fig. 3, reflecting the fact that the em-
pirical eigenfunctions are optimally suited to this par-
ticular ensemble. Again, the lowest curve corresponds
to p ­ 1, for which the entire face is unmasked, the coef-
ficients are determined by the simple inner product, and
the error is the best that may be attained for a particu-
lar N . In fact, this best error is given by

P
n­N11 ln.

Clearly, when p $ 0.05 the least-squares procedure per-
forms well.

The basic reason for the ability of the procedure just
presented to recover the marred regions is, in part, that
one needs only a limited number of fitting functions to
well approximate a full face that is suitably normalized
and satisfies other reasonable requirements. This num-
ber, which might appropriately be called the dimension
of face space, is roughly 50. This estimate is greatly de-

Fig. 3. Mean squared error versus the number of fitting eigen-
functions for snapshots that were not part of the original en-
semble. Curves show the error for different unmasked areas,
p. When p ­ 1 the entire picture is unmasked and the mean
squared error is the best that can be attained for a given number
of fitting eigenfunctions.

Fig. 4. Mean squared error versus the number of fitting eigen-
functions for snapshots that were members of the original en-
semble. Curves show the error for different unmasked areas,
p. When p ­ 1 the entire picture is unmasked and the mean
squared error is the best that may be attained for a given number
of fitting eigenfunctions.
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Fig. 5. Reconstruction of a monkey face with eigenfunctions derived from human faces. Left, unobscured face; middle, reconstruction
from a p ­ 0.5 random mask, with 100 eigenfunctions; right, reconstruction with 220 eigenfunctions and the entire area.
pendent on the use of the empirical eigenfunctions, which
span face space in an optimal manner. Other basis func-
tions can require many more fitting functions.

If we take 50 as a nominal value, then only 50 coeffi-
cients an need be determined in Eq. (10). Since Os500d
pixels are not masked by the 10% mask, it is clear why
the least-squares fit leads to a successful answer. It is
at least intuitively clear that a sufficiently masked im-
age cannot correctly furnish the smaller scales. Since the
eigenfunctions resolve successively smaller scales with in-
creasing index N , using too many eigenfunctions results
in a deterioration of the fit. This behavior results from a
trade-off between the possibility of a better fit with more
eigenfunctions and the fact that M increasingly departs
from the identity as the amount of information (number of
pixels) available to determine each coefficient decreases.
When the unmasked area is sufficiently large ( p . 0.05
when the face belongs to the original ensemble and p .

0.2 when it does not), using more eigenfunctions always
results in a better fit. A more detailed analysis and
estimates for the optimum N given p are presented in
Appendix A.

One further aspect of the analysis merits comment. It
is important that the image that lies beneath the mask be
a member of the class from which the empirical eigenfunc-
tions were obtained; in this instance eigenfunctions were
obtained from an ensemble of shaven, Caucasian males,
though it is known that they are suitable for female faces.
In Fig. 5 we show the result of reconstructing a monkey
face from under 50% mask. (The monkey face was scaled
and normalized in exactly the same manner as the human
faces). The unobscured face is shown at the left; the re-
construction, with n ­ 100 eigenfunctions, from a p ­ 0.5
random mask is shown in the middle, and the reconstruc-
tion using 220 eigenfunctions and the entire area is shown
at the right. The mean squared errors are approximately
an order of magnitude larger for the monkey face than
for out-of-ensemble human faces. It is clear that the
human eigenfunctions are unsuited to the monkey face
and to such wide departures from the class as bearded
faces. The reconstruction can select only human compo-
nents of the simian face. All of this implies that some
law governs the organization of a human face. While the
law remains unknown, our results imply that no more
than Os50d dimensions are needed for a reasonable char-
acterization of face space.

3. MARRED EIGENFUNCITONS
Next we explore the determination of the eigenfunction
set hcnsxdj if only marred data are available. For this
purpose we consider an ensemble of masks, hmnsxdj, with
the value of each mnsxd either zero or unity depending
on whether the pixel x is masked or not masked, respec-
tively. The masks are randomly generated, and we will
characterize a mask by p, the fraction of unmasked pixels.

We denote the ensemble of marred faces hf̃sxdj. Each
marred face is of the form

f̃sxd ­ mnsxdfsxd , (15)

where fsxd is chosen from the original ensemble. Each
face may occur more than once. If P denotes the total
number of pixels, then there exist 2P possible masks, and
all the masks may be conveniently regarded as different.
Thus the ensemble hf̃sxdj may be regarded as a signifi-
cantly larger ensemble than hfsxdj.

The object of this section is to present an algorithm
for the construction of the eigenfunctions and to show
the results of this procedure. We will be content here
to demonstrate existence, convergence, and related ques-
tions by means of numerical investigations.

To start what will become an iterative procedure, we
define the average value at pixel location x by

kf̃sxdl ­
1

Msxd

X
n[Sfxg

f̃nsxd , (16)

where Sfxg is the set of indices at which mnsxd is unity
and Msxd is the number of indices in this set for pixel
location x. This average is simply the average over all
the available information at location x.

As a first step of an iterative procedure, we repair each
f̃nsxd by filling in missing pixels by the average values
at those locations. We denote this repaired ensemble
hf̃s0d

n sxdj. Since this ensemble is defined everywhere, we
can employ the K–L procedure to generate hc s0d

n sxdj, a
complete orthonormal system. Next we obtain hf̃s1d

n sxdj
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by fitting each f̃nsxd of the original ensemble by a super-
position of R eigenfunctions hc s0d

n sxdj as follows: set

f̂s1d ­
RP

n­1
as1d

n c s0d
n sxd (17)

and determine the set has1d
n j by minimizing the criterion

function over the pixels for which data are available; that
is, minimize

Ẽn ­
Z

sf̃n 2 f̂s1d
n d2mnsxddx . (18)

We now obtain the repaired snapshot f̃s1d
n by filling in the

masked pixels with the f̂s1d
n :

f̃s1d
n sxd ­

8<: f̃nsxd if mnsxd ­ 1
f̂s1d

n sxd if mnsxd ­ 0
. (19)
This procedure is carried out for each f̃n and each mnsxd.
The set hf̃s1d

n j is now defined everywhere and hence
through the K–L procedure generates hc s1d

n sxdj, an ortho-
normal, complete system. The iteration is now clear; we
next discuss the results.

4. RESULTS
The iteration scheme is demonstrated on an ensemble of
286 faces, masked so that 40% of each face is obscured.
A typical example, denoted f̃53sxd, is shown in Fig. 6.
Each mask consists of a union of squares with randomly
distributed centers. The width of each square was drawn
from a Poisson distribution with mean width 3 pixels.

Also shown in Fig. 6 are the intermediate snapshots
f̃

s1d
53 , f̃

s2d
53 , f̃

s5d
53 , f̃

s10d
53 , and f̃

s20d
53 as the iteration proceeds.

At each stage the faces were repaired with R ­ 30 eigen-
Fig. 6. 40% masked face f̃53 and the intermediate snapshots f̃
s1d
53 , f̃

s2d
53 , f̃

s5d
53 , f̃

s10d
53 , and f̃

s20d
53 as the iteration scheme proceeds. At

each stage the masked regions have been repaired with R ­ 30 eigenfunctions derived from the snapshots from the preceding iteration.
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Fig. 7. Eigenvalue spectrum ln after 1, 2, and 20 iterations.
The solid curve shows the spectrum derived from the unmarred
snapshots.

Fig. 8. Eigenvalue spectrum l
s20d
n after 20 iterations compared

with the unmarred spectrum ln and the spectrum rn derived
from the snapshots repaired with eigenfunctions from the un-
marred ensemble.

functions c skd
n [see Eq. (17)]. This R was judged to be

large enough to capture the essential features of face
space but not large enough to prohibit accurate determi-
nation of the ãsid

n .
The convergence of the eigenvalue spectrum is illus-

trated in Fig. 7, which shows the principal 60 eigenval-
ues ln after 1, 2, 10, and 20 iterations together with
the spectrum derived from the unmarred ensemble. The
dominant eigenvalues display a clear convergence toward
those of the unmarred spectrum. The step at index 30 is
a consequence of repairing the faces with R ­ 30 eigen-
functions. In fact, since only 30 eigenfunctions are used,
one cannot hope to achieve better eigenfunctions and
eigenvalues than those produced by repairing (using the
scheme outlined above) the marred data with 30 eigen-
functions derived from perfect data. We denote these
eigenfunctions and eigenvalues xn and rn. Figure 8 com-
pares the spectra from the unmarred faces, ln, from the
marred faces repaired with 30 unmarred eigenfunctions,
rn, and from iteration 20 of the scheme, ls20d

n . The itera-
tive scheme, which lacks information about the perfect
eigenfunctions, well approximates the initial portion of
the other two spectra.

Although the eigenvalues are in good agreement, it re-
mains to be checked that the eigenfunctions from the it-
erative scheme approximate the eigenfunctions from the
unmarred data. Of relevance here is the convergence not
of individual eigenfunctions but of the spaces spanned by
groups of eigenfunctions. Assessing the convergence of
the eigenfunctions therefore requires a method of compar-
ing subspaces. Let E and F be the projectors defining a
pair of subspaces, each of dimension d. Then the trace
of the Hermitian matrix, Tr EFE, measures the common-
ality of the subspaces. If the subspaces are identical,
Tr EFE ­ d; if they are disjoint, Tr EFE ­ 0. We denote
Cdsen, fnd the trace of EFE, where E and F are projectors
for the subspaces spanned by the collections of vectors en

and fn. The commonality among the subspaces spanned
by the first 30 unmarred eigenfunctions and the eigen-
functions derived from the faces repaired with unmarred
eigenfunctions is given by C30scn, xnd ­ 29.4.

Figure 9 shows Cdsc, c̃ skdd versus d for iterations k ­ 1
and 20. The rate of convergence is shown in Fig. 10, in
which C30sc, c s1dd and C30s x, c s1dd are plotted against it-
eration number. Even after a single iteration there is
considerable overlap among the first seven eigenfunc-
tions. The rate of convergence is initially rapid, slowing
as the limit is approached. After 20 iterations there is
very good agreement between the eigenfunctions from the
iteration scheme and the unmarred eigenfunctions; visu-

Fig. 9. Commonality of subspaces spanned by the unmarred
eigenfunctions cn and the repaired eigenfunctions c

skd
n after

k ­ 1 and k ­ 20 iterations.

Fig. 10. Convergence with iteration of the subspaces spanned
by the repaired eigenfunctions and the unmarred eigenfunctions
(squares) and the subspaces spanned by the repaired eigenfunc-
tions and the eigenfunctions derived from marred data repaired
with perfect eigenfunctions (triangles).
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ally they are indistinguishable. Pursuing the iteration
further improves the match, but the rate of convergence
is slow; after 80 iterations C30sc, c s1dd ­ 26.51, which is
to be compared with 26.26 after 20 iterations. It is pos-
sible that Newton’s method or other schemes in which
more eigenfunctions are introduced as the iteration pro-
ceeds would enhance the rate. We remark that c skd

n ap-
proach the xn more closely and more rapidly.

5. SUMMARY
We have addressed the problem of using the Karhu-
nen–Loève (K–L) transform with partial data. Given
a set of eigenfunctions, we have shown how to recover
the modal coefficients for each gappy snapshot by a least-
squares procedure. This method gives an unbiased esti-
mate of the data that lie in the gaps and permits gaps to
be filled in a reasonable manner. In addition, we have
advanced a scheme for finding empirical eigenfunctions
from the gappy data and have shown numerically that
the method yields a spectrum and eigenfunctions that are
close to those obtained from unmarred data.
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APPENDIX A
This appendix gives a more thorough discussion of the
errors inherent in fitting a face with N empirical eigen-
functions when a fraction p of the pixels are unobscured.
We can express an unmasked face by a superposition of
the empirical eigenfunctions:

fsxd ­
P
n

ancnsxd . (A1)

If the number of faces in the ensemble equals the number
of pixels describing a face, then the cnsxd are complete
(even if this is not true, a complete set can always be
determined). Since the purpose of this appendix is to
explore the interplay of the fraction p of unmasked pixels
with a truncation number N , we do not dwell further on
this point.

For the truncation N we write

fsxd ­
NP

n­1
ancnsxd 1 rsxd , (A2)

where the residual r depends on N :

rsxd ­
P

n.N
ancnsxd . (A3)

Note that when the face being fitted belongs to the en-
semble from which the eigenfunctions were determined,
the mean size of the residual is given by kkrk2l ­

P
n.N ln.

Thus if a masked face is written as f̃ ­ msxdfsxd, then
f̃ ­
NP

n­1
anmsxdcnsxd 1 r̃sxd , (A4)

with

r̃sxd ­
P

n.N
anmsxdcnsxd . (A5)

From this it follows that f in Eq. (13) can be expressed as

f ­ Ma 1 e , (A6)

where ay ­ sa1, . . . , aN d,

ek ­
P

n.N
ansck, cndsff̃g , (A7)

and M is given by Eq. (11). Thus from Eq. (13)

ã̃ãa ­ a 1 M21e , (A8)

and the accuracy of the approximation depends on kM21k,
which in turn is measured by the smallest eigenvalue
of M.

The form of M is given by Eq. (11). As above, we de-
note the fraction of unobscured pixels by p. The total
number of pixels is denoted T . Since scn, cnd ­ 1, we es-
timate c ­ Os1y

p
T d at a pixel location. The entries of M

are determined by sums of pT terms. In the application
at hand T ­ Os104d and p is not smaller than Os1022d.
It is therefore reasonable to expect that the central limit
theorem will apply to these sums.

From these preliminary considerations we can express
the symmetric matrix M as

M ­ pI 1 S , (A9)

where S is symmetric and has entries that are Gaussian
distributed and of mean zero. If s denotes an entry of
S, then

P ssd ­
1

s
p

2ppT
exp

2s2

s2pT
. (A10)

The variance, s2, is somewhat problematic. For a rela-

Fig. 11. Empirical probability densities P ssd of the off-diagonal
elements of matrix M, illustrating the Gaussian nature of the
distribution. The matrices were generated at the following pa-
rameters: curve a, p ­ 0.7, N ­ 100; curve b, p ­ 0.7, N ­ 50;
curve c, p ­ 0.1, N ­ 100.
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Table 1. Ratio of the Mean Size of the Diagonal
Elements to the Off-Diagonal Elements of

Matrix M, Divided by
p

pT
p

pT
p

pT , for Various
Values of p and N . Except When p øøø 1, the

Estimate That the Ratio Is Os
p

pT ds
p

pT ds
p

pT d Is Verified

N p Normalized Ratio

10 0.06 1.47
100 0.06 1.14
150 0.06 1.13
200 0.06 1.12

10 0.25 1.18
100 0.25 1.31
150 0.25 1.27
200 0.25 1.29

10 0.5 2.72
100 0.5 1.66
150 0.5 1.55
200 0.5 1.54

10 0.75 3.01
100 0.75 2.11
150 0.75 2.20
200 0.75 2.16

10 0.95 5.28
100 0.95 4.98
150 0.95 4.59
200 0.95 5.05

tively large index, cnsxd is locally sinusoidal. If we adopt
this as a hypothesis, it then follows that s2 ­ Os1yT 2d,
and Eq. (A10) takes the form

P ssd ­
p

Ty2pp exps2s2Typd . (A11)

This implies that the off-diagonal terms of M are Os
p

pyT d
and hence that the ratio of off-diagonal to on-diagonal
terms is Os1y

p
pyT d. A series of numerical experiments

confirms the Gaussian nature of the entries of S and also
that the estimate for the ratio is sound (see Fig. 11 and
Table 1).

According to Wigner’s semicircle theorem,12,13 a sym-
metric random matrix of order N whose entries have zero
mean and variance s2 has the eigenvalue density

rsld ­
1

2pNs2

p
4Nl2 2 m2 . (A12)

The theorem applies to S, and since eigenvalues of M are
p plus the eigenvalues of S, it follows that the eigenvalues
of M are such that
p 2 2
p

pNyT , m , p 1 2
p

pNyT . (A13)

If we take the vanishing of the smallest eigenvalue of M
as a criterion for the breakdown of the scheme, then this
occurs for

N ­ pTy4 . (A14)

In Figs. 3 and 4 we display the errors incurred for various
p for the cases of faces that do not belong to the original
ensemble and that do belong to the ensemble that deter-
mined the eigenfunctions cn. Given the rough nature of
the estimate, criterion (A14) is not bad. The two cases
differ as a result of the fact that kkrk2l is significantly
smaller when the faces belong to the ensemble that de-
termines the cn.
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