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Chapter 1

Fourier Series

1.1 Introduction and Choices to Make

Methods based on the Fourier transform are used in virtually all areas of engineering and science and by
virtually all engineers and scientists. For starters:

• Circuit designers

• Spectroscopists

• Crystallographers

• Anyone working in signal processing and communications

• Anyone working in imaging

I’m expecting that many fields and many interests will be represented in the class, and this brings up an
important issue for all of us to be aware of. With the diversity of interests and backgrounds present not
all examples and applications will be familiar and of relevance to all people. We’ll all have to cut each
other some slack, and it’s a chance for all of us to branch out. Along the same lines, it’s also important for
you to realize that this is one course on the Fourier transform among many possible courses. The richness
of the subject, both mathematically and in the range of applications, means that we’ll be making choices
almost constantly. Books on the subject do not look alike, nor do they look like these notes — even the
notation used for basic objects and operations can vary from book to book. I’ll try to point out when a
certain choice takes us along a certain path, and I’ll try to say something of what the alternate paths may
be.

The very first choice is where to start, and my choice is a brief treatment of Fourier series.1 Fourier analysis
was originally concerned with representing and analyzing periodic phenomena, via Fourier series, and later
with extending those insights to nonperiodic phenomena, via the Fourier transform. In fact, one way of
getting from Fourier series to the Fourier transform is to consider nonperiodic phenomena (and thus just
about any general function) as a limiting case of periodic phenomena as the period tends to infinity. A
discrete set of frequencies in the periodic case becomes a continuum of frequencies in the nonperiodic case,
the spectrum is born, and with it comes the most important principle of the subject:

Every signal has a spectrum and is determined by its spectrum. You can analyze the signal
either in the time (or spatial) domain or in the frequency domain.

1 Bracewell, for example, starts right off with the Fourier transform and picks up a little on Fourier series later.
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I think this qualifies as a Major Secret of the Universe.

All of this was thoroughly grounded in physical applications. Most often the phenomena to be studied
were modeled by the fundamental differential equations of physics (heat equation, wave equation, Laplace’s
equation), and the solutions were usually constrained by boundary conditions. At first the idea was to use
Fourier series to find explicit solutions.

This work raised hard and far reaching questions that led in different directions. It was gradually realized
that setting up Fourier series (in sines and cosines) could be recast in the more general framework of orthog-
onality, linear operators, and eigenfunctions. That led to the general idea of working with eigenfunction
expansions of solutions of differential equations, a ubiquitous line of attack in many areas and applications.
In the modern formulation of partial differential equations, the Fourier transform has become the basis
for defining the objects of study, while still remaining a tool for solving specific equations. Much of this
development depends on the remarkable relation between Fourier transforms and convolution, something
which was also seen earlier in the Fourier series days. In an effort to apply the methods with increasing
generality, mathematicians were pushed (by engineers and physicists) to reconsider how general the notion
of “function” can be, and what kinds of functions can be — and should be — admitted into the operating
theater of calculus. Differentiation and integration were both generalized in the service of Fourier analysis.

Other directions combine tools from Fourier analysis with symmetries of the objects being analyzed. This
might make you think of crystals and crystallography, and you’d be right, while mathematicians think of
number theory and Fourier analysis on groups. Finally, I have to mention that in the purely mathematical
realm the question of convergence of Fourier series, believe it or not, led G. Cantor near the turn of the
20th century to investigate and invent the theory of infinite sets, and to distinguish different sizes of infinite
sets, all of which led to Cantor going insane.

1.2 Periodic Phenomena

To begin the course with Fourier series is to begin with periodic functions, those functions which exhibit
a regularly repeating pattern. It shouldn’t be necessary to try to sell periodicity as an important physical
(and mathematical) phenomenon — you’ve seen examples and applications of periodic behavior in probably
(almost) every class you’ve taken. I would only remind you that periodicity often shows up in two varieties,
sometimes related, sometimes not. Generally speaking we think about periodic phenomena according to
whether they are periodic in time or periodic in space.

1.2.1 Time and space

In the case of time the phenomenon comes to you. For example, you stand at a fixed point in the ocean (or
on an electrical circuit) and the waves (or the electrical current) wash over you with a regular, recurring
pattern of crests and troughs. The height of the wave is a periodic function of time. Sound is another
example: “sound” reaches your ear as a longitudinal pressure wave, a periodic compression and rarefaction
of the air. In the case of space, you come to the phenomenon. You take a picture and you observe repeating
patterns.

Temporal and spatial periodicity come together most naturally in wave motion. Take the case of one
spatial dimension, and consider a single sinusoidal wave traveling along a string (for example). For such a
wave the periodicity in time is measured by the frequency ν, with dimension 1/sec and units Hz (Hertz =
cycles per second), and the periodicity in space is measured by the wavelength λ, with dimension length
and units whatever is convenient for the particular setting. If we fix a point in space and let the time
vary (take a video of the wave motion at that point) then successive crests of the wave come past that
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point ν times per second, and so do successive troughs. If we fix the time and examine how the wave is
spread out in space (take a snapshot instead of a video) we see that the distance between successive crests
is a constant λ, as is the distance between successive troughs. The frequency and wavelength are related
through the equation v = λν, where v is the speed of propagation — this is nothing but the wave version
of speed = distance/time. Thus the higher the frequency the shorter the wavelength, and the lower the
frequency the longer the wavelength. If the speed is fixed, like the speed of electromagnetic waves in a
vacuum, then the frequency determines the wavelength and vice versa; if you can measure one you can find
the other. For sound we identify the physical property of frequency with the perceptual property of pitch,
for light frequency is perceived as color. Simple sinusoids are the building blocks of the most complicated
wave forms — that’s what Fourier analysis is about.

1.2.2 More on spatial periodicity

Another way spatial periodicity occurs is when there is a repeating pattern or some kind of symmetry in a
spatial region and physically observable quantities associated with that region have a repeating pattern that
reflects this. For example, a crystal has a regular, repeating pattern of atoms in space; the arrangement of
atoms is called a lattice. The electron density distribution is then a periodic function of the spatial variable
(in R3) that describes the crystal. I mention this example because, in contrast to the usual one-dimensional
examples you might think of, here the function, in this case the electron density distribution, has three
independent periods corresponding to the three directions that describe the crystal lattice.

Here’s another example — this time in two dimensions — that is very much a natural subject for Fourier
analysis. Consider these stripes of dark and light:

No doubt there’s some kind of spatially periodic behavior going on in the respective images. Furthermore,
even without stating a precise definition, it’s reasonable to say that one of the patterns is “low frequency”
and that the others are “high frequency”, meaning roughly that there are fewer stripes per unit length
in the one than in the others. In two dimensions there’s an extra subtlety that we see in these pictures:
“spatial frequency”, however we ultimately define it, must be a vector quantity, not a number. We have
to say that the stripes occur with a certain spacing in a certain direction.

Such periodic stripes are the building blocks of general two-dimensional images. When there’s no color,
an image is a two-dimensional array of varying shades of gray, and this can be realized as a synthesis — a
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Fourier synthesis — of just such alternating stripes.

There are interesting perceptual questions in constructing images this way, and color is more complicated
still. Here’s a picture I got from Foundations of Vision by Brian Wandell, who is in the Psychology
Department here at Stanford.

The shades of blue and yellow are the same in the two pictures —the only a change is in the frequency.
The closer spacing “mixes” the blue and yellow to give a greenish cast. Here’s a question that I know has
been investigated but I don’t know the answer. Show someone blue and yellow stripes of a low frequency
and increase the frequency till they just start to see green. You get a number for that. Next, start with
blue and yellow stripes at a high frequency so a person sees a lot of green and then lower the frequency
till they see only blue and yellow. You get a number for that. Are the two numbers the same? Does the
orientation of the stripes make a difference?

1.3 Periodicity: Definitions, Examples, and Things to Come

To be certain we all know what we’re talking about, a function f(t) is periodic of period T if there is a
number T > 0 such that

f(t+ T ) = f(t)

for all t. If there is such a T then the smallest one for which the equation holds is called the fundamental
period of the function f .2 Every integer multiple of the fundamental period is also a period:

f(t + nT ) = f(t) , n = 0,±1,±2, . . .3

I’m calling the variable t here because I have to call it something, but the definition is general and is not
meant to imply periodic functions of time.

2 Sometimes when people say simply “period” they mean the smallest or fundamental period. (I usually do, for example.)
Sometimes they don’t. Ask them what they mean.

3 It’s clear from the geometric picture of a repeating graph that this is true. To show it algebraically, if n ≥ 1 then we see
inductively that f(t + nT ) = f(t + (n − 1)T + T ) = f(t + (n − 1)T ) = f(t). Then to see algebraically why negative multiples
of T are also periods we have, for n ≥ 1, f(t − nT ) = f(t − nT + nT ) = f(t).
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The graph of f over any interval of length T is one cycle. Geometrically, the periodicity condition means
that the shape of one cycle (any cycle) determines the graph everywhere; the shape is repeated over and
over. A homework problem asks you to turn this idea into a formula.

This is all old news to everyone, but, by way of example, there are a few more points I’d like to make.
Consider the function

f(t) = cos 2πt+ 1
2 cos 4πt ,

whose graph is shown below.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

t

f
(t

)

The individual terms are periodic with periods 1 and 1/2 respectively, but the sum is periodic with period 1:

f(t + 1) = cos 2π(t+ 1) + 1
2 cos 4π(t+ 1)

= cos(2πt+ 2π) + 1
2 cos(4πt+ 4π) = cos 2πt+ 1

2 cos 4πt = f(t) .

There is no smaller value of T for which f(t+ T ) = f(t). The overall pattern repeats every 1 second, but
if this function represented some kind of wave would you say it had frequency 1 Hz? Somehow I don’t
think so. It has one period but you’d probably say that it has, or contains, two frequencies, one cosine of
frequency 1 Hz and one of frequency 2 Hz.

The subject of adding up periodic functions is worth a general question:

• Is the sum of two periodic functions periodic?

I guess the answer is no if you’re a mathematician, yes if you’re an engineer, i.e., no if you believe in
irrational numbers and leave it at that, and yes if you compute things and hence work with approximations.
For example, cos t and cos(

√
2t) are each periodic, with periods 2π and 2π/

√
2 respectively, but the sum

cos t + cos(
√

2t) is not periodic.

Here are plots of f1(t) = cos t + cos 1.4t and of f2(t) = cos t + cos(
√

2t).
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(I’m aware of the irony in making a big show of computer plots depending on an irrational number when
the computer has to take a rational approximation to draw the picture.) How artificial an example is this?
Not artificial at all. We’ll see why, below.

1.3.1 The view from above

After years (centuries) of work, there are, in the end, relatively few mathematical ideas that underlie the
study of periodic phenomena. There are many details and subtle points, certainly, but these are of less
concern to us than keeping a focus on the bigger picture and using that as a guide in applications. We’ll
need the following.

1. The functions that model the simplest periodic behavior, i.e., sines and cosines. In practice, both in
calculations and theory, we’ll use the complex exponential instead of the sine and cosine separately.

2. The “geometry” of square integrable functions on a finite interval, i.e., functions for which
∫ b

a
|f(t)|2 dt <∞ .

3. Eigenfunctions of linear operators (especially differential operators).

The first point has been familiar to you since you were a kid. We’ll give a few more examples of sines and
cosines in action. The second point, at least as I’ve stated it, may not be so familiar — “geometry” of a
space of functions? — but here’s what it means in practice:

• Least squares approximation

• Orthogonality of the complex exponentials (and of the trig functions)
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I say “geometry” because what we’ll do and what we’ll say is analogous to Euclidean geometry as it is
expressed (especially for computational purposes) via vectors and dot products. Analogous, not identical.
There are differences between a space of functions and a space of (geometric) vectors, but it’s almost more a
difference of degree than a difference of kind, and your intuition for vectors in R2 or R3 can take you quite
far. Also, the idea of least squares approximation is closely related to the orthogonality of the complex
exponentials.

We’ll say less about the third point, though it will figure in our discussion of linear systems.4 Furthermore,
it’s the second and third points that are still in force when one wants to work with expansions in functions
other than sine and cosine.

1.3.2 The building blocks: a few more examples

The classic example of temporal periodicity is the harmonic oscillator, whether it’s a mass on a spring
(no friction) or current in an LC circuit (no resistance). The harmonic oscillator is treated in exhaustive
detail in just about every physics class. This is so because it is the only problem that can be treated in
exhaustive detail.

The state of the system is described by a single sinusoid, say of the form

A sin(2πνt+ φ) .

The parameters in this expression are the amplitude A, the frequency ν and the phase φ. The period of
this function is 1/ν, since

A sin(2πν
(
t +

1
ν

)
+ φ) = A sin(2πνt+ 2πν

1
ν

+ φ) = A sin(2πνt+ 2π + φ) = A sin(2πνt+ φ) .

The classic example of spatial periodicity, the example that started the whole subject, is the distribution
of heat in a circular ring. A ring is heated up, somehow, and the heat then distributes itself, somehow,
through the material. In the long run we expect all points on the ring to be of the same temperature, but
they won’t be in the short run. At each fixed time, how does the temperature vary around the ring?

In this problem the periodicity comes from the coordinate description of the ring. Think of the ring as a
circle. Then a point on the ring is determined by an angle θ and quantities which depend on position are
functions of θ. Since θ and θ + 2π are the same point on the circle, any continuous function describing a
physical quantity on the circle, e.g., temperature, is a periodic function of θ with period 2π.

The distribution of temperature is not given by a simple sinusoid. It was Fourier’s hot idea to consider a
sum of sinusoids as a model for the temperature distribution:

N∑

n=1

An sin(nθ + φn) .

The dependence on time is in the coefficients An. We’ll study this problem more completely later, but
there are a few points to mention now.

Regardless of the physical context, the individual terms in a trigonometric sum such as the one above are
called harmonics, terminology that comes from the mathematical representation of musical pitch — more

4 It is the role of complex exponentials as eigenfunctions that explains why you would expect to take only integer multiples
of the fundamental period in forming sums of periodic functions.
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on this in a moment. The terms contribute to the sum in varying amplitudes and phases, and these can
have any values. The frequencies of the terms, on the other hand, are integer multiples of the fundamental
frequency 1/2π. Because the frequencies are integer multiples of the fundamental frequency, the sum is
also periodic, and the period is 2π. The term An sin(nθ + φn) has period 2π/n, but the whole sum can’t
have a shorter cycle than the longest cycle that occurs, and that’s 2π. We talked about just this point
when we first discussed periodicity.5

1.3.3 Musical pitch and tuning

Musical pitch and the production of musical notes is a periodic phenomenon of the same general type
as we’ve been considering. Notes can be produced by vibrating strings or other objects that can vibrate
regularly (like lips, reeds, or the bars of a xylophone). The engineering problem is how to tune musical
instruments. The subject of tuning has a fascinating history, from the “natural tuning” of the Greeks,
based on ratios of integers, to the theory of the “equal tempered scale”, which is the system of tuning used
today. That system is based on 21/12.

There are 12 notes in the equal tempered scale, going from any given note to the same note an octave
up, and two adjacent notes have frequencies with ratio 21/12. If an A of frequency 440 Hz (concert A) is
described by

A = cos(2π · 440 t) ,

then 6 notes up from A in a well tempered scale is a D] given by

D] = cos(2π · 440
√

2 t) .

(The notes in the scale are cos(2π · 440 · 2n/12t) from n = 0 to n = 12.) Playing the A and the D] together
gives essentially the signal we had earlier, cos t+cos 21/2t. I’ll withhold judgment whether or not it sounds
any good.

Of course, when you tune a piano you don’t tighten the strings irrationally. The art is to make the right
approximations. To read more about this, see, for example

http://www.precisionstrobe.com/

To read more about tuning in general try

http://www.wikipedia.org/wiki/Musical tuning

Here’s a quote from the first reference describing the need for well-tempered tuning:

Two developments occurred in music technology which necessitated changes from the just
toned temperament. With the development of the fretted instruments, a problem occurs when
setting the frets for just tuning, that octaves played across two strings around the neck would
produce impure octaves. Likewise, an organ set to a just tuning scale would reveal chords
with unpleasant properties. A compromise to this situation was the development of the mean
toned scale. In this system several of the intervals were adjusted to increase the number of
usable keys. With the evolution of composition technique in the 18th century increasing the
use of harmonic modulation a change was advocated to the equal tempered scale. Among these

5 There is another reason that only integer multiples of the fundamental frequency come in. It has to do with the harmonics
being eigenfunctions of a differential operator, and the boundary conditions that go with the problem.
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advocates was J. S. Bach who published two entire works entitled The Well-tempered Clavier.
Each of these works contain 24 fugues written in each of twelve major and twelve minor keys
and demonstrated that using an equal tempered scale, music could be written in, and shifted
to any key.

1.4 It All Adds Up

From simple, single sinusoids we can build up much more complicated periodic functions by taking sums.
To highlight the essential ideas it’s convenient to standardize a little and consider functions with period 1.
This simplifies some of the writing and it will be easy to modify the formulas if the period is not 1. The
basic function of period 1 is sin 2πt, and so the Fourier-type sum we considered briefly in the previous
lecture looks like

N∑

n=1

An sin(2πnt+ φn) .

This form of a general trigonometric sum has the advantage of displaying explicitly the amplitude and
phase of each harmonic, but it turns out to be somewhat awkward to calculate with. It’s more common
to write a general trigonometric sum as

N∑

n=1

(an cos(2πnt) + bn sin(2πnt)) ,

and, if we include a constant term (n = 0), as

a0

2
+

N∑

n=1

(an cos(2πnt) + bn sin(2πnt)) .

The reason for writing the constant term with the fraction 1/2 is because, as you will check in the homework,
it simplifies still another expression for such a sum.

In electrical engineering the constant term is often referred to as the DC component as in “direct current”.
The other terms, being periodic, “alternate”, as in AC. Aside from the DC component, the harmonics
have periods 1, 1/2, 1/3, . . . , 1/N , respectively, or frequencies 1, 2, 3, . . . , N . Because the frequencies of the
individual harmonics are integer multiples of the lowest frequency, the period of the sum is 1.

Algebraic work on such trigonometric sums is made incomparably easier if we use complex exponentials to
represent the sine and cosine.6 I remind you that

cos t =
eit + e−it

2
, sin t =

eit − e−it

2i
.

Hence

cos(2πnt) =
e2πint + e−2πint

2
, sin(2πnt) =

e2πint − e−2πint

2i
.

Using this, the sum
a0

2
+

N∑

n=1

(an cos(2πnt) + bn sin(2πnt))

6 See the appendix on complex numbers where there is a discussion of complex exponentials, how they can be used without
fear to represent real signals, and an answer to the question of what is meant by a “negative frequency”.
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can be written as
N∑

n=−N

cne
2πint .

Sorting out how the a’s, b’s, and c’s are related will be left as a problem. In particular, you’ll get c0 = a0/2,
which is the reason we wrote the constant term as a0/2 in the earlier expression.7

In this final form of the sum, the coefficients cn are complex numbers, and they satisfy

c−n = cn .

Notice that when n = 0 we have
c0 = c0 ,

which implies that c0 is a real number; this jibes with c0 = a0/2. For any value of n the magnitudes of cn
and c−n are equal:

|cn| = |c−n| .

The (conjugate) symmetry property, c−n = cn, of the coefficients is important. To be explicit: if the signal
is real then the coefficients have to satisfy it, since f(t) = f(t) translates to

N∑

n=−N

cne
2πint =

N∑

n=−N

cne2πint =
N∑

n=−N

cn e2πint =
N∑

n=−N

cn e
−2πint ,

and if we equate like terms we get c−n = cn. Conversely, suppose the relation is satisfied. For each n we
can group cne2πint with c−ne

−2πint, and then

cne
2πint + c−ne

−2πint = cne
2πint + c̄ne2πint = 2 Re

(
cne

2πint
)
.

Therefore the sum is real:

N∑

n=−N

cne
2πint =

N∑

n=0

2 Re
(
cne

2πint
)

= 2 Re

{
N∑

n=0

cne
2πint

}
.

1.5 Lost at c

Suppose we have a complicated looking periodic signal; you can think of one varying in time but, again
and always, the reasoning to follow applies to any sort of one-dimensional periodic phenomenon. We can
scale time to assume that the pattern repeats every 1 second. Call the signal f(t). Can we express f(t) as
a sum?

f(t) =
N∑

n=−N

cne
2πint

In other words, the unknowns in this expression are the coefficients cn, and the question is can we solve
for these coefficients?

7 When I said that part of your general math know-how should include whipping around sums, this expression in terms of
complex exponentials was one of the examples I was thinking of.
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Here’s a direct approach. Let’s take the coefficient ck for some fixed k. We can isolate it by multiplying
both sides by e−2πikt:

e−2πiktf(t) = e−2πikt
N∑

n=−N

cne
2πint

= · · ·+ e−2πiktcke
2πikt + · · · = · · ·+ ck + · · ·

Thus

ck = e−2πiktf(t) −
N∑

n=−N,n 6=k

cne
−2πikte2πint = e−2πiktf(t) −

N∑

n=−N,n 6=k

cne
2πi(n−k)t .

We’ve pulled out the coefficient ck, but the expression on the right involves all the other unknown coeffi-
cients. Another idea is needed, and that idea is integrating both sides from 0 to 1. (We take the interval
from 0 to 1 as “base” period for the function. Any interval of length 1 would work — that’s periodicity.)

Just as in calculus, we can evaluate the integral of a complex exponential by
∫ 1

0
e2πi(n−k)t dt =

1
2πi(n − k)

e2πi(n−k)t
]t=1

t=0

=
1

2πi(n − k)
(e2πi(n−k) − e0) =

1
2πi(n − k)

(1 − 1) = 0 .

Note that n 6= k is needed here.

Since the integral of the sum is the sum of the integrals, and the coefficients cn come out of each integral,
all of the terms in the sum integrate to zero and we have a formula for the k-th coefficient:

ck =
∫ 1

0
e−2πiktf(t) dt .

Let’s summarize and be careful to note what we’ve done here, and what we haven’t done. We’ve shown
that if we can write a periodic function f(t) of period 1 as a sum

f(t) =
N∑

n=−N

cne
2πint ,

then the coefficients cn must be given by

cn =
∫ 1

0
e−2πintf(t) dt .

We have not shown that every periodic function can be expressed this way.

By the way, in none of the preceding calculations did we have to assume that f(t) is a real signal. If,
however, we do assume that f(t) is real, then let’s see how the formula for the coefficients jibes with
cn = c−n. We have

cn =
(∫ 1

0
e−2πintf(t) dt

)
=
∫ 1

0
e−2πint f(t)dt

=
∫ 1

0
e2πintf(t) dt (because f(t) is real, as are t and dt)

= c−n (by definition of cn)
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The cn are called the Fourier coefficients of f(t), because it was Fourier who introduced these ideas into
mathematics and science (but working with the sine and cosine form of the expression). The sum

N∑

n=−N

cne
2πint

is called a (finite) Fourier series.

If you want to be mathematically hip and impress your friends at cocktail parties, use the notation

f̂(n) =
∫ 1

0
e−2πintf(t) dt

for the Fourier coefficients. Always conscious of social status, I will use this notation.

Note in particular that the 0-th Fourier coefficient is the average value of the function:

f̂(0) =
∫ 1

0
f(t) dt .

Also note that because of periodicity of f(t), any interval of length 1 will do to calculate f̂(n). Let’s check
this. To integrate over an interval of length 1 is to integrate from a to a+ 1, where a is any number. Let’s
compute how this integral varies as a function of a.

d

da

(∫ a+1

a
e−2πintf(t) dt

)
= e−2πin(a+1)f(a+ 1) − e−2πinaf(a)

= e−2πinae−2πinf(a+ 1) − e−2πinaf(a)

= e−2πinaf(a)− e−2πinaf(a) (using e−2πin = 1 and f(a+ 1) = f(a))

= 0 .

In other words, the integral ∫ a+1

a
e−2πintf(t) dt

is independent of a. So in particular,
∫ a+1

a
e−2πintf(t) dt =

∫ 1

0
e−2πintf(t) dt = f̂(n) .

A common instance of this is

f̂(n) =
∫ 1/2

−1/2
e−2πintf(t) dt .

There are times when such a change is useful.

Finally note that for a given function some coefficients may well be zero. More completely: There may be
only a finite number of nonzero coefficients; or maybe all but a finite number of coefficients are nonzero;
or maybe none of the coefficients are zero; or there may be an infinite number of nonzero coefficients but
also an infinite number of coefficients that are zero — I think that’s everything. What’s interesting, and
important for some applications, is that under some general assumptions one can say something about the
size of the coefficients. We’ll come back to this.
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1.6 Period, Frequencies, and Spectrum

We’ll look at some examples and applications in a moment. First I want to make a few more general
observations. In the preceding discussion I have more often used the more geometric term period instead
of the more physical term frequency. It’s natural to talk about the period for a Fourier series representation
of f(t),

f(t) =
∞∑

n=−∞
f̂(n)e2πint .

The period is 1. The function repeats according to f(t + 1) = f(t) and so do all the individual terms,
though the terms for n 6= 1 have the strictly shorter period 1/n.8 As mentioned earlier, it doesn’t seem
natural to talk about “the frequency” (should it be 1 Hz?). That misses the point. Rather, being able to
write f(t) as a Fourier series means that it is synthesized from many harmonics, many frequencies, positive
and negative, perhaps an infinite number. The set of frequencies present in a given periodic signal is the
spectrum of the signal. Note that it’s the frequencies, like ±2, ±7, ±325, that make up the spectrum, not
the values of the coefficients f̂(±2), f̂(±7), f̂ (±325).

Because of the symmetry relation f̂ (−n) = f̂(n), the coefficients f̂(n) and f̂(−n) = 0 are either both zero
or both nonzero. Are numbers n where f̂(n) = 0 considered to be part of the spectrum? I’d say yes, with
the following gloss: if the coefficients are all zero from some point on, say f̂(n) = 0 for |n| > N , then
it’s common to say that the signal has no spectrum from that point, or that the spectrum of the signal is
limited to the points between −N and N . One also says in this case that the bandwidth is N (or maybe
2N depending to whom you’re speaking) and that the signal is bandlimited.

Let me also point out a mistake that people sometimes make when thinking too casually about the Fourier
coefficients. To represent the spectrum graphically people sometimes draw a bar graph where the heights
of the bars are the coefficients. Something like:

1 2 3 40−1−2−3−4

Why is this a mistake? Because, remember, the coefficients f̂(0), f̂(±1), f̂(±2), . . . are complex numbers
— you can’t draw them as a height in a bar graph. (Except for f̂ (0) which is real because it’s the
average value of f(t).) What you’re supposed to draw to get a picture like the one above is a bar graph of
|f̂(0)|2, |f̂(±1)|2, |f̂(±2)|2, . . ., i.e., the squares of the magnitudes of the coefficients. The square magnitudes
of the coefficient |f̂(n)|2 can be identified as the energy of the (positive and negative) harmonics e±2πint.
(More on this later.) These sorts of plots are what you see produced by a “spectrum analyzer”. One could

8 By convention, here we sort of ignore the constant term c0 when talking about periods or frequencies. It’s obviously periodic
of period 1, or any other period for that matter.
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also draw just the magnitudes |f̂(0)|, |f̂(±1)|, |f̂(±2)|, . . ., but it’s probably more customary to consider
the squares of the magnitudes.

The sequence of squared magnitudes |f̂(n)|2 is called the power spectrum or the energy spectrum (different
names in different fields). A plot of the power spectrum gives you a sense of how the coefficients stack up,
die off, whatever, and it’s a way of comparing two signals. It doesn’t give you any idea of the phases of the
coefficients. I point all this out only because forgetting what quantities are complex and plotting a graph
anyway is an easy mistake to make (I’ve seen it, and not only in student work but in an advanced text on
quantum mechanics).

The case when all the coefficients are real is when the signal is real and even. For then

f̂ (n) = f̂(−n) =
∫ 1

0
e−2πi(−n)tf(t) dt =

∫ 1

0
e2πintf(t) dt

= −
∫ −1

0
e−2πinsf(−s) ds (substituting t = −s and changing limits accordingly)

=
∫ 0

−1
e−2πinsf(s) ds (flipping the limits and using that f(t) is even)

= f̂(n) (because you can integrate over any period, in this case from −1 to 0)

Uniting the two ends of the calculation we get

f̂(n) = f̂(n),

hence f̂(n) is real. Hidden in the middle of this calculation is the interesting fact that if f is even so is f̂ ,
i.e.,

f(−t) = f(t) ⇒ f̂(−n) = f̂(n).

It’s good to be attuned to these sorts of symmetry results; we’ll see their like again for the Fourier transform.
What happens if f(t) is odd, for example?

1.6.1 What if the period isn’t 1?

Changing to a base period other than 1 does not present too stiff a challenge, and it brings up a very
important phenomenon. If we’re working with functions f(t) with period T , then

g(t) = f(Tt)

has period 1. Suppose we have

g(t) =
N∑

n=−N

cne
2πint,

or even, without yet addressing issues of convergence, an infinite series

g(t) =
∞∑

n=−∞
cne

2πint.

Write s = Tt, so that g(t) = f(s). Then

f(s) = g(t) =
∞∑

n=−∞
cne

2πint =
∞∑

n=−∞
cne

2πins/T
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The harmonics are now e2πins/T .

What about the coefficients? If

ĝ(n) =
∫ 1

0

e−2πintg(t) dt

then, making the same change of variable s = Tt, the integral becomes

1
T

∫ T

0
e−2πins/T f(s) ds .

To wrap up, calling the variable t again, the Fourier series for a function f(t) of period T is

∞∑

n=−∞
cne

2πint/T

where the coefficients are given by

cn =
1
T

∫ T

0
e−2πint/Tf(t) dt .

As in the case of period 1, we can integrate over any interval of length T to find cn. For example,

cn =
1
T

∫ T/2

−T/2

e−2πint/T f(t) dt .

(I didn’t use the notation f̂(n) here because I’m reserving that for the case T = 1 to avoid any extra
confusion — I’ll allow that this might be too fussy.)

Remark As we’ll see later, there are reasons to consider the harmonics to be

1√
T
e2πint/T

and the Fourier coefficients for nonzero n then to be

cn =
1√
T

∫ T

0
e−2πint/T f(t) dt .

This makes no difference in the final formula for the series because we have two factors of 1/
√
T coming

in, one from the differently normalized Fourier coefficient and one from the differently normalized complex
exponential.

Time domain / frequency domain reciprocity Here’s the phenomenon that this calculation illus-
trates. As we’ve just seen, if f(t) has period T and has a Fourier series expansion then

f(t) =
∞∑

n=−∞
cne

2πint/T .

We observe from this an important reciprocal relationship between properties of the signal in the time
domain (if we think of the variable t as representing time) and properties of the signal as displayed in the
frequency domain, i.e., properties of the spectrum. In the time domain the signal repeats after T seconds,
while the points in the spectrum are 0, ±1/T , ±2/T , . . . , which are spaced 1/T apart. (Of course for
period T = 1 the spacing in the spectrum is also 1.) Want an aphorism for this?
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The larger the period in time the smaller the spacing of the spectrum. The smaller the period
in time, the larger the spacing of the spectrum.

Thinking, loosely, of long periods as slow oscillations and short periods as fast oscillations, convince yourself
that the aphorism makes intuitive sense. If you allow yourself to imagine letting T → ∞ you can allow
yourself to imagine the discrete set of frequencies becoming a continuum of frequencies.

We’ll see many instances of this aphorism. We’ll also have other such aphorisms — they’re meant to help
you organize your understanding and intuition for the subject and for the applications.

1.7 Two Examples and a Warning

All this is fine, but does it really work? That is, given a periodic function can we expect to write it as a
sum of exponentials in the way we have described? Let’s look at an example.

Consider a square wave of period 1, such as illustrated below.

t

f(t)

0

1

1 2

−1

−1−2

· · ·· · ·

Let’s calculate the Fourier coefficients. The function is

f(t) =

{
+1 0 ≤ t < 1

2

−1 1
2 ≤ t < 1

and then extended to be periodic of period 1. The zeroth coefficient is the average value of the function
on 0 ≤ t ≤ 1. Obviously this is zero. For the other coefficients we have

f̂ (n) =
∫ 1

0
e−2πintf(t) dt

=
∫ 1/2

0
e−2πint dt −

∫ 1

1/2
e−2πint dt

=
[
− 1

2πin
e−2πint

]1/2

0
−
[
− 1

2πin
e−2πint

]1
1/2

=
1

πin

(
1 − e−πin

)

We should thus consider the infinite Fourier series

∑

n 6=0

1
πin

(
1 − e−πin

)
e2πint
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We can write this in a simpler form by first noting that

1 − e−πin =

{
0 n even
2 n odd

so the series becomes ∑

n odd

2
πin

e2πint .

Now combine the positive and negative terms and use

e2πint − e−2πint = 2i sin2πnt .

Substituting this into the series and writing n = 2k + 1, our final answer is

4
π

∞∑

k=0

1
2k + 1

sin 2π(2k+ 1)t .

(Note that the function f(t) is odd and this jibes with the Fourier series having only sine terms.)

What kind of series is this? In what sense does it converge, if at all, and to what does it converge, i.e, can
we represent f(t) as a Fourier series through

f(t) =
4
π

∞∑

k=0

1
2k + 1

sin 2π(2k+ 1)t ?

The graphs below are sums of terms up to frequencies 9 and 39, respectively.
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We see a strange phenomenon. We certainly see the general shape of the square wave, but there is trouble
at the corners. Clearly, in retrospect, we shouldn’t expect to represent a function like the square wave by
a finite sum of complex exponentials. Why? Because a finite sum of continuous functions is continuous
and the square wave has jump discontinuities. Thus, for maybe the first time in your life, one of those
theorems from calculus that seemed so pointless at the time makes an appearance: The sum of two (or
a finite number) of continuous functions is continuous. Whatever else we may be able to conclude about
a Fourier series representation for a square wave, it must contain arbitrarily high frequencies. We’ll say
what else needs to be said next time.

I picked the example of a square wave because it’s easy to carry out the integrations needed to find the
Fourier coefficients. However, it’s not only a discontinuity that forces high frequencies. Take a triangle
wave, say defined by

f(t) =

{
1
2 + t −1

2 ≤ t ≤ 0
1
2 − t 0 ≤ t ≤ +1

2

and then extended to be periodic of period 1. This is continuous. There are no jumps, though there are
corners. (Draw your own graph!) A little more work than for the square wave shows that we want the
infinite Fourier series

1
4 +

∞∑

k=0

2
π2(2k + 1)2

cos(2π(2k+ 1)t)

I won’t reproduce the calculations in public; the calculation of the coefficients needs integration by parts.

Here, too, there are only odd harmonics and there are infinitely many. This time the series involves only
cosines, a reflection of the fact that the triangle wave is an even function. Note also that the triangle
wave the coefficients decrease like 1/n2 while for a square wave they decrease like 1/n. I alluded to this
sort of thing, above (the size of the coefficients); it has exactly to do with the fact that the square wave
is discontinuous while the triangle wave is continuous but its derivative is discontinuous. So here is yet
another occurrence of one of those calculus theorems: The sines and cosines are differentiable to all orders,
so any finite sum of them is also differentiable. We therefore should not expect a finite Fourier series to
represent the triangle wave, which has corners.



1.7 Two Examples and a Warning 19

How good a job do the finite sums do in approximating the triangle wave? I’ll let you use your favorite
software to plot some approximations. You will observe something different from what happened with the
square wave. We’ll come back to this, too.
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One thing common to these two examples might be stated as another aphorism:

It takes high frequencies to make sharp corners.

This particular aphorism is important, for example, in questions of filtering, a topic we’ll consider in detail
later:

• Filtering means cutting off.
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• Cutting off means sharp corners.

• Sharp corners means high frequencies.

This comes up in computer music, for example. If you’re not careful to avoid discontinuities in filtering
the signal (the music) you’ll hear clicks — symptoms of high frequencies — when the signal is played back.
A sharp cutoff will inevitably yield an unsatisfactory result, so you have to design your filters to minimize
this problem.

Why do instruments sound different? More precisely, why do two instruments sound different even
when they are playing the same note? It’s because the note they produce is not a single sinusoid of a single
frequency, not the A at 440 Hz, for example, but a sum (literally) of many sinusoids, each contributing a
different amount. The complex wave that reaches your ear is the combination of many ingredients. Two
instruments sound different because of the harmonics they produce and because of the strength of the
harmonics.

Shown below are approximately the waveforms (what you’d see on an oscilloscope) for a bassoon and a
flute both playing the same note and the power spectrum of the respective waves — what you’d see on a
spectrum analyzer, if you’ve ever worked with one. The height of the bars corresponds to the energy of the
individual harmonics, as explained above. Only the positive harmonics are displayed here. The pictures
are highly simplified; in reality a spectrum analyzer would display hundreds of frequencies.

The spectral representation — the frequency domain — gives a much clearer explanation of why the
instruments sound different than does the time domain signal. You can see how the ingredients differ and
by how much. The spectral representation also offers many opportunities for varieties of signal processing
that would not be so easy to do or even to imagine in the time domain. It’s easy to imagine pushing some
bars down, pulling others up, or eliminating blocks, operations whose actions in the time domain are far
from clear.
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As an aside, I once asked Julius Smith, an expert in computer music here at Stanford, why orchestras tune
to an oboe playing an A. I thought it might be because the oboe produces a very pure note, mostly a
perfect 440 with very few other harmonics, and this would be desirable. In fact, it seems just the opposite
is the case. The spectrum of the oboe is very rich, plenty of harmonics. This is good, apparently, because
whatever instrument you happen to play, there’s a little bit of you in the oboe and vice versa. That helps
you tune.

For a detailed discussion of the spectra of musical instruments see

http://epubs.siam.org/sam-bin/getfile/SIREV/articles/38228.pdf

1.8 The Math, the Majesty, the End

In previous sections, we worked with the building blocks of periodic functions — sines and cosines and
complex exponentials — and considered general sums of such “harmonics”. We also showed that if a
periodic function f(t) — period 1, as a convenient normalization — can be written as a sum

f(t) =
N∑

n=−N

cne
2πint ,

then the coefficients are given by the integral

cn =
∫ 1

0
e−2πintf(t) dt .

This was a pretty straightforward derivation, isolating cn and then integrating. When f(t) is real, as in
many applications, one has the symmetry relation c−n = cn. In a story we’ll spin out over the rest of the
quarter, we think of this integral as some kind of transform of f , and use the notation

f̂(n) =
∫ 1

0

e−2πintf(t) dt

to indicate this relationship.9

At this stage, we haven’t done much. We have only demonstrated that if it is possible to write a periodic
function as a sum of simple harmonics, then it must be done in the way we’ve just said. We also have
some examples that indicate the possible difficulties in this sort of representation; an infinite series may be
required and then convergence is certainly an issue. But we’re about to do a lot. We’re about to answer
the question of how far the idea can be pushed: when can a periodic signal be written as a sum of simple
harmonics?

1.8.1 Square integrable functions

There’s much more to the structure of the Fourier coefficients and to the idea of writing a periodic function
as a sum of complex exponentials than might appear from our simple derivation. There are:

9 Notice that although f(t) is defined for a continuous variable t, the transformed function f̂ is defined on the integers. There
are reasons for this that are much deeper than just solving for the unknown coefficients as we did last time.



22 Chapter 1 Fourier Series

• Algebraic and geometric aspects

◦ The algebraic and geometric aspects are straightforward extensions of the algebra and geometry
of vectors in Euclidean space. The key ideas are the inner product (dot product), orthogonality,
and norm. We can pretty much cover the whole thing. I remind you that your job here is
to transfer your intuition from geometric vectors to a more general setting where the vectors
are signals; at least accept that the words transfer in some kind of meaningful way even if the
pictures do not.

• Analytic aspects

◦ The analytic aspects are not straightforward and require new ideas on limits and on the nature
of integration. The aspect of “analysis” as a field of mathematics distinct from other fields is its
systematic use of limiting processes. To define a new kind of limit, or to find new consequences
of taking limits (or trying to), is to define a new area of analysis. We really can’t cover the
whole thing, and it’s not appropriate to attempt to. But I’ll say a little bit here, and similar
issues will come up when we define the Fourier transform.

1.8.2 The punchline revealed

Let me introduce the notation and basic terminology and state what the important results are now, so you
can see the point. Then I’ll explain where these ideas come from and how they fit together.

Once again, to be definite we’re working with periodic functions of period 1. We can consider such a
function already to be defined for all real numbers, and satisfying the identity f(t + 1) = f(t) for all t,
or we can consider f(t) to be defined initially only on the interval from 0 to 1, say, and then extended to
be periodic and defined on all of R by repeating the graph (recall the periodizing operation in the first
problem set). In either case, once we know what we need to know about the function on [0, 1] we know
everything. All of the action in the following discussion takes place on the interval [0, 1].

When f(t) is a signal defined on [0, 1] the energy of the signal is defined to be the integral
∫ 1

0
|f(t)|2 dt .

This definition of energy comes up in other physical contexts also; we don’t have to be talking about
functions of time. (In some areas the integral of the square is identified with power.) Thus

∫ 1

0
|f(t)|2 dt <∞

means that the signal has finite energy, a reasonable condition to expect or to impose.

I’m writing the definition in terms of the integral of the absolute value squared |f(t)|2 rather than just f(t)2

because we’ll want to consider the definition to apply to complex valued functions. For real-valued functions
it doesn’t matter whether we integrate |f(t)|2 or f(t)2.

One further point before we go on. Although our purpose is to use the finite energy condition to work with
periodic functions, and though you think of periodic functions as defined for all time, you can see why we
have to restrict attention to one period (any period). An integral of a periodic function from −∞ to ∞,
for example ∫ ∞

−∞
sin2 t dt

does not exist (or is infinite).
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For mathematical reasons, primarily, it’s best to take the square root of the integral, and to define

‖f‖ =
( ∫ 1

0
|f(t)|2 dt

)1/2

With this definition one has, for example, that

‖αf‖ = ‖α‖ ‖f‖ ,

whereas if we didn’t take the square root the constant would come out to the second power — see below.
One can also show, though the proof is not so obvious (see Section 1.10), that the triangle inequality holds:

‖f + g‖ ≤ ‖f‖ + ‖g‖ .

Write that out in terms of integrals if you think it’s obvious:
(∫ 1

0
|f(t) + g(t)|2 dt

)1/2
≤
( ∫ 1

0
|f(t)|2 dt

)1/2
+
( ∫ 1

0
|g(t)|2 dt

)1/2
.

We can measure the distance between two functions via

‖f − g‖ =
( ∫ 1

0
|f(t)− g(t)|2 dt

)1/2
.

Then ‖f − g‖ = 0 if and only if f = g.

Now get this: The length of a vector is the square root of the sum of the squares of
its components. This norm defined by an integral is the continuous analog of that, and so
is the definition of distance.10 We’ll make the analogy even closer when we introduce the
corresponding dot product.

We let L2([0, 1]) be the set of functions f(t) on [0, 1] for which
∫ 1

0
|f(t)|2 dt <∞ .

The “L” stands for Lebesgue, the French mathematician who introduced a new definition of the integral
that underlies the analytic aspects of the results we’re about to talk about. His work was around the turn of
the 20-th century. The length we’ve just introduced, ‖f‖, is called the square norm or the L2([0, 1])-norm
of the function. When we want to distinguish this from other norms that might (and will) come up, we
write ‖f‖2.

It’s true, you’ll be relieved to hear, that if f(t) is in L2([0, 1]) then the integral defining its Fourier coefficients
exists. See Section 1.10 for this. The complex integral

∫ 1

0
e−2πintf(t) dt

can be written in terms of two real integrals by writing e−2πint = cos 2πnt − i sin 2πnt so everything can
be defined and computed in terms of real quantities. There are more things to be said on complex-valued
versus real-valued functions in all of this, but it’s best to put that off just now.

Here now is the life’s work of several generations of mathematicians, all dead, all still revered:

10 If we’ve really defined a “length” then scaling f(t) to αf(t) should scale the length of f(t). If we didn’t take the square
root in defining ‖f‖ the length wouldn’t scale to the first power.
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Let f(t) be in L2([0, 1]) and let

f̂(n) =
∫ 1

0

e−2πintf(t) dt, n = 0,±1,±2, . . .

be its Fourier coefficients. Then

1. For any N the finite sum
N∑

n=−N

f̂(n)e2πint

is the best approximation to f(t) in L2([0, 1]) by a trigonometric polynomial11 of degree
N . (You can think of this as the least squares approximation. I’ll explain the phrase “of
degree N” in Section 1.12, where we’ll prove the statement.)

2. The complex exponentials e2πint, (n = 0,±1,±2, . . .) form a basis for L2([0, 1]), and the
partial sums in statement 1 converge to f(t) in L2-distance as N → ∞. This means that

lim
N→∞

∥∥∥∥∥
N∑

n=−N

f̂ (n)e2πint − f(t)

∥∥∥∥∥ = 0 .

We write

f(t) =
∞∑

n=−∞
f̂(n)e2πint ,

where the equals sign is interpreted in terms of the limit.
Once we introduce the inner product on L2([0, 1]) a more complete statement will be that
the e2πint form an orthonormal basis. In fact, it’s only the orthonormality that we’ll
establish.

3. The energy of f(t) can be calculated from its Fourier coefficients:
∫ 1

0
|f(t)|2 dt =

∞∑

n=−∞
|f̂(n)|2 .

This is known, depending on to whom you are speaking, as Rayleigh’s identity or as
Parseval’s theorem.

To round off the picture, let me add a fourth point that’s a sort of converse to items two and
three. We won’t use this, but it ties things up nicely.

4. If {cn : n = 0,±1,±2, . . .} is any sequence of complex numbers for which

∞∑

n=−∞
|cn|2 <∞ ,

then the function

f(t) =
∞∑

n=−∞
cne

2πint

is in L2([0, 1]) (meaning the limit of the partial sums converges to a function in L2([0, 1]))
and cn = f̂(n).

This last result is often referred to as the Riesz-Fischer theorem.

11 A trigonometric polynomial is a finite sum of complex exponentials with the same fundamental frequency.
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And the point of this is, again . . . One way to think of the formula for the Fourier coefficients is as
passing from the “time domain” to the “frequency domain”: From a knowledge of f(t) (the time domain) we
produce a portrait of the signal in the frequency domain, namely the (complex) coefficients f̂ (n) associated
with the (complex) harmonics e2πint. The function f̂(n) is defined on the integers, n = 0,±1,±2, . . ., and
the equation

f(t) =
∞∑

n=−∞
f̂(n)e2πint ,

recovers the time domain representation from the frequency domain representation. At least it does in the
L2 sense of equality. The extent to which equality holds in the usual, pointwise sense (plug in a value of t
and the two sides agree) is a question we will address later.

The magnitude |f̂(n)|2 is the energy contributed by the n-th harmonic. We really have equal contributions
from the “positive” and “negative” harmonics e2πint and e−2πint since |f̂(−n)| = |f̂(n)| (note the absolute
values here). As you will show in the first problem set, in passing between the complex exponential form

∞∑

n=−∞
cne

2πint , cn = f̂(n)

and the sine-cosine form
1
2a0 +

∞∑

n=1

an cos 2πnt +
∞∑

n=1

bn sin 2πnt

of the Fourier series, we have |cn| = 1
2

√
a2

n + b2n, so f̂(n) and f̂(−n) together contribute a total energy of√
a2

n + b2n.

Rayleigh’s identity says that we can compute the energy of the signal by adding up the energies of the
individual harmonics. That’s quite a satisfactory state of affairs — and an extremely useful result. You’ll
see an example of its use in the first problem set.

Here are a few more general comments on these results.

• The first point, on best approximation in L2([0, 1]) by a finite sum, is a purely algebraic result. This
is of practical value since, in any real application you’re always making finite approximations, and
this result gives guidance on how well you’re doing. We’ll have a more precise statement (in Appendix
3) after we set up the necessary ingredients on inner products and orthogonality.

Realize that this gives an alternative characterization of the Fourier coefficients. Originally we said: if
we can express f(t) as a sum of complex exponentials, then the unknown coefficients in the expression
must be given by the integral formula we found. Instead, we could have asked: What is the “least
squares” approximation to the function? And again we would be led to the same integral formula
for the coefficients.

• Rayleigh’s identity is also an algebraic result. Once we have the proper setup it will follow effortlessly.

• The remaining statements, points 2 and 4, involve some serious analysis and we won’t go into the
proofs. The crisp statements that we have given are true provided one adopts a more general theory
of integration, Lebesgue’s theory. In particular, one must allow for much wilder functions to be
integrated than those that are allowed for the Riemann integral, which is the integral you saw in
calculus courses. This is not to say that the Riemann integral is “incorrect”, rather it is incomplete
— it does not allow for integrating functions that one needs to integrate in order to get an adequate
theory of Fourier series, among other things.
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These are mathematical issues only. They have no practical value. To paraphrase John Tukey, a
mathematician who helped to invent the FFT: “I wouldn’t want to fly in a plane whose design
depended on whether a function was Riemann or Lebesgue integrable.”

So do you have to worry about this? Not really, but do take note of the examples we looked at in the
previous lecture. Suppose a periodic signal has even a single discontinuity or a corner, like a square wave,
a sawtooth wave or a triangle wave for example. Or think of taking a smooth signal and cutting it off
(using a window), thus inducing a discontinuity or a corner. The Fourier series for such a signal must have
infinitely many terms, and thus arbitrarily high frequencies in the spectrum. This is so, recall, because if

f(t) =
N∑

n=−N

f̂(n)e2πint

for some finite N then f(t) would be the finite sum of smooth functions, hence smooth itself. It’s the
possibility (the reality) of representing discontinuous (or wilder) functions by an infinite sum of smooth
functions that’s really quite a strong result. This was anticipated, and even stated by Fourier, but people
didn’t believe him. The results we’ve stated above are Fourier’s vindication, but probably not in a form
he would have recognized.

1.9 Orthogonality

The aspect of Euclidean geometry that sets it apart from geometries which share most of its other features
is perpendicularity and its consequences. To set up a notion of perpendicularity in settings other than the
familiar Euclidean plane or three dimensional space is to try to copy the Euclidean properties that go with
it.

Perpendicularity becomes operationally useful, especially for applications, when it’s linked to measure-
ment, i.e., to length. This link is the Pythagorean theorem. 12 Perpendicularity becomes austere when
mathematicians start referring to it as orthogonality, but that’s what I’m used to and it’s another term
you can throw around to impress your friends.

Vectors To fix ideas, I want to remind you briefly of vectors and geometry in Euclidean space. We write
vectors in Rn as n-tuples of real numbers:

v = (v1, v2, . . . , vn)

The vi are called the components of v. The length, or norm of v is

‖v‖ = (v2
1 + v2

2 + · · ·+ v2
n)1/2 .

12 How do you lay out a big rectangular field of specified dimensions? You use the Pythagorean theorem. I had an encounter
with this a few summers ago when I volunteered to help lay out soccer fields. I was only asked to assist, because evidently I
could not be trusted with the details. Put two stakes in the ground to determine one side of the field. That’s one leg of what
is to become a right triangle — half the field. I hooked a tape measure on one stake and walked off in a direction generally
perpendicular to the first leg, stopping when I had gone the regulation distance for that side of the field, or when I needed
rest. The chief of the crew hooked another tape measure on the other stake and walked approximately along the diagonal of
the field — the hypotenuse. We adjusted our positions — but not the length we had walked off — to meet up, so that the
Pythagorean theorem was satisfied; he had a chart showing what this distance should be. Hence at our meeting point the leg
I determined must be perpendicular to the first leg we laid out. This was my first practical use of the Pythagorean theorem,
and so began my transition from a pure mathematician to an engineer.
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The distance between two vectors v and w is ‖v −w‖.

How does the Pythagorean theorem look in terms of vectors? Let’s just work in R2. Let u = (u1, u2),
v = (v1, v2), and w = u+v = (u1+v1, u2+v2). If u, v, and w form a right triangle with w the hypotenuse,
then

‖w‖2 = ‖u + v‖2 = ‖u‖2 + ‖v‖2

(u1 + v1)2 + (u2 + v2)2 = (u2
1 + u2

2) + (v2
1 + v2

2)

(u2
1 + 2u1v1 + v2

1) + (u2
2 + 2u2v2 + v2

2) = u2
1 + u2

2 + v2
1 + v2

2

The squared terms cancel and we conclude that

u1v1 + u2v2 = 0

is a necessary and sufficient condition for u and v to be perpendicular.

And so we introduce the (algebraic) definition of the inner product or dot product of two vectors. We give
this in Rn:

If v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) then the inner product is

v ·w = v1w1 + v2w2 + · · ·+ vnwn

Other notations for the inner product are (v,w) (just parentheses; we’ll be using this notation) and 〈v,w〉
(angle brackets for those who think parentheses are not fancy enough; the use of angle brackets is especially
common in physics where it’s also used to denote more general pairings of vectors that produce real or
complex numbers.)

Notice that
(v,v) = v2

1 + v2
2 + · · ·+ v2

n = ‖v‖2 .

Thus
‖v‖ = (v,v)1/2 .

There is also a geometric approach to the inner product, which leads to the formula

(v,w) = ||v|| ||w|| cosθ

where θ is the angle between v and w. This is sometimes taken as an alternate definition of the inner
product, though we’ll stick with the algebraic definition. For a few comments on this see Section 1.10.

We see that (v,w) = 0 if and only if v and w are orthogonal. This was the point, after all, and it is a truly
helpful result, especially because it’s so easy to verify when the vectors are given in coordinates. The inner
product does more than identify orthogonal vectors, however. When it’s nonzero it tells you how much of
one vector is in the direction of another. That is, the vector

(v,w)
||w||

w
||w|| also written as

(v,w)
(w,w)

w ,
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is the projection of v onto the unit vector w/||w||, or, if you prefer, (v,w)/||w|| is the (scalar) component
of v in the direction of w. I think of the inner product as measuring how much one vector “knows” another;
two orthogonal vectors don’t know each other.

Finally, I want to list the main algebraic properties of the inner product. I won’t give the proofs; they
are straightforward verifications. We’ll see these properties again — modified slightly to allow for complex
numbers — a little later.

1. (v,v)≥ 0 and (v,v) = 0 if and only if v = 0 (positive definiteness)

2. (v,w) = (w,v) (symmetry)

3. (αv,w) = α(v,w) for any scalar α (homogeneity)

4. (v + w,u) = (v,u) + (w,u) (additivity)

In fact, these are exactly the properties that ordinary multiplication has.

Orthonormal basis The natural basis for Rn are the vectors of length 1 in the n “coordinate directions”:

e1 = (1, 0, . . . , 0) , e2 = (0, 1, . . . , 0) , . . . , en = (0, 0, . . . , 1).

These vectors are called the “natural” basis because a vector v = (v1, v2, . . . , vn) is expressed “naturally”
in terms of its components as

v = v1e1 + v2e2 + · · ·+ vnen .

One says that the natural basis e1, e2, . . . , en are an orthonormal basis for Rn, meaning

(ei, ej) = δij ,

where δij is the Kronecker delta defined by

δij =

{
1 i = j

0 i 6= j

Notice that
(v, ek) = vk ,

and hence that

v =
n∑

k=1

(v, ek)ek .

In words:

When v is decomposed as a sum of vectors in the directions of the orthonormal basis vectors,
the components are given by the inner product of v with the basis vectors.

Since the ek have length 1, the inner products (v, ek) are the projections of v onto the basis
vectors.13

13 Put that the other way I like so much, the inner product (v, ek) is how much v and ek know each other.
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Functions All of what we’ve just done can be carried over to L2([0, 1]), including the same motivation
for orthogonality and defining the inner product. When are two functions “perpendicular”? Answer: when
the Pythagorean theorem is satisfied. Thus if we are to have

‖f + g‖2 = ‖f‖2 + ‖g‖2

then
∫ 1

0
(f(t) + g(t))2 dt =

∫ 1

0
f(t)2 dt +

∫ 1

0
g(t)2 dt

∫ 1

0
(f(t)2 + 2f(t)g(t) + g(t)2) dt =

∫ 1

0
f(t)2 dt +

∫ 1

0
g(t)2 dt

∫ 1

0
f(t)2 dt+ 2

∫ 1

0
f(t)g(t) dt+

∫ 1

0
g(t)2 dt =

∫ 1

0
f(t)2 dt +

∫ 1

0
g(t)2 dt

If you buy the premise, you have to buy the conclusion — we conclude that the condition to adopt to
define when two functions are perpendicular (or as we’ll now say, orthogonal) is

∫ 1

0
f(t)g(t) dt = 0 .

So we define the inner product of two functions in L2([0, 1]) to be.

(f, g) =
∫ 1

0
f(t)g(t) dt .

(See Section 1.10 for a discussion of why f(t)g(t) is integrable if f(t) and g(t) are each square integrable.)

This inner product has all of the algebraic properties of the dot product of vectors. We list them, again.

1. (f, f) ≥ 0 and (f, f) = 0 if and only if f = 0.

2. (f, g) = (g, f)

3. (f + g, h) = (f, h) + (g, h)

4. (αf, g) = α(f, g)

In particular, we have

(f, f) =
∫ 1

0
f(t)2 dt = ‖f‖2 .

Now, let me relieve you of a burden that you may feel you must carry. There is no reason on earth why
you should have any pictorial intuition for the inner product of two functions, and for when two functions
are orthogonal. How can you picture the condition (f, g) = 0? In terms of the graphs of f and g? I don’t
think so. And if (f, g) is not zero, how are you to picture how much f and g know each other? Don’t be
silly.

We’re working by analogy here. It’s a very strong analogy, but that’s not to say that the two settings —
functions and geometric vectors — are identical. They aren’t. As I have said before, what you should do is
draw pictures in R2 and R3, see, somehow, what algebraic or geometric idea may be called for, and using
the same words make the attempt to carry that over to L2([0, 1]). It’s surprising how often and how well
this works.
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There’s a catch There’s always a catch. In the preceding discussion we’ve been working with the real
vector space Rn, as motivation, and with real-valued functions in L2([0, 1]). But, of course, the definition of
the Fourier coefficients involves complex functions in the form of the complex exponential, and the Fourier
series is a sum of complex terms. We could avoid this catch by writing everything in terms of sine and
cosine, a procedure you may have followed in an earlier course. However, we don’t want to sacrifice the
algebraic dexterity we can show by working with the complex form of the Fourier sums, and a more effective
and encompassing choice is to consider complex-valued square integrable functions and the complex inner
product.

Here are the definitions. For the definition of L2([0, 1]) we assume again that
∫ 1

0
|f(t)|2 dt <∞ .

The definition looks the same as before, but |f(t)|2 is now the magnitude of the (possibly) complex
number f(t).

The inner product of complex-valued functions f(t) and g(t) in L2([0, 1]) is defined to be

(f, g) =
∫ 1

0
f(t)g(t)dt .

The complex conjugate in the second slot causes a few changes in the algebraic properties. To wit:

1. (f, g) = (g, f) (Hermitian symmetry)

2. (f, f) ≥ 0 and (f, f) = 0 if and only if f = 0 (positive definiteness — same as before)

3. (αf, g) = α(f, g), (f, αg) = α(f, g) (homogeneity — same as before in the first slot, conjugate
scalar comes out if it’s in the second slot)

4. (f + g, h) = (f, h) + (g, h), (f, g + h) = (f, g) + (f, h) (additivity — same as before, no difference
between additivity in first or second slot)

I’ll say more about the reason for the definition in Appendix 2. As before,

(f, f) =
∫ 1

0
f(t)f(t)dt =

∫ 1

0
|f(t)|2 dt = ‖f‖2 .

From now on, when we talk about L2([0, 1]) and the inner product on L2([0, 1]) we will always assume the
complex inner product. If the functions happen to be real-valued then this reduces to the earlier definition.

The complex exponentials are an orthonormal basis Number two in our list of the greatest hits
of the theory of Fourier series says that the complex exponentials form a basis for L2([0, 1]). This is not a
trivial statement. In many ways it’s the whole ball game, for in establishing this fact one sees why L2([0, 1])
is the natural space to work with, and why convergence in L2([0, 1]) is the right thing to ask for in asking
for the convergence of the partial sums of Fourier series.14 But it’s too much for us to do.

Instead, we’ll be content with the news that, just like the natural basis of Rn, the complex exponentials
are orthonormal. Here’s the calculation; in fact, it’s the same calculation we did when we first solved for
the Fourier coefficients. Write

en(t) = e2πint .

14 An important point in this development is understanding what happens to the usual kind of pointwise convergence vis à
vis L2([0, 1]) convergence when the functions are smooth enough.
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The inner product of two of them, en(t) and em(t), when n 6= m is

(en, em) =
∫ 1

0
e2πinte2πimt dt =

∫ 1

0
e2πinte−2πimt dt =

∫ 1

0
e2πi(n−m)t dt

=
1

2πi(n − m)
e2πi(n−m)t

]1
0

=
1

2πi(n − m)

(
e2πi(n−m) − e0

)
=

1
2πi(n − m)

(1− 1) = 0 .

They are orthogonal. And when n = m

(en, en) =
∫ 1

0
e2πinte2πint dt =

∫ 1

0
e2πinte−2πint dt =

∫ 1

0
e2πi(n−n)t dt =

∫ 1

0
1 dt = 1 .

Therefore the functions en(t) are orthonormal :

(en, em) = δnm =

{
1 n = m

0 n 6= m

What is the component of a function f(t) “in the direction” en(t)? By analogy to the Euclidean case, it is
given by the inner product

(f, en) =
∫ 1

0
f(t)en(t)dt =

∫ 1

0
f(t)e−2πint dt ,

precisely the n-th Fourier coefficient f̂ (n). (Note that en really does have to be in the second slot here.)

Thus writing the Fourier series

f =
∞∑

n=−∞
f̂(n)e2πint ,

as we did earlier, is exactly like the decomposition in terms of an orthonormal basis and associated inner
product:

f =
∞∑

n=−∞
(f, en)en .

What we haven’t done is to show that this really works — that the complex exponentials are a basis as
well as being orthonormal. We would be required to show that

lim
N→∞

∥∥∥f −
N∑

n=−N

(f, en)en
∥∥∥ = 0 .

We’re not going to do that. It’s hard.

What if the period isn’t 1? Remember how we modified the Fourier series when the period is T rather
than 1. We were led to the expansion

f(t) =
∞∑

n=−∞
cne

2πint/T .

where

cn =
1
T

∫ T

0

e−2πint/T f(t) dt .
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The whole setup we’ve just been through can be easily modified to cover this case. We work in the space
L2([0, T ]) of square integrable functions on the interval [0, T ]. The (complex) inner product is

(f, g) =
∫ T

0
f(t)g(t)dt .

What happens with the T -periodic complex exponentials e2πint/T ? If n 6= m then, much as before,

(e2πint/T , e2πimt/T ) =
∫ T

0
e2πint/T e2πimt/T dt =

∫ T

0
e2πint/T e−2πimt/T dt

=
∫ T

0
e2πi(n−m)t/T dt =

1
2πi(n − m)/T

e2πi(n−m)t/T
]T
0

=
1

2πi(n − m)/T
(e2πi(n−m) − e0) =

1
2πi(n − m)/T

(1 − 1) = 0

And when n = m:

(e2πint/T , e2πint/T ) =
∫ T

0
e2πint/T e2πint/T dt

=
∫ T

0
e2πint/T e−2πint/T dt =

∫ T

0
1 dt = T .

Aha — it’s not 1, it’s T . The complex exponentials with period T are orthogonal but not orthonormal.
To get the latter property we scale the complex exponentials to

en(t) =
1√
T
e2πint/T ,

for then

(en, em) =

{
1 n = m

0 n 6= m

This is where the factor 1/
√
T comes from, the factor mentioned earlier in this chapter. The inner product

of f with en is

(f, en) =
1√
T

∫ T

0
f(t)e−2πint/T dt .

Then
∞∑

n=−∞
(f, en)en =

∞∑

n=−∞

(
1√
T

∫ T

0

f(s)e−2πins/T ds

)
1√
T
e2πint/T =

∞∑

n=−∞
cne

2πint/T ,

where

cn =
1
T

∫ T

0
e−2πint/T f(t) dt ,

as above. We’re back to our earlier formula.

Rayleigh’s identity As a last application of these ideas, let’s derive Rayleigh’s identity, which states
that ∫ 1

0
|f(t)|2 dt =

∞∑

n=−∞
|f̂(n)|2 .
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This is a cinch! Expand f(t) as a Fourier series:

f(t) =
∞∑

n=−∞
f̂(n)e2πint =

∞∑

n=−∞
(f, en)en .

Then
∫ 1

0
|f(t)|2 dt = ‖f‖2 = (f, f)

=
( ∞∑

n=−∞
(f, en)en,

∞∑

m=−∞
(f, em)em

)

=
∑

n,m

(f, en)(f, em)(en, em) =
∞∑

n,m=−∞
(f, en)(f, em)δnm

=
∞∑

n=−∞
(f, en)(f, en) =

∞∑

n=−∞
|(f, en)|2 =

∞∑

n=−∞
|f̂(n)|2

The above derivation used

1. The algebraic properties of the complex inner product;

2. The fact that the en(t) = e2πint are orthonormal with respect to this inner product;

3. Know-how in whipping around sums

Do not go to sleep until you can follow every line in this derivation.

Writing Rayleigh’s identity as

‖f‖2 =
∞∑

n=−∞
|(f, en)|2

again highlights the parallels between the geometry of L2 and the geometry of vectors: How do you find
the squared length of a vector? By adding the squares of its components with respect to an orthonormal
basis. That’s exactly what Rayleigh’s identity is saying.

1.10 Appendix: The Cauchy-Schwarz Inequality and its Consequences

The Cauchy-Schwarz inequality is a relationship between the inner product of two vectors and their norms.
It states

|(v,w)| ≤ ‖v‖ ‖w‖ .

This is trivial to see from the geometric formula for the inner product:

|(v,w)| = ‖v‖ ‖w‖ | cosθ| ≤ ‖v‖ ‖w‖ ,

because | cosθ| ≤ 1. In fact, the rationale for the geometric formula of the inner product will follow from
the Cauchy-Schwarz inequality.

It’s certainly not obvious how to derive the inequality from the algebraic definition. Written out in
components, the inequality says that

∣∣∣∣
n∑

k=1

vkwk

∣∣∣∣ ≤
( n∑

k=1

v2
k

)1/2( n∑

k=1

w2
k

)1/2

.
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Sit down and try that one out sometime.

In fact, the proof of the Cauchy-Schwarz inequality in general uses only the four algebraic properties of the
inner product listed earlier. Consequently the same argument applies to any sort of “product” satisfying
these properties. It’s such an elegant argument (due to John von Neumann, I believe) that I’d like to show
it to you. We’ll give this for the real inner product here, with comments on the complex case to follow in
the next appendix.

Any inequality can ultimately be written in a way that says that some quantity is positive. Some things
that we know are positive: the square of a real number; the area of something; and the length of something
are examples.15 For this proof we use that the norm of a vector is positive, but we throw in a parameter.16

Let t be any real number. Then ‖v− tw‖2 ≥ 0. Write this in terms of the inner product and expand using
the algebraic properties; because of homogeneity, symmetry, and additivity, this is just like multiplication
— that’s important to realize:

0 ≤ ‖v− tw‖2

= (v− tw,v− tw)

= (v,v)− 2t(v,w)+ t2(w,w)

= ‖v‖2 − 2t(v,w) + t2‖w‖2

This is a quadratic equation in t, of the form at2 + bt + c, where a = ‖w‖2, b = −2(v,w), and c = ‖v‖2.
The first inequality, and the chain of equalities that follow, says that this quadratic is always nonnegative.
Now a quadratic that’s always nonnegative has to have a non-positive discriminant: The discriminant,
b2 − 4ac determines the nature of the roots of the quadratic — if the discriminant is positive then there
are two real roots, but if there are two real roots, then the quadratic must be negative somewhere.

Therefore b2 − 4ac ≤ 0, which translates to

4(v,w)2 − 4‖w‖2 ‖v‖2 ≤ 0 or (v,w)2 ≤ ‖w‖2 ‖v‖2 .

Take the square root of both sides to obtain

|(v,w)| ≤ ‖v‖ ‖w‖ ,

as desired. (Amazing, isn’t it — a nontrivial application of the quadratic formula!)17 This proof also shows
when equality holds in the Cauchy-Schwarz inequality. When is that?

To get back to geometry, we now know that

−1 ≤ (v,w)
‖v‖ ‖w‖ ≤ 1 .

Therefore there is a unique angle θ with 0 ≤ θ ≤ π such that

cos θ =
(v,w)
‖v‖ ‖w‖ ,

15 This little riff on the nature of inequalities qualifies as a minor secret of the universe. More subtle inequalities sometimes
rely on convexity, as in the center of gravity of a system of masses is contained within the convex hull of the masses.
16 “Throwing in a parameter” goes under the heading of dirty tricks of the universe.
17 As a slight alternative to this argument, if the quadratic f(t) = at2 + bt + c is everywhere nonnegative then, in particular,

its minimum value is nonnegative. This minimum occurs at t = −b/2a and leads to the same inequality, 4ac − b2 ≥ 0.
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i.e.,
(v,w) = ‖v‖ ‖w‖ cosθ .

Identifying θ as the angle between v and w, we have now reproduced the geometric formula for the inner
product. What a relief.

The triangle inequality,
‖v + w‖ ≤ ‖v‖+ ‖w‖

follows directly from the Cauchy-Schwarz inequality. Here’s the argument.

‖v + w‖2 = (v + w,v + w)
= (v,v)+ 2(v,w)+ (w,w)
≤ (v,v)+ 2|(v,w)|+ (w,w)
≤ (v,v)+ 2‖v‖ ‖w‖+ (w,w) (by Cauchy-Schwarz)

= ‖v‖2 + 2‖v‖ ‖w‖+ ‖w‖2 = (‖v‖+ ‖w‖)2.

Now take the square root of both sides to get ‖v + w‖ ≤ ‖v‖+ ‖w‖. In coordinates this says that
( n∑

k=1

(vk + wk)2
)1/2

≤
( n∑

k=1

v2
k

)1/2

+
( n∑

k=1

w2
k

)1/2

.

For the inner product on L2([0, 1]), the Cauchy-Schwarz inequality takes the impressive form
∣∣∣∣
∫ 1

0
f(t)g(t) dt

∣∣∣∣ ≤
(∫ 1

0
f(t)2 dt

)1/2(∫ 1

0
g(t)2 dt

)1/2

.

You can think of this as a limiting case of the Cauchy-Schwarz inequality for vectors — sums of products
become integrals of products on taking limits, an ongoing theme — but it’s better to think in terms of
general inner products and their properties. For example, we now also know that

‖f + g‖ ≤ ‖f‖ + ‖g‖ ,

i.e., (∫ 1

0

(f(t) + g(t))2 dt
)1/2

≤
(∫ 1

0

f(t)2 dt
)1/2

+
(∫ 1

0

g(t)2 dt
)1/2

.

Once again, one could, I suppose, derive this from the corresponding inequality for sums, but why keep
going through that extra work?

Incidentally, I have skipped over something here. If f(t) and g(t) are square integrable, then in order to
get the Cauchy-Schwarz inequality working, one has to know that the inner product (f, g) makes sense,
i.e., ∫ 1

0

f(t)g(t) dt <∞ .

(This isn’t an issue for vectors in Rn, of course. Here’s an instance when something more needs to be said
for the case of functions.) To deduce this you can first observe that18

f(t)g(t) ≤ f(t)2 + g(t)2 .

18 And where does that little observation come from? From the same positivity trick used to prove Cauchy-Schwarz:

0 ≤ (f(t)− g(t))2 = f(t)2 − 2f(t)g(t) + g(t)2 ⇒ 2f(t)g(t) ≤ f(t)2 + g(t)2 .

This is the inequality between the arithmetic and geometric mean.
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With this ∫ 1

0
f(t)g(t) dt ≤

∫ 1

0
f(t)2 dt +

∫ 1

0
g(t)2 dt <∞ ,

since we started by assuming that f(t) and g(t) are square integrable.

Another consequence of this last argument is the fortunate fact that the Fourier coefficients of a function
in L2([0, 1]) exist. That is, we’re wondering about the existence of

∫ 1

0
e−2πintf(t) dt ,

allowing for integrating complex functions. Now
∣∣∣∣
∫ 1

0
e−2πintf(t) dt

∣∣∣∣ ≤
∫ 1

0

∣∣∣e−2πintf(t)
∣∣∣ dt =

∫ 1

0
|f(t)| dt ,

so we’re wondering whether ∫ 1

0
|f(t)| dt <∞ ,

i.e., is f(t) absolutely integrable given that it is square integrable. But f(t) = f(t) · 1, and both f(t) and
the constant function 1 are square integrable on [0, 1], so the result follows from Cauchy-Schwartz. We
wonder no more.

Warning: This casual argument would not work if the interval [0, 1] were replaced by the entire
real line. The constant function 1 has an infinite integral on R. You may think we can get
around this little inconvenience, but it is exactly the sort of trouble that comes up in trying to
apply Fourier series ideas (where functions are defined on finite intervals) to Fourier transform
ideas (where functions are defined on all of R).

1.11 Appendix: More on the Complex Inner Product

Here’s an argument why the conjugate comes in in defining a complex inner product. Let’s go right to the
case of integrals. What if we apply the Pythagorean Theorem to deduce the condition for perpendicularity
in the complex case, just as we did in the real case? We have

∫ 1

0
|f(t) + g(t)|2 =

∫ 1

0
|f(t)|2 dt+

∫ 1

0
|g(t)|2 dt

∫ 1

0
(|f(t)|2 + 2 Re{f(t)g(t)} + |g(t)|2) dt =

∫ 1

0
|f(t)|2 dt+

∫ 1

0
|g(t)|2 dt

∫ 1

0
|f(t)|2 dt+ 2 Re

(∫ 1

0
f(t)g(t)dt

)
+
∫ 1

0
|g(t)|2 dt =

∫ 1

0
|f(t)|2 dt+

∫ 1

0
|g(t)|2 dt

So it looks like the condition should be

Re
(∫ 1

0
f(t)g(t)dt

)
= 0 .

Why doesn’t this determine the definition of the inner product of two complex functions? That is, why
don’t we define

(f, g) = Re
(∫ 1

0
f(t)g(t)dt

)
?
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This definition has a nicer symmetry property, for example, than the definition we used earlier. Here we
have

(f, g) = Re
(∫ 1

0

f(t)g(t)dt
)

= Re
(∫ 1

0

f(t)g(t)dt
)

= (g, f) ,

so none of that Hermitian symmetry that we always have to remember.

The problem is that this definition doesn’t give any kind of homogeneity when multiplying by a complex
scalar. If α is a complex number then

(αf, g) = Re
(∫ 1

0
αf(t)g(t)dt

)
= Re

(
α

∫ 1

0
f(t)g(t)dt

)
.

But we can’t pull the α out of taking the real part unless it’s real to begin with. If α is not real then

(αf, g) 6= α(f, g) .

Not having equality here is too much to sacrifice. (Nor do we have anything good for (f, αg), despite the
natural symmetry (f, g) = (g, f).) We adopt the definition

(f, g) =
∫ 1

0
f(t)g(t)dt .

A helpful identity A frequently employed identity for the complex inner product is:

‖f + g‖2 = ‖f‖2 + 2 Re(f, g) + ‖g‖2 .

We more or less used this, above, and I wanted to single it out. The verification is:

‖f + g‖2 = (f + g, f + g) = (f, f + g) + (g, f + g)
= (f, f) + (f, g) + (g, f) + (g, g)

= (f, f) + (f, g) + (f, g) + (g, g) = ‖f‖2 + 2 Re(f, g) + ‖g‖2 .

Similarly,
‖f − g‖2 = ‖f‖2 − 2 Re(f, g) + ‖g‖2 .

Here’s how to get the Cauchy-Schwarz inequality for complex inner products from this. The inequality
states

|(f, g)| ≤ ‖f‖ ‖g‖ .
On the left hand side we have the magnitude of the (possibly) complex number (f, g). As a slight twist on
what we did in the real case, let α = teiθ be a complex number (t real) and consider

0 ≤ ‖f − αg‖2 = ‖f‖2 − 2 Re(f, αg) + ‖αg‖2

= ‖f‖2 − 2 Re
(
α(f, g)

)
+ ‖αg‖2

= ‖f‖2 − 2tRe
(
e−iθ(f, g)

)
+ t2‖g‖2 .

Now we can choose θ here, and we do so to make

Re
(
e−iθ(f, g)

)
= |(f, g)| .

Multiplying (f, g) by e−iθ rotates the complex number (f, g) clockwise by θ, so choose θ to rotate (f, g) to
be real and positive. From here the argument is the same as it was in the real case.

It’s worth writing out the Cauchy-Schwarz inequality in terms of integrals:
∣∣∣∣
∫ 1

0
f(t)g(t)dt

∣∣∣∣ ≤
( ∫ 1

0
|f(t)|2 dt

)1/2(∫ 1

0
|g(t)|2 dt

)1/2

.
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1.12 Appendix: Best L2 Approximation by Finite Fourier Series

Here’s a precise statement, and a proof, that a finite Fourier series of degreeN gives the best (trigonometric)
approximation of that order in L2([0, 1]) to a function.

Theorem If f(t) is in L2([0, 1]) and α1, α2, . . . , αN are any complex numbers, then

∥∥∥∥f −
N∑

n=−N

(f, en)en

∥∥∥∥ ≤
∥∥∥∥f −

N∑

n=−N

αnen

∥∥∥∥ .

Furthermore, equality holds only when αn = (f, en) for every n.

It’s the last statement, on the case of equality, that leads to the Fourier coefficients in a different way than
solving for them directly as we did originally. Another way of stating the result is that the orthogonal
projection of f onto the subspace of L2([0, 1]) spanned by the en, n = −N, . . . , N is

N∑

n=−N

f̂ (n)e2πint .

Here comes the proof. Hold on. Write

∥∥∥∥f −
N∑

n=−N

αnen

∥∥∥∥
2

=
∥∥∥∥f −

N∑

n=−N

(f, en)en +
N∑

n=−N

(f, en)en −
N∑

n=−N

αnen

∥∥∥∥
2

=
∥∥∥∥
(
f −

N∑

n=−N

(f, en)en

)
+

N∑

n=−N

((f, en) − αn)en

∥∥∥∥
2

We squared all the norms because we want to use the properties of inner products to expand the last line.
Using the identity we derived earlier, the last line equals

∥∥∥∥
(
f −

N∑

n=−N

(f, en)en

)
+

N∑

n=−N

((f, en) − αn)en

∥∥∥∥
2

=

∥∥∥∥f −
N∑

n=−N

(f, en)en

∥∥∥∥
2

+

2 Re
(
f −

N∑

n=−N

(f, en)en,
N∑

m=−N

((f, em) − αm)em

)
+
∥∥∥∥

N∑

n=−N

((f, en)− αn)en

∥∥∥∥
2

.

This looks complicated, but the middle term is just a sum of multiples of terms of the form

(
f −

N∑

n=−N

(f, en)en, em

)
= (f, em) −

N∑

n=−N

(f, en)(en, em) = (f, em) − (f, em) = 0 ,

so the whole thing drops out! The final term is

∥∥∥∥
N∑

n=−N

(
(f, en) − αn

)
en

∥∥∥∥
2

=
N∑

n=−N

∣∣(f, en) − αn

∣∣2 .
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We are left with
∥∥∥∥f −

N∑

n=−N

αnen

∥∥∥∥
2

=
∥∥∥∥f −

N∑

n=−N

(f, en)en

∥∥∥∥
2

+
N∑

n=−N

|(f, en) − αn|2 .

This completely proves the theorem, for the right hand side is the sum of two positive terms and hence
∥∥∥∥f −

N∑

n=−N

αnen

∥∥∥∥
2

≥
∥∥∥∥f −

N∑

n=−N

(f, en)en

∥∥∥∥
2

with equality holding if and only if
N∑

n=−N

|(f, en) − αn|2 = 0 .

The latter holds if and only if αn = (f, en) for all n.

The preceding argument may have seemed labor intensive, but it was all algebra based on the properties
of the inner product. Imagine trying to write all of it out in terms of integrals.

1.13 Fourier Series in Action

We’ve had a barrage of general information and structure, and it’s time to pass to the particular and put
some of these ideas to work. In these notes I want to present a few model cases of how Fourier series can
be applied. The range of applications is vast, so my principle of selection has been to choose examples that
are both interesting in themselves and have connections with different areas.

The first applications are to heat flow; these are classical, celebrated problems and should be in your
storehouse of general knowledge. Another reason for including them is the form that one of the solutions
takes as a convolution integral — you’ll see why this is interesting. We’ll also look briefly at how the
differential equation governing heat flow comes up in other areas. The key word is diffusion.

The second application is not classical at all; in fact, it does not fit into the L2-theory as we laid it out last
time. It has to do, on the one hand, with sound synthesis, and on the other, as we’ll see later, with sampling
theory. Later in the course, when we do higher dimensional Fourier analysis, we’ll have an application of
higher dimensional Fourier series to random walks on a lattice. It’s cool, and, with a little probability
thrown in the analysis of the problem is not beyond what we know to this point, but enough is enough.

1.13.1 Hot enough for ya?

The study of how temperature varies over a region was the first use by Fourier in the 1820’s of the method
of expanding a function into a series of trigonometric functions. The physical phenomenon is described,
at least approximately, by a partial differential equation, and Fourier series can be used to write down
solutions.

We’ll give a brief, standard derivation of the differential equation in one spatial dimension, so the config-
uration to think of is a one-dimensional rod. The argument involves a number of common but difficult,
practically undefined terms, first among them the term “heat”, followed closely by the term “temperature”.

As it is usually stated, heat is a transfer of “energy” (another undefined term, thank you) due to temper-
ature difference; the transfer process is called “heat”. What gets transferred is energy. Because of this,
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heat is usually identified as a form of energy and has units of energy. We talk of heat as a ‘transfer of
energy’, and hence of ‘heat flow’, because, like so many other physical quantities heat is only interesting
if it’s associated with a change. Temperature, more properly called “thermodynamic temperature” (for-
merly “absolute temperature”), is a derived quantity. The temperature of a substance is proportional to
the kinetic energy of the atoms in the substance.19 A substance at temperature 0 (absolute zero) cannot
transfer energy — it’s not “hot”. The principle at work, essentially stated by Newton, is:

A temperature difference between two substances in contact with each other causes a transfer
of energy from the substance of higher temperature to the substance of lower temperature, and
that’s heat, or heat flow. No temperature difference, no heat.

Back to the rod. The temperature is a function of both the spatial variable x giving the position along the
rod and of the time t. We let u(x, t) denote the temperature, and the problem is to find it. The description
of heat, just above, with a little amplification, is enough to propose a partial differential equation that
u(x, t) should satisfy.20 To derive it, we introduce q(x, t), the amount of heat that “flows” per second at
x and t (so q(x, t) is the rate at which energy is transfered at x and t). Newton’s law of cooling says that
this is proportional to the gradient of the temperature:

q(x, t) = −kux(x, t) , k > 0 .

The reason for the minus sign is that if ux(x, t) > 0, i.e., if the temperature is increasing at x, then the rate
at which heat flows at x is negative — from hotter to colder, hence back from x. The constant k can be
identified with the reciprocal of “thermal resistance” of the substance. For a given temperature gradient,
the higher the resistance the smaller the heat flow per second, and similarly the smaller the resistance the
greater the heat flow per second.

As the heat flows from hotter to colder, the temperature rises in the colder part of the substance. The
rate at which the temperature rises at x, given by ut(x, t), is proportional to the rate at which heat
“accumulates” per unit length. Now q(x, t) is already a rate — the heat flow per second — so the rate at
which heat accumulates per unit length is the rate in minus the rate out per length, which is (if the heat
is flowing from left to right)

q(x, t)− q(x+ ∆x, t)
∆x

.

Thus in the limit
ut(x, t) = −k′qx(x, t) , k′ > 0 .

The constant k′ can be identified with the reciprocal of the “thermal capacity” per unit length. Thermal
resistance and thermal capacity are not the standard terms, but they can be related to standard terms,
e.g., specific heat. They are used here because of the similarity of heat flow to electrical phenomena — see
the discussion of the mathematical analysis of telegraph cables, below.

Next, differentiate the first equation with respect to x to get

qx(x, t) = −kuxx(x, t) ,

and substitute this into the second equation to obtain an equation involving u(x, t) alone:

ut(x, t) = kk′uxx(x, t) .

This is the heat equation.

To summarize, in whatever particular context it’s applied, the setup for a problem based on the heat
equation involves:

19 With this (partial) definition the unit of temperature is the Kelvin.
20 This follows Bracewell’s presentation.
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• A region in space.

• An initial distribution of temperature on that region.

It’s natural to think of fixing one of the variables and letting the other change. Then the solution u(x, t)
tells you

• For each fixed time t how the temperature is distributed on the region.

• At each fixed point x how the temperature is changing over time.

We want to look at two examples of using Fourier series to solve such a problem: heat flow on a circle and,
more dramatically, the temperature of the earth. These are nice examples because they show different
aspects of how the methods can be applied and, as mentioned above, they exhibit forms of solutions,
especially for the circle problem, of a type we’ll see frequently.

Why a circle, why the earth — and why Fourier methods? Because in each case the function u(x, t) will be
periodic in one of the variables. In one case we work with periodicity in space and in the other periodicity
in time.

Heating a circle Suppose a circle is heated up, not necessarily uniformly. This provides an initial
distribution of temperature. Heat then flows around the circle and the temperature changes over time. At
any fixed time the temperature must be a periodic function of the position on the circle, for if we specify
points on the circle by an angle θ then the temperature, as a function of θ, is the same at θ and at θ+ 2π,
since these are the same points.

We can imagine a circle as an interval with the endpoints identified, say the interval 0 ≤ x ≤ 1, and we let
u(x, t) be the temperature as a function of position and time. Our analysis will be simplified if we choose
units so the heat equation takes the form

ut = 1
2uxx ,

that is, so the constant depending on physical attributes of the wire is 1/2. The function u(x, t) is periodic
in the spatial variable x with period 1, i.e., u(x+ 1, t) = u(x, t), and we can try expanding it as a Fourier
series with coefficients that depend on time:

u(x, t) =
∞∑

n=−∞
cn(t)e2πinx where cn(t) =

∫ 1

0
e−2πinxu(x, t) dx .

This representation of cn(t) as an integral together with the heat equation for u(x, t) will allow us to find
cn(t) explicitly. Differentiate cn(t) with respect to t by differentiating under the integral sign:

c′n(t) =
∫ 1

0
ut(x, t)e−2πinx dx;

Now using ut = 1
2uxx we can write this as

c′n(t) =
∫ 1

0

1
2uxx(x, t)e−2πinx dx

and integrate by parts (twice) to get the derivatives off of u (the function we don’t know) and put them
onto e−2πinx (which we can certainly differentiate). Using the facts that e−2πin = 1 and u(0, t) = u(1, t)
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(both of which come in when we plug in the limits of integration when integrating by parts) we get

c′n(t) =
∫ 1

0

1
2u(x, t)

d2

dx2
e−2πinx dx

=
∫ 1

0

1
2u(x, t)(−4π2n2)e−2πinx dx

= −2π2n2

∫ 1

0
u(x, t)e−2πinx dx = −2π2n2 cn(t).

We have found that cn(t) satisfies a simple ordinary differential equation

c′n(t) = −2π2n2 cn(t) ,

whose solution is
cn(t) = cn(0)e−2π2n2t .

The solution involves the initial value cn(0) and, in fact, this initial value should be, and will be, incorpo-
rated into the formulation of the problem in terms of the initial distribution of heat.

At time t = 0 we assume that the temperature u(x, 0) is specified by some (periodic!) function f(x):

u(x, 0) = f(x) , f(x+ 1) = f(x) for all x.

Then using the integral representation for cn(t),

cn(0) =
∫ 1

0
u(x, 0)e−2πinx dx

=
∫ 1

0
f(x)e−2πinx dx = f̂(n) ,

the n-th Fourier coefficient of f ! Thus we can write

cn(t) = f̂(n)e−2π2n2t ,

and the general solution of the heat equation is

u(x, t) =
∞∑

n=−∞
f̂(n)e−2π2n2te2πinx .

This is a neat way of writing the solution and we could leave it at that, but for reasons we’re about to see
it’s useful to bring back the integral definition of f̂(n) and write the expression differently.

Write the formula for f̂(n) as

f̂(n) =
∫ 1

0

f(y)e−2πiny dy .

(Don’t use x as the variable of integration since it’s already in use in the formula for u(x, t).) Then

u(x, t) =
∞∑

n=−∞
e−2π2n2te2πinx

∫ 1

0
f(y)e−2πiny dy

=
∫ 1

0

∞∑

n=−∞
e−2π2n2te2πin(x−y)f(y) dy ,
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or, with

g(x− y, t) =
∞∑

n=−∞
e−2π2n2te2πin(x−y) ,

we have

u(x, t) =
∫ 1

0
g(x− y, t)f(y) dy .

The function

g(x, t) =
∞∑

n=−∞
e−2π2n2te2πinx

is called Green’s function, or the fundamental solution for the heat equation for a circle. Note that g is a
periodic function of period 1 in the spatial variable. The expression for the solution u(x, t) is a convolution
integral, a term you have probably heard from earlier classes, but new here. In words, u(x, t) is given by
the convolution of the initial temperature f(x) with Green’s function g(x, t). This is a very important fact.

In general, whether or not there is extra time dependence as in the present case, the integral
∫ 1

0
g(x− y)f(y) dy

is called the convolution of f and g. Observe that the integral makes sense only if g is periodic. That
is, for a given x between 0 and 1 and for y varying from 0 to 1 (as the variable of integration) x− y will
assume values outside the interval [0, 1]. If g were not periodic it wouldn’t make sense to consider g(x−y),
but the periodicity is just what allows us to do that.

To think more in EE terms, if you know the terminology coming from linear systems, the Green’s function
g(x, t) is the “impulse response” associated with the linear system “heat flow on a circle”, meaning

• Inputs go in: the initial heat distribution f(x).

• Outputs come out: the temperature u(x, t).

• Outputs are given by the convolution of g with the input: u(x, t) =
∫ 1

0
g(x− y, t)f(y) dy .

Convolutions occur absolutely everywhere in Fourier analysis and we’ll be spending a lot of time with them
this quarter. In fact, an important result states that convolutions must occur in relating outputs to inputs
for linear time invariant systems. We’ll see this later.

In our example, as a formula for the solution, the convolution may be interpreted as saying that for
each time t the temperature u(x, t) at a point x is a kind of smoothed average of the initial temperature
distribution f(x). In other settings a convolution integral may have different interpretations.

Heating the earth, storing your wine The wind blows, the rain falls, and the temperature at any
particular place on earth changes over the course of a year. Let’s agree that the way the temperature
varies is pretty much the same year after year, so that the temperature at any particular place on earth
is roughly a periodic function of time, where the period is 1 year. What about the temperature x-meters
under that particular place? How does the temperature depend on x and t?21

21 This example is taken from Fourier Series and Integrals by H. Dym & H. McKean, who credit Sommerfeld.
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Fix a place on earth and let u(x, t) denote the temperature x meters underground at time t. We assume
again that u satisfies the heat equation, ut = 1

2uxx. This time we try a solution of the form

u(x, t) =
∞∑

n=−∞
cn(x)e2πint ,

reflecting the periodicity in time.

Again we have an integral representation of cn(x) as a Fourier coefficient,

cn(x) =
∫ 1

0
u(x, t)e−2πint dt ,

and again we want to plug into the heat equation and find a differential equation that the coefficients
satisfy. The heat equation involves a second (partial) derivative with respect to the spatial variable x, so
we differentiate cn twice and differentiate u under the integral sign twice with respect to x:

c′′n(x) =
∫ 1

0
uxx(x, t)e−2πint dt .

Using the heat equation and integrating by parts (once) gives

c′′n(x) =
∫ 1

0
2ut(x, t)e−2πint dt

=
∫ 1

0
4πinu(x, t)e−2πint dt = 4πincn(x) .

We can solve this second-order differential equation in x easily on noting that

(4πin)1/2 = ±(2π|n|)1/2(1± i) ,

where we take 1 + i when n > 0 and 1 − i when n < 0. I’ll leave it to you to decide that the root to take
is −(2π|n|)1/2(1 ± i), thus

cn(x) = Ane
−(2π|n|)1/2(1±i)x .

What is the initial value An = cn(0)? Again we assume that at x = 0 there is a periodic function of t
that models the temperature (at the fixed spot on earth) over the course of the year. Call this f(t). Then
u(0, t) = f(t), and

cn(0) =
∫ 1

0

u(0, t)e−2πint dt = f̂(n) .

Our solution is then

u(x, t) =
∞∑

n=−∞
f̂(n)e−(2π|n|)1/2(1±i)xe2πint .

That’s not a beautiful expression, but it becomes more interesting if we rearrange the exponentials to
isolate the periodic parts (the ones that have an i in them) from the nonperiodic part that remains. The
latter is e−(2π|n|)1/2x. The terms then look like

f̂(n) e−(2π|n|)1/2x e2πint∓(2π|n|)1/2ix .

What’s interesting here? The dependence on the depth, x. Each term is damped by the exponential

e−(2π|n|)1/2x
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and phase shifted by the amount (2π|n|)1/2x.

Take a simple case. Suppose that the temperature at the surface x = 0 is given just by sin 2πt and that
the mean annual temperature is 0, i.e.,

∫ 1

0

f(t) dt = f̂(0) = 0 .

All Fourier coefficients other than the first (and minus first) are zero, and the solution reduces to

u(x, t) = e−(2π)1/2x sin(2πt− (2π)1/2x) .

Take the depth x so that (2π)1/2x = π. Then the temperature is damped by e−π = 0.04, quite a bit, and it
is half a period (six months) out of phase with the temperature at the surface. The temperature x-meters
below stays pretty constant because of the damping, and because of the phase shift it’s cool in the summer
and warm in the winter. There’s a name for a place like that. It’s called a cellar.

The first shot in the second industrial revolution Many types of diffusion processes are similar
enough in principle to the flow of heat that they are modeled by the heat equation, or a variant of the
heat equation, and Fourier analysis is often used to find solutions. One celebrated example of this was the
paper by William Thomson (later Lord Kelvin): “On the theory of the electric telegraph” published in
1855 in the Proceedings of the Royal Society.

The high tech industry of the mid to late 19th century was submarine telegraphy. Sharp pulses were sent
at one end, representing the dots and dashes of Morse code, and in transit, if the cable was very long and
if pulses were sent in too rapid a succession, the pulses were observed to smear out and overlap to the
degree that at the receiving end it was impossible to resolve them. The commercial success of telegraph
transmissions between continents depended on undersea cables reliably handling a large volume of traffic.
How should cables be designed? The stakes were high and a quantitative analysis was needed.

A qualitative explanation of signal distortion was offered by Michael Faraday, who was shown the phe-
nomenon by Latimer Clark. Clark, an official of the Electric and International Telegraph Company, had
observed the blurring of signals on the Dutch-Anglo line. Faraday surmised that a cable immersed in water
became in effect an enormous capacitor, consisting as it does of two conductors — the wire and the water
— separated by insulating material (gutta-percha in those days). When a signal was sent, part of the
energy went into charging the capacitor, which took time, and when the signal was finished the capacitor
discharged and that also took time. The delay associated with both charging and discharging distorted
the signal and caused signals sent too rapidly to overlap.

Thomson took up the problem in two letters to G. Stokes (of Stokes’ theorem fame), which became the
published paper. We won’t follow Thomson’s analysis at this point, because, with the passage of time,
it is more easily understood via Fourier transforms rather than Fourier series. However, here are some
highlights. Think of the whole cable as a (flexible) cylinder with a wire of radius a along the axis and
surrounded by a layer of insulation of radius b (thus of thickness b− a). To model the electrical properties
of the cable, Thomson introduced the “electrostatic capacity per unit length” depending on a and b and
ε, the permittivity of the insulator. His formula was

C =
2πε

ln(b/a)
.

(You may have done just this calculation in an EE or physics class.) He also introduced the “resistance per
unit length”, denoting it by K. Imagining the cable as a series of infinitesimal pieces, and using Kirchhoff’s
circuit law and Ohm’s law on each piece, he argued that the voltage v(x, t) at a distance x from the end
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of the cable and at a time t must satisfy the partial differential equation

vt =
1
KC

vxx .

Thomson states: “This equation agrees with the well-known equation of the linear motion of heat in a
solid conductor, and various forms of solution which Fourier has given are perfectly adapted for answering
practical questions regarding the use of the telegraph wire.”

After the fact, the basis of the analogy is that charge diffusing through a cable may be described in the
same way as heat through a rod, with a gradient in electric potential replacing gradient of temperature,
etc. (Keep in mind, however, that the electron was not discovered till 1897.) Here we see K and C playing
the role of thermal resistance and thermal capacity in the derivation of the heat equation.

The result of Thomson’s analysis that had the greatest practical consequence was his demonstration that
“. . . the time at which the maximum electrodynamic effect of connecting the battery for an instant . . . ”
[sending a sharp pulse, that is] occurs for

tmax = 1
6KCx

2 .

The number tmax is what’s needed to understand the delay in receiving the signal. It’s the fact that the
distance from the end of the cable, x, comes in squared that’s so important. This means, for example, that
the delay in a signal sent along a 1000 mile cable will be 100 times as large as the delay along a 100 mile
cable, and not 10 times as large, as was thought. This was Thomson’s “Law of squares.”

Thomson’s work has been called “The first shot in the second industrial revolution.”22 This was when
electrical engineering became decidedly mathematical. His conclusions did not go unchallenged, however.
Consider this quote of Edward Whitehouse, chief electrician for the Atlantic Telegraph Company, speaking
in 1856

I believe nature knows no such application of this law [the law of squares] and I can only regard
it as a fiction of the schools; a forced and violent application of a principle in Physics, good
and true under other circumstances, but misapplied here.

Thomson’s analysis did not prevail and the first transatlantic cable was built without regard to his spec-
ifications. Thomson said they had to design the cable to make KC small. They thought they could just
crank up the power. The continents were joined August 5, 1858, after four previous failed attempts. The
first successful sent message was August 16. The cable failed three weeks later. Too high a voltage. They
fried it.

Rather later, in 1876, Oliver Heaviside greatly extended Thomson’s work by including the effects of induc-
tion. He derived a more general differential equation for the voltage v(x, t) in the form

vxx = KCvt + SCvtt ,

where S denotes the inductance per unit length and, as before, K and C denote the resistance and
capacitance per unit length. The significance of this equation, though not realized till later still, is that
it allows for solutions that represent propagating waves. Indeed, from a PDE point of view the equation
looks like a mix of the heat equation and the wave equation. (We’ll study the wave equation later.) It is
Heaviside’s equation that is now usually referred to as the “telegraph equation”.

22 See Getting the Message: A History of Communications by L. Solymar.
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The last shot in the second World War Speaking of high stakes diffusion processes, in the early
stages of the theoretical analysis of atomic explosives it was necessary to study the diffusion of neutrons
produced by fission as they worked their way through a mass of uranium. The question: How much mass
is needed so that enough uranium nuclei will fission in a short enough time to produce an explosion.23

An analysis of this problem was carried out by Robert Serber and some students at Berkeley in the summer
of 1942, preceding the opening of the facilities at Los Alamos (where the bulk of the work was done and
the bomb was built). They found that the so-called “critical mass” needed for an explosive chain reaction
was about 60 kg of U235, arranged in a sphere of radius about 9 cm (together with a tamper surrounding
the Uranium). A less careful model of how the diffusion works gives a critical mass of 200 kg. As the
story goes, in the development of the German atomic bomb project (which predated the American efforts),
Werner Heisenberg worked with a less accurate model and obtained too high a number for the critical
mass. This set their program back.

For a fascinating and accessible account of this and more, see Robert Serber’s The Los Alamos Primer.
These are the notes of the first lectures given by Serber at Los Alamos on the state of knowledge on
atomic bombs, annotated by him for this edition. For a dramatized account of Heisenberg’s role in the
German atomic bomb project — including the misunderstanding of diffusion — try Michael Frayn’s play
Copenhagen.

1.13.2 A nonclassical example: What’s the buzz?

We model a musical tone as a periodic wave. A pure tone is a single sinusoid, while more complicated tones
are sums of sinusoids. The frequencies of the higher harmonics are integer multiples of the fundamental
harmonic and the harmonics will typically have different energies. As a model of the most “complete”
and “uniform” tone we might take a sum of all harmonics, each sounded with the same energy, say 1. If
we further assume that the period is 1 (i.e., that the fundamental harmonic has frequency 1) then we’re
looking at the signal

f(t) =
∞∑

n=−∞
e2πint .

What does this sound like? Not very pleasant, depending on your tastes. It’s a buzz; all tones are present
and the sum of all of them together is “atonal”. I’d like to hear this sometime, so if any of you can program
it I’d appreciate it. Of course if you program it then: (1) you’ll have to use a finite sum; (2) you’ll have to
use a discrete version. In other words, you’ll have to come up with the “discrete-time buzz”, where what
we’ve written down here is sometimes called the “continuous-time buzz”. We’ll talk about the discrete
time buzz later, but you’re welcome to figure it out now.

The expression for f(t) is not a classical Fourier series in any sense. It does not represent a signal with
finite energy and the series does not converge in L2 or in any other easily defined sense. Nevertheless, the
buzz is an important signal for several reasons. What does it look like in the time domain?

In the first problem set you are asked to find a closed form expression for the partial sum

DN(t) =
N∑

n=−N

e2πint .

Rather than giving it away, let’s revert to the real form. Isolating the n = 0 term and combining positive

23 The explosive power of an atomic bomb comes from the electrostatic repulsion between the protons in the nucleus when
enough energy is added for it to fission. It doesn’t have anything to do with E = mc2.
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and negative terms we get

N∑

n=−N

e2πint = 1 +
N∑

n=1

(e2πint + e−2πint) = 1 + 2
N∑

n=1

cos 2πnt .

One thing to note is that the value at the origin is 1+2N ; by periodicity this is the value at all the integers,
and with a little calculus you can check that 1 + 2N is the maximum. It’s getting bigger and bigger with
N . (What’s the minimum, by the way?)

Here are some plots (not terribly good ones) for N = 5, 10, and 20:
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We see that the signal becomes more and more concentrated at the integers, with higher and higher peaks.
In fact, as we’ll show later, the sequence of signals DN (t) tends to a sum of δ’s at the integers as N → ∞:

DN(t) →
∞∑

n=−∞
δ(t− n) .

In what sense the convergence takes place will also have to wait till later. This all goes to show you that
L2 is not the last word in the development and application of Fourier series (even if I made it seem that
way).

The sum of regularly spaced δ’s is sometimes called an impulse train, and we’ll have other descriptive
names for it. It is a fundamental object in sampling, the first step in turning an analog signal into a digital
signal. The finite sum, DN (t), is called the Dirichlet kernel by mathematicians and it too has a number
of applications, one of which we’ll see in the notes on convergence of Fourier series.

In digital signal processing, particularly computer music, it’s the discrete form of the impulse train — the
discrete time buzz — that’s used. Rather than create a sound by adding (sampled) sinusoids one works
in the frequency domain and synthesizes the sound from its spectrum. Start with the discrete impulse
train, which has all frequencies in equal measure. This is easy to generate. Then shape the spectrum
by increasing or decreasing the energies of the various harmonics, perhaps decreasing some to zero. The
sound is synthesized from this shaped spectrum, and other operations are also possible. See, for example,
A Digital Signal Processing Primer by Ken Steiglitz.

One final look back at heat. Green’s function for the heat equation had the form

g(x, t) =
∞∑

n=−∞
e−2π2n2te2πinx .
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Look what happens as t→ 0. This tends to

∞∑

n=−∞
e2πinx ,

the continuous buzz. Just thought you’d find that provocative.

1.14 Notes on Convergence of Fourier Series

My first comment on convergence is — don’t go there. Recall that we get tidy mathematical results on
convergence of Fourier series if we consider L2-convergence, or “convergence in mean square”. Unpacking
the definitions, that’s convergence of the integral of the square of the difference between a function and its
finite Fourier series approximation:

lim
N→∞

∫ 1

0

∣∣∣∣f(t) −
N∑

n=−N

f̂(n)e2πint

∣∣∣∣
2

dt = 0 .

While this is quite satisfactory in many ways, you might want to know, for computing values of a function,
that if you plug a value of t into some finite approximation

N∑

n=−N

f̂(n)e2πint

you’ll be close to the value of the function f(t). And maybe you’d like to know how big you have to take N
to get a certain desired accuracy.

All reasonable wishes, but starting to ask about convergence of Fourier series, beyond the L2-convergence,
is starting down a road leading to endless complications, details, and, in the end, probably madness.
Actually — and calmly — for the kinds of functions that come up in applications the answers are helpful
and not really so difficult to establish. It’s when one inquires into convergence of Fourier series for the
most general functions that the trouble really starts. With that firm warning understood, there are a few
basic things you ought to know about, if only to know that this can be dangerous stuff.

In the first part of these notes my intention is to summarize the main facts together with some examples
and simple arguments. I’ll give careful statements, but we won’t enjoy the complete proofs that support
them, though in the appendices I’ll fill in more of the picture. There we’ll sketch the argument for the result
at the heart of the L2-theory of Fourier series, that the complex exponentials form a basis for L2([0, 1]).
For more and more and much more see Dym and McKean’s Fourier Series and Integrals.

1.14.1 How big are the Fourier coefficients?

Suppose that f(t) is square integrable, and let

f(t) =
∞∑

n=−∞
f̂(n)e2πint

be its Fourier series. Rayleigh’s identity says

∞∑

n=−∞
|f̂(n)|2 =

∫ 1

0
|f(t)|2 dt <∞ .
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In particular the series
∞∑

n=−∞
|f̂(n)|2

converges, and it follows that
|f̂(n)|2 → 0 as n→ ±∞ .

This is a general result on convergent series from good old calculus days — if the series converges the
general term must tend to zero.24 Knowing that the coefficients tend to zero, can we say how fast?

Here’s a simple minded approach that gives some sense of the answer, and shows how the answer depends
on discontinuities in the function or its derivatives. All of this discussion is based on integration by parts
with definite integrals.25 Suppose, as always, that f(t) is periodic of period 1. By the periodicity condition
we have f(0) = f(1). Let’s assume for this discussion that the function doesn’t jump at the endpoints 0
and 1 (like the saw tooth function, below) and that any “problem points” are inside the interval. (This
really isn’t a restriction. I just want to deal with a single discontinuity for the argument to follow.) That
is, we’re imagining that there may be trouble at a point t0 with 0 < t0 < 1; maybe f(t) jumps there, or
maybe f(t) is continuous at t0 but there’s a corner, so f ′(t) jumps at t0, and so on.

The n-th Fourier coefficient is given by

f̂(n) =
∫ 1

0
e−2πintf(t) dt .

To analyze the situation near t0 write this as the sum of two integrals:

f̂ (n) =
∫ t0

0
e−2πintf(t) dt+

∫ 1

t0

e−2πintf(t) dt .

Apply integration by parts to each of these integrals. In doing so, we’re going to suppose that at least
away from t0 the function has as many derivatives as we want. Then, on a first pass,

∫ t0

0
e−2πintf(t) dt =

[
e−2πintf(t)
−2πin

]t0

0

−
∫ t0

0

e−2πintf ′(t)
−2πin

dt

∫ 1

t0

e−2πintf(t) dt =
[
e−2πintf(t)
−2πin

]1

t0

−
∫ 1

t0

e−2πintf ′(t)
−2πin

dt

Add these together. Using f(0) = f(1), this results in

f̂(n) =
[
e−2πintf(t)
−2πin

]t+0

t−0

−
∫ 1

0

e−2πintf ′(t)
−2πin

dt ,

where the notation t−0 and t+0 means to indicate we’re looking at the values of f(t) as we take left hand and
right hand limits at t0. If f(t) is continuous at t0 then the terms in brackets cancel and we’re left with just
the integral as an expression for f̂(n). But if f(t) is not continuous at t0 — if it jumps, for example — then
we don’t get cancellation, and we expect that the Fourier coefficient will be of order 1/n in magnitude.26

24 In particular,
P∞

n=−∞ e2πint, the buzz example, cannot converge for any value of t since |e2πint| = 1.

25 On the off chance that you’re rusty on this, here’s what the formula looks like, as it’s usually written:
Z b

a

udv = [uv]ba −
Z b

a

v du .

To apply integration by parts in a given problem is to decide which part of the integrand is u and which part is dv.

26 If we had more jump discontinuities we’d split the integral up going over several subintervals and we’d have several terms
of order 1/n. The combined result would still be of order 1/n. This would also be true if the function jumped at the endpoints
0 and 1.
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Now suppose that f(t) is continuous at t0, and integrate by parts a second time. In the same manner as
above, this gives

f̂(n) =
[
e−2πintf ′(t)
(−2πin)2

]t+0

t−0

−
∫ 1

0

e−2πintf ′(t)
(−2πin)2

dt ,

If f ′(t) (the derivative) is continuous at t0 then the bracketed part disappears. If f ′(t) is not continuous at
t0, for example if there is a corner at t0, then the terms do not cancel and we expect the Fourier coefficient
to be of size 1/n2.

We can continue in this way. The rough rule of thumb may be stated as:

• If f(t) is not continuous then the Fourier coefficients should have some terms like 1/n.

• If f(t) is differentiable except for corners (f(t) is continuous but f ′(t) is not) then the Fourier
coefficients should have some terms like 1/n2.

• If f ′′(t) exists but is not continuous then the Fourier coefficients should have some terms like 1/n3.

◦ A discontinuity in f ′′(t) is harder to visualize; typically it’s a discontinuity in the curvature.
For example, imagine a curve consisting of an arc of a circle and a line segment tangent to the
circle at their endpoints. Something like

1

10−1

The curve and its first derivative are continuous at the point of tangency, but the second
derivative has a jump. If you rode along this path at constant speed you’d feel a jerk — a
discontinuity in the acceleration — when you passed through the point of tangency.

Obviously this result extends to discontinuities in higher order derivatives. It also jibes with some examples
we had earlier. The square wave

f(t) =

{
+1 0 ≤ t < 1

2

−1 1
2 ≤ t < 1

has jump discontinuities, and its Fourier series is

∑

n odd

2
πin

e2πint =
4
π

∞∑

k=0

1
2k+ 1

sin 2π(2k+ 1)t .

The triangle wave

g(t) =

{
1
2 + t −1

2 ≤ t ≤ 0
1
2 − t 0 ≤ t ≤ +1

2
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is continuous but the derivative is discontinuous. (In fact the derivative is the square wave.) Its Fourier
series is

1
4 +

∞∑

k=0

2
π2(2k + 1)2

cos(2π(2k+ 1)t) .

1.14.2 Rates of convergence and smoothness

The size of the Fourier coefficients tells you something about the rate of convergence of the Fourier series.
There is a precise result on the rate of convergence, which we’ll state but not prove:

Theorem Suppose that f(t) is p-times continuously differentiable, where p is at least 1. Then
the partial sums

SN (t) =
N∑

n=−N

f̂ (n)e2πint

converge to f(t) pointwise and uniformly on [0, 1] as N → ∞. Furthermore

max |f(t) − SN (t)| ≤ constant
1

Np− 1
2

for 0 ≤ t ≤ 1.

We won’t prove it, but I do want to explain a few things. First, at a meta level, this result has to do with
how local properties of the function are reflected in global properties of its Fourier series.27 In the present
setting, “local properties” of a function refers to how smooth it is, i.e., how many times it’s continuously
differentiable. About the only kind of “global question” one can ask about series is how fast they converge,
and that’s what is estimated here. The essential point is that the error in the approximation (and indirectly
the rate at which the coefficients decrease) is governed by the smoothness (the degree of differentiability)
of the signal. The smoother the function — a “local” statement — the better the approximation, and this
is not just in the mean, L2 sense, but uniformly over the interval — a “global” statement.

Let me explain the two terms “pointwise” and “uniformly”; the first is what you think you’d like, but
the second is better. “Pointwise” convergence means that if you plug in a particular value of t the series
converges at that point to the value of the signal at that point. “Uniformly” means that the rate at
which the series converges is the same for all points in [0, 1]. There are several ways of rephrasing this.
Analytically, the way of capturing the property of uniformity is by making a statement, as we did above,
on the maximum amount the function f(t) can differ from its sequence of approximations SN(t) for any
t in the interval. The “constant” in the inequality will depend on f (typically the maximum of some
derivative of some order over the interval, which regulates how much the function wiggles) but not on t
— that’s uniformity. A geometric picture of uniform convergence may be clearer. A sequence of functions
fn(t) converges uniformly to a function f(t) if the graphs of the fn(t) get uniformly close to the graph
of f(t). I’ll leave that second “uniformly” in the sentence to you to specify more carefully (it would
force you to restate the analytic condition) but the picture should be clear. If the picture isn’t clear, see
Appendix 1.16, and think about graphs staying close to graphs if you’re puzzling over our later discussion
of Gibbs’ phenomenon.

27 We will also see “local” — “global” interplay at work in properties of the Fourier transform, which is one reason I wanted
us to see this result for Fourier series.



54 Chapter 1 Fourier Series

Interestingly, in proving the theorem it’s not so hard to show that the partial sums themselves are con-
verging, and how fast. The trickier part is to show that the sums are converging to the value f(t) of the
function at every t ! At any rate, the takeaway headline from this is:

If the function is smooth, the Fourier series converges in every sense you could want; L2,
pointwise, uniformly.

So don’t bother me or anyone else about this, anymore.

1.14.3 Convergence if it’s not continuous?

Let’s consider the sawtooth signal from the homework, say

f(t) =

{
t 0 ≤ t < 1
0 otherwise

and extended to be periodic of period 1.
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The Fourier coefficients are given by

f̂(n) =
∫ 1

0
te−2πint dt .

Integrating by parts gives, when n 6= 0,

f̂(n) =
[
te−2πint

−2πin

]1

0

−
∫ 1

0

1
−2πin

e−2πint dt =
i

2πn
(use 1/i = −i; the integral is 0.)

Notice a few things.

• The coefficients are of the order 1/n, just as they’re supposed to be.

• The term with n = 0 is 1/2, which we have to get directly, not from the integration by parts step.
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(You might also notice the conjugate symmetry in the coefficients, f̂(−n) = f̂(n). This is often a good
check on your calculations.)

So the Fourier series is

f(t) = 1
2 +

∞∑

n=−∞

i

2πn
e2πint .

which means that

lim
N→∞

∥∥∥∥f(t) −
(

1
2 +

N∑

n=−N

i

2πn
e2πint

)∥∥∥∥ = 0

in the L2 norm. But what do we get when we plug in a value of t and compute the sum, even setting aside
the obvious problem of adding up an infinite number of terms?

Here are the plots for N = 5, 10, and 50 of partial sums

SN(t) = 1
2 +

N∑

n=−N

i

2πn
e2πint .
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There are two questions:

1. What does the series converge to, if it converges at all, at a point of discontinuity?

2. What’s that funny behavior at the corners?

Here’s the answer to the first question.

Theorem At a jump discontinuity (such as occurs in the sawtooth) the partial sums

SN (t) =
N∑

n=−N

f̂ (n)e2πint

converge to the average of the upper and lower values at the discontinuities.
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For example, for the sawtooth the partial sums converge to 1/2 at the points t = 0, ±1, ±2, . . . .

Because of this result some people define a value of a function at a jump discontinuity to be the average of
the upper and lower values. That’s reasonable in many contexts — this is one context and we’ll see others
— but it becomes a religious issue to some so I’ll pass without further comment.

We can combine this theorem with the previous theorem to state a useful result that’s easy to apply in
practice:

Theorem on pointwise convergence Suppose that f(t) is continuous with a continuous
derivative except at perhaps a finite number of points (in a period). Then for each a ∈ [0, 1],

SN(a) → 1
2( lim

t→a−
f(t) + lim

t→a+
f(t))

as N → ∞.

If f(t) is continuous at a then the left and right hand limits are equal and we just have Sn(a) → f(a). If
f(t) has a jump at a then we’re in the situation in the theorem just above and SN(a) converges to the
average of the left and right hand limits.

The funny behavior near the corners, where it seems that the approximations are overshooting the signal,
is more interesting. We saw this also with the approximations to the square wave. This is the Gibbs
phenomenon, named after J. W. Gibbs. It really happens, and it’s time to come to terms with it. It
was observed experimentally by Michelson and Stratton (that’s the same Albert Michelson as in the
famous “Michelson and Morley” experiment) who designed a mechanical device to draw finite Fourier
series. Michelson and Stratton assumed that the extra wiggles they were seeing at jumps was a mechanical
problem with the machine. But Gibbs, who used the sawtooth as an example, showed that the phenomenon
is real and does not go away even in the limit. The oscillations may become more compressed, but they
don’t go away. (However, they do contribute zero in the limit of the L2 norm of the difference between the
function and its Fourier series.)

A standard way to formulate Gibbs’s phenomenon precisely is for a square wave that jumps from −1 to +1
at t = 0 when t goes from negative to positive. Away from the single jump discontinuity, SN(t) tends
uniformly to the values, +1 or −1 as the case may be, as N → ∞. Hence the precise statement of Gibbs’s
phenomenon will be that the maximum of SN (t) remains greater than 1 as N → ∞. And that’s what is
proved:

lim
N→∞

maxSN(t) = 1.089490 . . .

So the overshoot is almost 9% — quite noticeable! See Section 1.18 of these notes for an outline of the
derivation.

Now, there’s something here that may bother you. We have the theorem on pointwise convergence that
says at a jump discontinuity the partial sums converge to the average of the values at the jump. We also
have Gibbs” phenomenon and the picture of an overshooting oscillation that doesn’t go away. How can
these two pictures coexist? If you’re confused it’s because you’re thinking that convergence of SN (t), at,
say, t = 0 in the sawtooth example, is the same as convergence of the graphs of the SN (t) to the graph
of the sawtooth function. But they are not the same thing. It’s the distinction between pointwise and
uniform convergence — see Section 1.15.

Finally, you should be aware that discontinuities are not at all uncommon. You might introduce jumps
via windows or filters, for example. I mentioned earlier that this can be a problem in computer music,
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and images as two-dimensional signals, often have edges.28 Remember, as we said in an earlier lecture, a
discontinuity or a corner means that you must have infinitely high frequencies in the spectrum, so cutting
off the approximation at a certain point is sure to introduce ripples in the computation of values of the
function by means of a finite Fourier series approximation.

1.15 Appendix: Pointwise Convergence vs. Uniform Convergence

Here’s an example, a classic of its type, to show that pointwise convergence is not the same as uniform
convergence, or what amounts to the same thing, that we can have a sequence of functions fn(t) with the
property that fn(t) → f(t) for every value of t as n → ∞ but the graphs of the fn(t) do not ultimately
look like the graph of f(t). Let me describe such a sequence of functions in words, draw a few pictures,
and leave it to you to write down a formula.

The fn(t) will all be defined on 0 ≤ t ≤ 1. For each n the graph of the function fn(t) is zero from 1/n to
1 and for 0 ≤ t ≤ 1/n it’s an isosceles triangle with height n2. Here are pictures of f1(t), f5(t) and f10(t).
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28 In fact, it’s an important problem to detect edges in images.
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The peak slides to the left and gets higher and higher as n increases. It’s clear that for each t the sequence
fn(t) tends to 0. This is so because fn(0) = 0 for all n, and for any t 6= 0 eventually, that is, for large
enough n, the peak is going to slide to the left of t and fn(t) will be zero from that n on out. Thus fn(t)
converges pointwise to the constant 0. But the graphs of the fn(t) certainly are not uniformly close to 0!

1.16 Appendix: Studying Partial Sums via the Dirichlet Kernel: The
Buzz Is Back

There are some interesting mathematical tools used to study the partial sums of Fourier series and their
convergence properties, as in the theorem we stated earlier on the rate of convergence of the partial sums
for p times continuously differentiable functions. In fact, we’ve already seen the main tool — it’s the
Dirichlet kernel

DN(t) =
N∑

n=−N

e2πint

that we introduced in Section 1.13.2 in the context of the “buzz signal”. Here’s how it’s used.

We can write a partial sum in what turns out to be a helpful way by bringing back in the definition of the
Fourier coefficients as an integral.

SN (t) =
N∑

n=−N

f̂(n)e2πint

=
N∑

n=−N

(∫ 1

0
f(s)e−2πins ds

)
e2πint

(calling the variable of integration s since we’re already using t)

=
N∑

n=−N

(∫ 1

0
e2πintf(s)e−2πins ds

)

=
∫ 1

0

( N∑

n=−N

e2πinte−2πinsf(s)
)
ds

=
∫ 1

0

( N∑

n=−N

e2πin(t−s)

)
f(s) ds =

∫ 1

0
DN(t− s)f(s) ds .
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Just as we saw in the solution of the heat equation, we have produced a convolution! The integral
∫ 1

0
DN (t− s)f(s) ds

is the convolution of f(t) with the function DN (t) and it produces the partial sum SN (t).29

Why is this helpful? By means of the convolution integral, estimates for SN (t) involve both properties of
f (on which we make certain assumptions) together with properties of DN(t), for which we can find an
explicit expression. Here’s how it goes, just to see if anyone’s reading these notes. The idea is to view
DN(t) as a geometric series. We can simplify the algebra by factoring out the term corresponding to −N ,
thereby writing the sum as going from 0 to 2N :

N∑

n=−N

e2πinp = e−2πiNp
2N∑

n=0

e2πinp

= e−2πiNp e
2πi(2N+1)p − 1
e2πip − 1

(using the formula for the sum of a geometric series
∑
rn with r = e2πip)

It’s most common to write this in terms of the sine function. Recall that

sin θ =
eiθ − e−iθ

2i
.

To bring the sine into the expression, above, there’s a further little factoring trick that’s used often:

e2πi(2N+1)p − 1 = eπi(2N+1)p(eπi(2N+1)p − e−πi(2N+1)p)

= 2ieπi(2N+1)p sin(π(2N + 1)p)

e2πip − 1 = eπip(eπip − e−πip)

= 2ieπip sin(πp)

Therefore

e−2πiNp e
2πi(2N+1)p − 1
e2πip − 1

= e−2πiNp e
πi(2N+1)p

eπip

2i sin(π(2N + 1)p)
2i sin(πp)

=
sin(π(2N + 1)p)

sin(πp)
.

Nice.

Recall from Section 1.13.2 that as N gets larger DN(t) becomes more and more sharply peaked at the
integers, and DN (0) → ∞ as N → ∞. Forming the convolution, as in

SN (t) =
∫ 1

0
DN(t − s)f(s) ds ,

above, shifts the peak at 0 to t, and integrates. The integrand is concentrated around t (as it turns out
the peaks at the other integers don’t contribute) and in the limit as N → ∞ the integral tends to f(t).30

Carrying this out in detail — which we are not going to do — depends on the explicit formula for DN (t).
The more one assumes about the signal f(t) the more the argument can produce. This is how one gets the
theorem on order of differentiability and rate of convergence of partial sums of Fourier series.

29 It’s no accident that convolution comes in and we’ll understand this thoroughly when we develop some properties of the
Fourier transform. The moral of the story will then be that while math majors take the appearance of DN (t) to be a mystical
revelation, to any EE it’s just meeting an old friend on the corner. You’ll see.

30 Those of you who have worked with δ functions may think you recognize this sort of thing:Z
δ(t − s)f(s)ds = f(t)

and you’d be right. We’ll do plenty of this.
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1.17 Appendix: The Complex Exponentials Are a Basis for L2([0, 1])

Remember the second point in our hit parade of the L2-theory of Fourier series:

The complex exponentials e2πint, n = 0,±1,±2, . . . form a basis for L2([0, 1]), and the partial
sums converge to f(t) as N → ∞ in the L2-distance. This means that

lim
N→∞

∥∥∥∥
N∑

n=−N

f̂(n)e2πint − f(t)
∥∥∥∥ = 0 .

I said earlier that we wouldn’t attempt a complete proof of this, and we won’t. But with the discussion
just preceding we can say more precisely how the proof goes, and what the issues are that we cannot get
into. The argument is in three steps.

Let f(t) be a square integrable function and let ε > 0.

Step 1 Any function in L2([0, 1]) can be approximated in the L2-norm by a continuously differentiable
function.31 That is, starting with a given f in L2([0, 1]) and any ε > 0 we can find a function g(t) that is
continuously differentiable on [0, 1] for which

‖f − g‖ < ε .

This is the step we cannot do! It’s here, in proving this statement, that one needs the more general theory
of integration and the limiting processes that go with it. Let it rest.

Step 2 From the discussion above, we now know (at least we’ve now been told, with some indication of
why) that the Fourier partial sums for a continuously differentiable function (p = 1 in the statement of the
theorem) converge uniformly to the function. Thus, with g(t) as in Step 1, we can choose N so large that

max
∣∣∣g(t)−

N∑

n=−N

ĝ(n)e2πint
∣∣∣ < ε .

Then for the L2-norm,

∫ 1

0

∣∣∣∣g(t)−
N∑

n=−N

ĝ(n)e2πint

∣∣∣∣
2

dt ≤
∫ 1

0

(
max

∣∣∣g(t)−
N∑

n=−N

ĝ(n)e2πint
∣∣∣
)2

dt <

∫ 1

0
ε2 dt = ε2 .

Hence ∥∥∥∥g(t)−
N∑

n=−N

ĝ(n)e2πint

∥∥∥∥ < ε .

Step 3 Remember that the Fourier coefficients provide the best finite approximation in L2 to the function,
that is, as we’ll need it,

∥∥∥∥f(t) −
N∑

n=−N

f̂(n)e2πint

∥∥∥∥ ≤
∥∥∥∥f(t) −

N∑

n=−N

ĝ(n)e2πint

∥∥∥∥ .

31 Actually, it’s true that any function in L2([0,1]) can be approximated by an infinitely differentiable function.
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And at last
∥∥∥∥f(t) −

N∑

n=−N

f̂(n)e2πint

∥∥∥∥ ≤
∥∥∥∥f(t) −

N∑

n=−N

ĝ(n)e2πint

∥∥∥∥

=
∥∥∥∥f(t) − g(t) + g(t)−

N∑

n=−N

ĝ(n)e2πint

∥∥∥∥

≤
∥∥f(t) − g(t)

∥∥+
∥∥∥∥g(t)−

N∑

n=−N

ĝ(n)e2πint

∥∥∥∥ < 2ε .

This shows that ∥∥∥∥f(t) −
N∑

n=−N

f̂(n)e2πint)
∥∥∥∥

can be made arbitrarily small by taking N large enough, which is what we were required to do.

1.18 Appendix: More on the Gibbs Phenomenon

Here’s what’s involved in establishing the Gibbs’ phenomenon for the square wave

f(t) =

{
−1 −1

2 ≤ t < 0

+1 0 ≤ t ≤ +1
2

We’re supposed to show that
lim

N→∞
maxSN(t) = 1.089490 . . .

Since we’ve already introduced the Dirichlet kernel, let’s see how it can be used here. I’ll be content with
showing the approach and the outcome, and won’t give the somewhat tedious detailed estimates. As in
Appendix 2, the partial sum SN (t) can be written as a convolution with DN . In the case of the square
wave, as we’ve set it up here,

SN (t) =
∫ 1/2

−1/2
DN(t − s)f(s) ds

= −
∫ 0

−1/2

DN(t − s) ds+
∫ 1/2

0

DN(t − s) ds

= −
∫ 0

−1/2
DN(s− t) ds+

∫ 1/2

0
DN(s− t) ds (using that DN is even.)

The idea next is to try to isolate, and estimate, the behavior near the origin by getting an integral from
−t to t. We can do this by first making a change of variable u = s− t in both integrals. This results in

−
∫ 0

−1/2

DN (s− t) ds+
∫ 1/2

0

DN (s− t) ds = −
∫ −t

− 1
2
−t

DN(u) du+
∫ 1

2
−t

−t

DN(u) du .

To this last expression add and subtract ∫ t

−t
DN(u) du
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and combine integrals to further obtain

−
∫ −t

− 1
2
−t
DN(u) du+

∫ 1
2
−t

−t
DN(u) du = −

∫ t

− 1
2
−t
DN(u) du+

∫ 1
2
−t

−t
DN(u) du+

∫ t

−t
DN(u) du

Finally, make a change of variable w = −u in the first integral and use the evenness of DN . Then the first
two integrals combine and we are left with, again letting s be the variable of integration in both integrals,

SN(t) =
∫ t

−t
DN(s) ds−

∫ 1
2
+t

1
2
−t

DN (s) ds .

The reason that this is helpful is that using the explicit formula for DN one can show (this takes some
work — integration by parts) that

∣∣∣∣SN(t) −
∫ t

−t
DN(s) ds

∣∣∣∣ =
∣∣∣∣
∫ 1

2
+t

1
2
−t

DN(s) ds
∣∣∣∣ ≤

constant
n

,

and hence

lim
N→∞

∣∣∣∣SN(t) −
∫ t

−t
DN(s) ds

∣∣∣∣ = 0 .

This means that if we can establish a max for
∫ t
−tDN(s) ds we’ll also get one for SN (t). That, too, takes

some work, but the fact that one has an explicit formula for DN makes it possible to deduce for |t| small
and N large that

∫ t
−tDN(t) dt, and hence SN (t) is well approximated by

2
π

∫ (2N+1)πt

0

sin s
s

ds .

This integral has a maximum at the first place where sin((2N + 1)πt) = 0, i.e., at t = 1/(2N + 1). At this
point the value of the integral (found via numerical approximations) is

2
π

∫ π

0

sin s
s

ds = 1.09940 . . . ,

and that’s where the 9% overshoot figure comes from.

Had enough?
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Chapter 2

Fourier Transform

2.1 A First Look at the Fourier Transform

We’re about to make the transition from Fourier series to the Fourier transform. “Transition” is the
appropriate word, for in the approach we’ll take the Fourier transform emerges as we pass from periodic
to nonperiodic functions. To make the trip we’ll view a nonperiodic function (which can be just about
anything) as a limiting case of a periodic function as the period becomes longer and longer. Actually, this
process doesn’t immediately produce the desired result. It takes a little extra tinkering to coax the Fourier
transform out of the Fourier series, but it’s an interesting approach.1

Let’s take a specific, simple, and important example. Consider the “rect” function (“rect” for “rectangle”)
defined by

Π(t) =

{
1 |t| < 1/2
0 |t| ≥ 1/2

Here’s the graph, which is not very complicated.

0

1

11/2 3/2−1 −1/2−3/2

Π(t) is even — centered at the origin — and has width 1. Later we’ll consider shifted and scaled versions.
You can think of Π(t) as modeling a switch that is on for one second and off for the rest of the time. Π is also

1 As an aside, I don’t know if this is the best way of motivating the definition of the Fourier transform, but I don’t know a
better way and most sources you’re likely to check will just present the formula as a done deal. It’s true that, in the end, it’s
the formula and what we can do with it that we want to get to, so if you don’t find the (brief) discussion to follow to your
tastes, I am not offended.
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called, variously, the top hat function (because of its graph), the indicator function, or the characteristic
function for the interval (−1/2, 1/2).

While we have defined Π(±1/2) = 0, other common conventions are either to have Π(±1/2) = 1 or
Π(±1/2) = 1/2. And some people don’t define Π at ±1/2 at all, leaving two holes in the domain. I don’t
want to get dragged into this dispute. It almost never matters, though for some purposes the choice
Π(±1/2) = 1/2 makes the most sense. We’ll deal with this on an exceptional basis if and when it comes
up.

Π(t) is not periodic. It doesn’t have a Fourier series. In problems you experimented a little with periodiza-
tions, and I want to do that with Π but for a specific purpose. As a periodic version of Π(t) we repeat
the nonzero part of the function at regular intervals, separated by (long) intervals where the function is
zero. We can think of such a function arising when we flip a switch on for a second at a time, and do so
repeatedly, and we keep it off for a long time in between the times it’s on. (One often hears the term duty
cycle associated with this sort of thing.) Here’s a plot of Π(t) periodized to have period 15.

0 1

1

5 10 15 20−1−5−10−15−20

Here are some plots of the Fourier coefficients of periodized rectangle functions with periods 2, 4, and 16,
respectively. Because the function is real and even, in each case the Fourier coefficients are real, so these
are plots of the actual coefficients, not their square magnitudes.
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We see that as the period increases the frequencies are getting closer and closer together and it looks as
though the coefficients are tracking some definite curve. (But we’ll see that there’s an important issue here
of vertical scaling.) We can analyze what’s going on in this particular example, and combine that with
some general statements to lead us on.

Recall that for a general function f(t) of period T the Fourier series has the form

f(t) =
∞∑

n=−∞
cne

2πint/T

so that the frequencies are 0,±1/T,±2/T, . . . . Points in the spectrum are spaced 1/T apart and, indeed,
in the pictures above the spectrum is getting more tightly packed as the period T increases. The n-th
Fourier coefficient is given by

cn =
1
T

∫ T

0

e−2πint/T f(t) dt =
1
T

∫ T/2

−T/2

e−2πint/T f(t) dt .
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We can calculate this Fourier coefficient for Π(t):

cn =
1
T

∫ T/2

−T/2
e−2πint/T Π(t) dt =

1
T

∫ 1/2

−1/2
e−2πint/T · 1 dt

=
1
T

[ 1
−2πin/T

e−2πint/T
]t=1/2

t=−1/2
=

1
2πin

(
eπin/T − e−πin/T

)
=

1
πn

sin
(

πn

T

)
.

Now, although the spectrum is indexed by n (it’s a discrete set of points), the points in the spectrum are
n/T (n = 0,±1,±2, . . .), and it’s more helpful to think of the “spectral information” (the value of cn) as
a transform of Π evaluated at the points n/T . Write this, provisionally, as

(Transform of periodized Π)
(

n

T

)
=

1
πn

sin
(

πn

T

)
.

We’re almost there, but not quite. If you’re dying to just take a limit as T → ∞ consider that, for each n,
if T is very large then n/T is very small and

1
πn

sin
(πn
T

)
is about size

1
T

(remember sin θ ≈ θ if θ is small) .

In other words, for each n this so-called transform,

1
πn

sin
(

πn

T

)
,

tends to 0 like 1/T . To compensate for this we scale up by T , that is, we consider instead

(Scaled transform of periodized Π)
(

n

T

)
= T

1
πn

sin
(

πn

T

)
=

sin(πn/T )
πn/T

.

In fact, the plots of the scaled transforms are what I showed you, above.

Next, if T is large then we can think of replacing the closely packed discrete points n/T by a continuous
variable, say s, so that with s = n/T we would then write, approximately,

(Scaled transform of periodized Π)(s) =
sinπs
πs

.

What does this procedure look like in terms of the integral formula? Simply

(Scaled transform of periodized Π)
(n
T

)
= T · cn

= T · 1
T

∫ T/2

−T/2
e−2πint/T f(t) dt =

∫ T/2

−T/2
e−2πint/T f(t) dt .

If we now think of T → ∞ as having the effect of replacing the discrete variable n/T by the continuous
variable s, as well as pushing the limits of integration to ±∞, then we may write for the (limiting) transform
of Π the integral expression

Π̂(s) =
∫ ∞

−∞
e−2πist Π(t) dt .

Behold, the Fourier transform is born!

Let’s calculate the integral. (We know what the answer is, because we saw the discrete form of it earlier.)

Π̂(s) =
∫ ∞

−∞
e−2πistΠ(t) dt =

∫ 1/2

−1/2
e−2πist · 1 dt =

sinπs

πs
.

Here’s a graph. You can now certainly see the continuous curve that the plots of the discrete, scaled Fourier
coefficients are shadowing.
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The function sinπx/πx (written now with a generic variable x) comes up so often in this subject that it’s
given a name, sinc:

sincx =
sinπx
πx

pronounced “sink”. Note that
sinc 0 = 1

by virtue of the famous limit

lim
x→0

sinx
x

= 1 .

It’s fair to say that many EE’s see the sinc function in their dreams.
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How general is this? We would be led to the same idea — scale the Fourier coefficients by T — if we
had started off periodizing just about any function with the intention of letting T → ∞. Suppose f(t) is
zero outside of |t| ≤ 1/2. (Any interval will do, we just want to suppose a function is zero outside some
interval so we can periodize.) We periodize f(t) to have period T and compute the Fourier coefficients:

cn =
1
T

∫ T/2

−T/2

e−2πint/T f(t) dt =
1
T

∫ 1/2

−1/2

e−2πint/T f(t) dt .
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How big is this? We can estimate

|cn| =
1
T

∣∣∣∣
∫ 1/2

−1/2
e−2πint/T f(t) dt

∣∣∣∣

≤ 1
T

∫ 1/2

−1/2
|e−2πint/T | |f(t)| dt= 1

T

∫ 1/2

−1/2
|f(t)| dt =

A

T
,

where

A =
∫ 1/2

−1/2

|f(t)| dt ,

which is some fixed number independent of n and T . Again we see that cn tends to 0 like 1/T , and so again
we scale back up by T and consider

(Scaled transform of periodized f )
(n
T

)
= Tcn =

∫ T/2

−T/2
e−2πint/T f(t) dt .

In the limit as T → ∞ we replace n/T by s and consider

f̂(s) =
∫ ∞

−∞
e−2πistf(t) dt .

We’re back to the same integral formula.

Fourier transform defined There you have it. We now define the Fourier transform of a function f(t)
to be

f̂(s) =
∫ ∞

−∞
e−2πistf(t) dt .

For now, just take this as a formal definition; we’ll discuss later when such an integral exists. We assume
that f(t) is defined for all real numbers t. For any s ∈ R, integrating f(t) against e−2πist with respect to t
produces a complex valued function of s, that is, the Fourier transform f̂(s) is a complex-valued function
of s ∈ R. If t has dimension time then to make st dimensionless in the exponential e−2πist s must have
dimension 1/time.

While the Fourier transform takes flight from the desire to find spectral information on a nonperiodic
function, the extra complications and extra richness of what results will soon make it seem like we’re in
a much different world. The definition just given is a good one because of the richness and despite the
complications. Periodic functions are great, but there’s more bang than buzz in the world to analyze.

The spectrum of a periodic function is a discrete set of frequencies, possibly an infinite set (when there’s
a corner) but always a discrete set. By contrast, the Fourier transform of a nonperiodic signal produces a
continuous spectrum, or a continuum of frequencies.

It may be that f̂(s) is identically zero for |s| sufficiently large — an important class of signals called
bandlimited — or it may be that the nonzero values of f̂(s) extend to ±∞, or it may be that f̂(s) is zero
for just a few values of s.

The Fourier transform analyzes a signal into its frequency components. We haven’t yet considered how
the corresponding synthesis goes. How can we recover f(t) in the time domain from f̂(s) in the frequency
domain?
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Recovering f(t) from f̂(s) We can push the ideas on nonperiodic functions as limits of periodic func-
tions a little further and discover how we might obtain f(t) from its transform f̂(s). Again suppose f(t)
is zero outside some interval and periodize it to have (large) period T . We expand f(t) in a Fourier series,

f(t) =
∞∑

n=−∞
cne

2πint/T .

The Fourier coefficients can be written via the Fourier transform of f evaluated at the points sn = n/T .

cn =
1
T

∫ T/2

−T/2
e−2πint/T f(t) dt =

1
T

∫ ∞

−∞
e−2πint/T f(t) dt

(we can extend the limits to ±∞ since f(t) is zero outside of [−T/2, T/2])

=
1
T
f̂
(n
T

)
=

1
T
f̂(sn) .

Plug this into the expression for f(t):

f(t) =
∞∑

n=−∞

1
T
f̂(sn)e2πisnt .

Now, the points sn = n/T are spaced 1/T apart, so we can think of 1/T as, say ∆s, and the sum above as
a Riemann sum approximating an integral

∞∑

n=−∞

1
T
f̂(sn)e2πisnt =

∞∑

n=−∞
f̂(sn)e2πisnt∆s ≈

∫ ∞

−∞
f̂(s)e2πist ds .

The limits on the integral go from −∞ to ∞ because the sum, and the points sn, go from −∞ to ∞. Thus
as the period T → ∞ we would expect to have

f(t) =
∫ ∞

−∞
f̂(s)e2πist ds

and we have recovered f(t) from f̂(s). We have found the inverse Fourier transform and Fourier inversion.

The inverse Fourier transform defined, and Fourier inversion, too The integral we’ve just come
up with can stand on its own as a “transform”, and so we define the inverse Fourier transform of a function
g(s) to be

ǧ(t) =
∫ ∞

−∞
e2πistg(s) ds (upside down hat — cute) .

Again, we’re treating this formally for the moment, withholding a discussion of conditions under which the
integral makes sense. In the same spirit, we’ve also produced the Fourier inversion theorem. That is

f(t) =
∫ ∞

−∞
e2πistf̂(s) ds .

Written very compactly,
(f̂)ˇ= f .

The inverse Fourier transform looks just like the Fourier transform except for the minus sign. Later we’ll
say more about the remarkable symmetry between the Fourier transform and its inverse.

By the way, we could have gone through the whole argument, above, starting with f̂ as the basic function
instead of f . If we did that we’d be led to the complementary result on Fourier inversion,

(ǧ)ˆ= g .
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A quick summary Let’s summarize what we’ve done here, partly as a guide to what we’d like to do
next. There’s so much involved, all of importance, that it’s hard to avoid saying everything at once. Realize
that it will take some time before everything is in place.

• The Fourier transform of the signal f(t) is

f̂(s) =
∫ ∞

−∞
f(t)e−2πist dt .

This is a complex-valued function of s.

One value is easy to compute, and worth pointing out, namely for s = 0 we have

f̂(0) =
∫ ∞

−∞
f(t) dt .

In calculus terms this is the area under the graph of f(t). If f(t) is real, as it most often is, then
f̂(0) is real even though other values of the Fourier transform may be complex.

• The domain of the Fourier transform is the set of real numbers s. One says that f̂ is defined on
the frequency domain, and that the original signal f(t) is defined on the time domain (or the spatial
domain, depending on the context). For a (nonperiodic) signal defined on the whole real line we
generally do not have a discrete set of frequencies, as in the periodic case, but rather a continuum
of frequencies.2 (We still do call them “frequencies”, however.) The set of all frequencies is the
spectrum of f(t).

◦ Not all frequencies need occur, i.e., f̂(s) might be zero for some values of s. Furthermore, it
might be that there aren’t any frequencies outside of a certain range, i.e.,

f̂(s) = 0 for |s| large .

These are called bandlimited signals and they are an important special class of signals. They
come up in sampling theory.

• The inverse Fourier transform is defined by

ǧ(t) =
∫ ∞

−∞
e2πistg(s) ds .

Taken together, the Fourier transform and its inverse provide a way of passing between two (equiva-
lent) representations of a signal via the Fourier inversion theorem:

(f̂)ˇ= f , (ǧ)ˆ= g .

We note one consequence of Fourier inversion, that

f(0) =
∫ ∞

−∞
f̂(s) ds .

There is no quick calculus interpretation of this result. The right hand side is an integral of a
complex-valued function (generally), and result is real (if f(0) is real).

2 A periodic function does have a Fourier transform, but it’s a sum of δ functions. We’ll have to do that, too, and it will take
some effort.
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Now remember that f̂ (s) is a transformed, complex-valued function, and while it may be “equivalent”
to f(t) it has very different properties. Is it really true that when f̂(s) exists we can just plug it into
the formula for the inverse Fourier transform — which is also an improper integral that looks the
same as the forward transform except for the minus sign — and really get back f(t)? Really? That’s
worth wondering about.

• The square magnitude |f̂(s)|2 is called the power spectrum (especially in connection with its use in
communications) or the spectral power density (especially in connection with its use in optics) or the
energy spectrum (especially in every other connection).

An important relation between the energy of the signal in the time domain and the energy spectrum
in the frequency domain is given by Parseval’s identity for Fourier transforms:

∫ ∞

−∞
|f(t)|2 dt =

∫ ∞

−∞
|f̂(s)|2 ds .

This is also a future attraction.

A warning on notations: None is perfect, all are in use Depending on the operation to be
performed, or on the context, it’s often useful to have alternate notations for the Fourier transform. But
here’s a warning, which is the start of a complaint, which is the prelude to a full blown rant. Diddling with
notation seems to be an unavoidable hassle in this subject. Flipping back and forth between a transform
and its inverse, naming the variables in the different domains (even writing or not writing the variables),
changing plus signs to minus signs, taking complex conjugates, these are all routine day-to-day operations
and they can cause endless muddles if you are not careful, and sometimes even if you are careful. You will
believe me when we have some examples, and you will hear me complain about it frequently.

Here’s one example of a common convention:

If the function is called f then one often uses the corresponding capital letter, F , to denote the
Fourier transform. So one sees a and A, z and Z, and everything in between. Note, however,
that one typically uses different names for the variable for the two functions, as in f(x) (or
f(t)) and F (s). This ‘capital letter notation’ is very common in engineering but often confuses
people when ‘duality’ is invoked, to be explained below.

And then there’s this:

Since taking the Fourier transform is an operation that is applied to a function to produce a new
function, it’s also sometimes convenient to indicate this by a kind of “operational” notation.
For example, it’s common to write Ff(s) for f̂(s), and so, to repeat the full definition

Ff(s) =
∫ ∞

−∞
e−2πistf(t) dt .

This is often the most unambiguous notation. Similarly, the operation of taking the inverse
Fourier transform is then denoted by F−1, and so

F−1g(t) =
∫ ∞

−∞
e2πistg(s) ds .

We will use the notation Ff more often than not. It, too, is far from ideal, the problem being with keeping
variables straight — you’ll see.
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Finally, a function and its Fourier transform are said to constitute a “Fourier pair”, ; this is concept of
‘duality’ to be explained more precisely later. There have been various notations devised to indicate this
sibling relationship. One is

f(t) 
 F (s)

Bracewell advocated the use of
F (s) ⊃ f(t)

and Gray and Goodman also use it. I hate it, personally.

A warning on definitions Our definition of the Fourier transform is a standard one, but it’s not the
only one. The question is where to put the 2π: in the exponential, as we have done; or perhaps as a factor
out front; or perhaps left out completely. There’s also a question of which is the Fourier transform and
which is the inverse, i.e., which gets the minus sign in the exponential. All of the various conventions are in
day-to-day use in the professions, and I only mention this now because when you’re talking with a friend
over drinks about the Fourier transform, be sure you both know which conventions are being followed. I’d
hate to see that kind of misunderstanding get in the way of a beautiful friendship.

Following the helpful summary provided by T. W. Körner in his book Fourier Analysis, I will summarize
the many irritating variations. To be general, let’s write

Ff(s) =
1
A

∫ ∞

−∞
eiBstf(t) dt .

The choices that are found in practice are

A =
√

2π B = ±1
A = 1 B = ±2π
A = 1 B = ±1

The definition we’ve chosen has A = 1 and B = −2π.

Happy hunting and good luck.

2.2 Getting to Know Your Fourier Transform

In one way, at least, our study of the Fourier transform will run the same course as your study of calculus.
When you learned calculus it was necessary to learn the derivative and integral formulas for specific
functions and types of functions (powers, exponentials, trig functions), and also to learn the general
principles and rules of differentiation and integration that allow you to work with combinations of functions
(product rule, chain rule, inverse functions). It will be the same thing for us now. We’ll need to have a
storehouse of specific functions and their transforms that we can call on, and we’ll need to develop general
principles and results on how the Fourier transform operates.

2.2.1 Examples

We’ve already seen the example
Π̂ = sinc orFΠ(s) = sinc s

using the F notation. Let’s do a few more examples.
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The triangle function Consider next the “triangle function”, defined by

Λ(x) =

{
1 − |x| |x| ≤ 1
0 otherwise

0 1

1

−1 1/2−1/2

For the Fourier transform we compute (using integration by parts, and the factoring trick for the sine
function):

FΛ(s) =
∫ ∞

−∞
Λ(x)e−2πisx dx =

∫ 0

−1
(1 + x)e−2πisx dx+

∫ 1

0
(1− x)e−2πisx dx

=
(

1 + 2iπs
4π2s2

− e2πis

4π2s2

)
−
(

2iπs− 1
4π2s2

+
e−2πis

4π2s2

)

= −e
−2πis(e2πis − 1)2

4π2s2
= −e

−2πis(eπis(eπis − e−πis))2

4π2s2

= −e
−2πise2πis(2i)2 sin2 πs

4π2s2
=
( sin πs

πs

)2
= sinc2 s.

It’s no accident that the Fourier transform of the triangle function turns out to be the square of the Fourier
transform of the rect function. It has to do with convolution, an operation we have seen for Fourier series
and will see anew for Fourier transforms in the next chapter.

The graph of sinc2 s looks like:
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The exponential decay Another commonly occurring function is the (one-sided) exponential decay,
defined by

f(t) =

{
0 t ≤ 0
e−at t > 0

where a is a positive constant. This function models a signal that is zero, switched on, and then decays
exponentially. Here are graphs for a = 2, 1.5, 1.0, 0.5, 0.25.

−2 −1 0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

t

f
(t

)



78 Chapter 2 Fourier Transform

Which is which? If you can’t say, see the discussion on scaling the independent variable at the end of this
section.

Back to the exponential decay, we can calculate its Fourier transform directly.

Ff(s) =
∫ ∞

0
e−2πiste−at dt =

∫ ∞

0
e−2πist−at dt

=
∫ ∞

0
e(−2πis−a)t dt =

[
e(−2πis−a)t

−2πis− a

]t=∞

t=0

=
e(−2πis)t

−2πis− a
e−at

∣∣∣∣
t=∞

− e(−2πis−a)t

−2πis− a

∣∣∣∣
t=0

=
1

2πis+ a

In this case, unlike the results for the rect function and the triangle function, the Fourier transform is
complex. The fact that FΠ(s) and FΛ(s) are real is because Π(x) and Λ(x) are even functions; we’ll go
over this shortly. There is no such symmetry for the exponential decay.

The power spectrum of the exponential decay is

|Ff(s)|2 =
1

|2πis+ a|2 =
1

a2 + 4π2s2
.

Here are graphs of this function for the same values of a as in the graphs of the exponential decay function.
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Which is which? You’ll soon learn to spot that immediately, relative to the pictures in the time domain,
and it’s an important issue. Also note that |Ff(s)|2 is an even function of s even though Ff(s) is not.
We’ll see why later. The shape of |Ff(s)|2 is that of a “bell curve”, though this is not Gaussian, a function
we’ll discuss just below. The curve is known as a Lorenz profile and comes up in analyzing the transition
probabilities and lifetime of the excited state in atoms.

How does the graph of f(ax) compare with the graph of f(x)? Let me remind you of some
elementary lore on scaling the independent variable in a function and how scaling affects its graph. The
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question is how the graph of f(ax) compares with the graph of f(x) when 0 < a < 1 and when a > 1; I’m
talking about any generic function f(x) here. This is very simple, especially compared to what we’ve done
and what we’re going to do, but you’ll want it at your fingertips and everyone has to think about it for a
few seconds. Here’s how to spend those few seconds.

Consider, for example, the graph of f(2x). The graph of f(2x), compared with the graph of f(x), is
squeezed. Why? Think about what happens when you plot the graph of f(2x) over, say, −1 ≤ x ≤ 1.
When x goes from −1 to 1, 2x goes from −2 to 2, so while you’re plotting f(2x) over the interval from −1
to 1 you have to compute the values of f(x) from −2 to 2. That’s more of the function in less space, as it
were, so the graph of f(2x) is a squeezed version of the graph of f(x). Clear?

Similar reasoning shows that the graph of f(x/2) is stretched. If x goes from −1 to 1 then x/2 goes from
−1/2 to 1/2, so while you’re plotting f(x/2) over the interval −1 to 1 you have to compute the values of
f(x) from −1/2 to 1/2. That’s less of the function in more space, so the graph of f(x/2) is a stretched
version of the graph of f(x).

2.2.2 For Whom the Bell Curve Tolls

Let’s next consider the Gaussian function and its Fourier transform. We’ll need this for many examples
and problems. This function, the famous “bell shaped curve”, was used by Gauss for various statistical
problems. It has some striking properties with respect to the Fourier transform which, on the one hand,
give it a special role within Fourier analysis, and on the other hand allow Fourier methods to be applied to
other areas where the function comes up. We’ll see an application to probability and statistics in Chapter
3.

The “basic Gaussian” is f(x) = e−x2
. The shape of the graph is familiar to you.
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For various applications one throws in extra factors to modify particular properties of the function. We’ll
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do this too, and there’s not a complete agreement on what’s best. There is an agreement that before
anything else happens, one has to know the amazing equation3

∫ ∞

−∞
e−x2

dx =
√
π.

Now, the function f(x) = e−x2
does not have an elementary antiderivative, so this integral cannot be

found directly by an appeal to the Fundamental Theorem of Calculus. The fact that it can be evaluated
exactly is one of the most famous tricks in mathematics. It’s due to Euler, and you shouldn’t go through
life not having seen it. And even if you have seen it, it’s worth seeing again; see the discussion following
this section.

The Fourier transform of a Gaussian In whatever subject it’s applied, it seems always to be useful
to normalize the Gaussian so that the total area is 1. This can be done in several ways, but for Fourier
analysis the best choice, as we shall see, is

f(x) = e−πx2
.

You can check using the result for the integral of e−x2
that

∫ ∞

−∞
e−πx2

dx = 1 .

Let’s compute the Fourier transform

Ff(s) =
∫ ∞

−∞
e−πx2

e−2πisx dx .

Differentiate with respect to s:

d

ds
Ff(s) =

∫ ∞

−∞
e−πx2

(−2πix)e−2πisx dx .

This is set up perfectly for an integration by parts, where dv = −2πixe−πx2
dx and u = e−2πisx. Then

v = ie−πx2
, and evaluating the product uv at the limits ±∞ gives 0. Thus

d

ds
Ff(s) = −

∫ ∞

−∞
ie−πx2

(−2πis)e−2πisx dx

= −2πs
∫ ∞

−∞
e−πx2

e−2πisx dx

= −2πsFf(s)

So Ff(s) satisfies the simple differential equation

d

ds
Ff(s) = −2πsFf(s)

whose unique solution, incorporating the initial condition, is

Ff(s) = Ff(0)e−πs2
.

3 Speaking of this equation, William Thomson, after he became Lord Kelvin, said: “A mathematician is one to whom that is
as obvious as that twice two makes four is to you.” What a ridiculous statement.
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But
Ff(0) =

∫ ∞

−∞
e−πx2

dx = 1 .

Hence
Ff(s) = e−πs2

.

We have found the remarkable fact that the Gaussian f(x) = e−πx2
is its own Fourier transform!

Evaluation of the Gaussian Integral We want to evaluate

I =
∫ ∞

−∞
e−x2

dx .

It doesn’t matter what we call the variable of integration, so we can also write the integral as

I =
∫ ∞

−∞
e−y2

dy .

Therefore

I2 =
(∫ ∞

−∞
e−x2

dx

)(∫ ∞

−∞
e−y2

dy

)
.

Because the variables aren’t “coupled” here we can combine this into a double integral4

∫ ∞

−∞

(∫ ∞

−∞
e−x2

dx

)
e−y2

dy =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dx dy .

Now we make a change of variables, introducing polar coordinates, (r, θ). First, what about the limits of
integration? To let both x and y range from −∞ to ∞ is to describe the entire plane, and to describe the
entire plane in polar coordinates is to let r go from 0 to ∞ and θ go from 0 to 2π. Next, e−(x2+y2) becomes
e−r2

and the area element dx dy becomes r dr dθ. It’s the extra factor of r in the area element that makes
all the difference. With the change to polar coordinates we have

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dx dy =

∫ 2π

0

∫ ∞

0
e−r2

r dr dθ

Because of the factor r, the inner integral can be done directly:
∫ ∞

0

e−r2
r dr = −1

2e
−r2
]∞
0

= 1
2 .

The double integral then reduces to

I2 =
∫ 2π

0

1
2 dθ = π ,

whence ∫ ∞

−∞
e−x2

dx = I =
√
π .

Wonderful.

4 We will see the same sort of thing when we work with the product of two Fourier transforms on our way to defining
convolution in the next chapter.
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2.2.3 General Properties and Formulas

We’ve started to build a storehouse of specific transforms. Let’s now proceed along the other path awhile
and develop some general properties. For this discussion — and indeed for much of our work over the next
few lectures — we are going to abandon all worries about transforms existing, integrals converging, and
whatever other worries you might be carrying. Relax and enjoy the ride.

2.2.4 Fourier transform pairs and duality

One striking feature of the Fourier transform and the inverse Fourier transform is the symmetry between
the two formulas, something you don’t see for Fourier series. For Fourier series the coefficients are given
by an integral (a transform of f(t) into f̂(n)), but the “inverse transform” is the series itself. The Fourier
transforms F and F−1 are the same except for the minus sign in the exponential.5 In words, we can say
that if you replace s by −s in the formula for the Fourier transform then you’re taking the inverse Fourier
transform. Likewise, if you replace t by −t in the formula for the inverse Fourier transform then you’re
taking the Fourier transform. That is

Ff(−s) =
∫ ∞

−∞
e−2πi(−s)tf(t) dt =

∫ ∞

−∞
e2πistf(t) dt = F−1f(s)

F−1f(−t) =
∫ ∞

−∞
e2πis(−t)f(s) ds =

∫ ∞

−∞
e−2πistf(s) ds = Ff(t)

This might be a little confusing because you generally want to think of the two variables, s and t, as
somehow associated with separate and different domains, one domain for the forward transform and one
for the inverse transform, one for time and one for frequency, while in each of these formulas one variable
is used in both domains. You have to get over this kind of confusion, because it’s going to come up again.
Think purely in terms of the math: The transform is an operation on a function that produces a new
function. To write down the formula I have to evaluate the transform at a variable, but it’s only a variable
and it doesn’t matter what I call it as long as I keep its role in the formula straight.

Also be observant what the notation in the formula says and, just as important, what it doesn’t say. The
first formula, for example, says what happens when you first take the Fourier transform of f and then
evaluate it at −s, it’s not a formula for F(f(−s)) as in “first change s to −s in the formula for f and then
take the transform”. I could have written the first displayed equation as (Ff)(−s) = F−1f(s), with an
extra parentheses around the Ff to emphasize this, but I thought that looked too clumsy. Just be careful,
please.

The equations

Ff(−s) = F−1f(s)

F−1f(−t) = Ff(t)

5 Here’s the reason that the formulas for the Fourier transform and its inverse appear so symmetric; it’s quite a deep
mathematical fact. As the general theory goes, if the original function is defined on a group then the transform (also defined
in generality) is defined on the “dual group”, which I won’t define for you here. In the case of Fourier series the function is
periodic, and so its natural domain is the circle (think of the circle as [0, 1] with the endpoints identified). It turns out that
the dual of the circle group is the integers, and that’s why f̂ is evaluated at integers n. It also turns out that when the group
is R the dual group is again R. Thus the Fourier transform of a function defined on R is itself defined on R. Working through
the general definitions of the Fourier transform and its inverse in this case produces the symmetric result that we have before
us. Kick that one around over dinner some night.
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are sometimes referred to as the “duality” property of the transforms. One also says that “the Fourier
transform pair f and Ff are related by duality”, meaning exactly these relations. They look like different
statements but you can get from one to the other. We’ll set this up a little differently in the next section.

Here’s an example of how duality is used. We know that

FΠ = sinc

and hence that
F−1 sinc = Π .

By “duality” we can find F sinc:

F sinc(t) = F−1 sinc(−t) = Π(−t) .

(Troubled by the variables? Remember, the left hand side is (F sinc)(t).) Now with the additional knowl-
edge that Π is an even function — Π(−t) = Π(t) — we can conclude that

F sinc = Π .

Let’s apply the same argument to find F sinc2. Recall that Λ is the triangle function. We know that

FΛ = sinc2

and so
F−1sinc2 = Λ .

But then
Fsinc2(t) = (F−1sinc2)(−t) = Λ(−t)

and since Λ is even,
Fsinc2 = Λ .

Duality and reversed signals There’s a slightly different take on duality that I prefer because it
suppresses the variables and so I find it easier to remember. Starting with a signal f(t) define the reversed
signal f− by

f−(t) = f(−t) .

Note that a double reversal gives back the original signal,

(f−)− = f .

Note also that the conditions defining when a function is even or odd are easy to write in terms of the
reversed signals:

f is even if f− = f

f is odd if f− = −f

In words, a signal is even if reversing the signal doesn’t change it, and a signal is odd if reversing the signal
changes the sign. We’ll pick up on this in the next section.

Simple enough — to reverse the signal is just to reverse the time. This is a general operation, of course,
whatever the nature of the signal and whether or not the variable is time. Using this notation we can
rewrite the first duality equation, Ff(−s) = F−1f(s), as

(Ff)− = F−1f



84 Chapter 2 Fourier Transform

and we can rewrite the second duality equation, F−1f(−t) = Ff(t), as

(F−1f)− = Ff .

This makes it very clear that the two equations are saying the same thing. One is just the “reverse” of the
other.

Furthermore, using this notation the result F sinc = Π, for example, goes a little more quickly:

F sinc = (F−1 sinc)− = Π− = Π .

Likewise
Fsinc2 = (F−1sinc2)− = Λ− = Λ .

A natural variation on the preceding duality results is to ask what happens with Ff−, the Fourier transform
of the reversed signal. Let’s work this out. By definition,

Ff−(s) =
∫ ∞

−∞
e−2πistf−(t) dt =

∫ ∞

−∞
e−2πistf(−t) dt .

There’s only one thing to do at this point, and we’ll be doing it a lot: make a change of variable in the
integral. Let u = −t so that du = −dt , or dt = −du. Then as t goes from −∞ to ∞ the variable u = −t
goes from ∞ to −∞ and we have

∫ ∞

−∞
e−2πistf(−t) dt =

∫ −∞

∞
e−2πis(−u)f(u) (−du)

=
∫ ∞

−∞
e2πisuf(u) du (the minus sign on the du flips the limits back)

= F−1f(s)

Thus, quite neatly,
Ff− = F−1f

Even more neatly, if we now substitute F−1f = (Ff)− from earlier we have

Ff− = (Ff)− .

Note carefully where the parentheses are here. In words, the Fourier transform of the reversed signal is
the reversed Fourier transform of the signal. That one I can remember.

To finish off these questions, we have to know what happens to F−1f−. But we don’t have to do a separate
calculation here. Using our earlier duality result,

F−1f− = (Ff−)− = (F−1f)− .

In words, the inverse Fourier transform of the reversed signal is the reversed inverse Fourier transform of
the signal. We can also take this one step farther and get back to F−1f− = Ff

And so, the whole list of duality relations really boils down to just two:

Ff = (F−1f)−

Ff− = F−1f
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Learn these. Derive all others.

Here’s one more:
F(Ff)(s) = f(−s) or F(Ff) = f− without the variable.

This identity is somewhat interesting in itself, as a variant of Fourier inversion. You can check it directly
from the integral definitions, or from our earlier duality results.6 Of course then also

F(Ff−) = f .

2.2.5 Even and odd symmetries and the Fourier transform

We’ve already had a number of occasions to use even and odd symmetries of functions. In the case of
real-valued functions the conditions have obvious interpretations in terms of the symmetries of the graphs;
the graph of an even function is symmetric about the y-axis and the graph of an odd function is symmetric
through the origin. The (algebraic) definitions of even and odd apply to complex-valued as well as to real-
valued functions, however, though the geometric picture is lacking when the function is complex-valued
because we can’t draw the graph. A function can be even, odd, or neither, but it can’t be both unless it’s
identically zero.

How are symmetries of a function reflected in properties of its Fourier transform? I won’t give a complete
accounting, but here are a few important cases.

• If f(x) is even or odd, respectively, then so is its Fourier transform.

Working with reversed signals, we have to show that (Ff)− = Ff if f is even and (Ff)− = −Ff if f is
odd. It’s lighting fast using the equations that we derived, above:

(Ff)− = Ff− =

{
Ff, if f is even
F(−f) = −Ff if f is odd

Because the Fourier transform of a function is complex valued there are other symmetries we can consider
for Ff(s), namely what happens under complex conjugation.

• If f(t) is real-valued then (Ff)− = Ff and F(f−) = Ff .

This is analogous to the conjugate symmetry property possessed by the Fourier coefficients for a real-valued
periodic function. The derivation is essentially the same as it was for Fourier coefficients, but it may be
helpful to repeat it for practice and to see the similarities.

(Ff)−(s) = F−1f(s) (by duality)

=
∫ ∞

−∞
e2πistf(t) dt

=
{∫ ∞

−∞
e−2πistf(t) dt

}
(f(t) = f(t) since f(t) is real)

= Ff(s)

6 And you can then also then check that F(F(F(Ff)))(s) = f(s), i.e., F4 is the identity transformation. Some people attach
mystical significance to this fact.
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We can refine this if the function f(t) itself has symmetry. For example, combining the last two results
and remembering that a complex number is real if it’s equal to its conjugate and is purely imaginary if it’s
equal to minus its conjugate, we have:

• If f is real valued and even then its Fourier transform is even and real valued.

• If f is real valued and odd function then its Fourier transform is odd and purely imaginary.

We saw this first point in action for Fourier transform of the rect function Π(t) and for the triangle
function Λ(t). Both functions are even and their Fourier transforms, sinc and sinc2, respectively, are even
and real. Good thing it worked out that way.

2.2.6 Linearity

One of the simplest and most frequently invoked properties of the Fourier transform is that it is linear
(operating on functions). This means:

F(f + g)(s) = Ff(s) + Fg(s)
F(αf)(s) = αFf(s) for any number α (real or complex).

The linearity properties are easy to check from the corresponding properties for integrals, for example:

F(f + g)(s) =
∫ ∞

−∞
(f(x) + g(x))e−2πisx dx

=
∫ ∞

−∞
f(x)e−2πisx dx+

∫ ∞

−∞
g(x)e−2πisx dx = Ff(s) + Fg(s) .

We used (without comment) the property on multiples when we wrote F(−f) = −Ff in talking about odd
functions and their transforms. I bet it didn’t bother you that we hadn’t yet stated the property formally.

2.2.7 The shift theorem

A shift of the variable t (a delay in time) has a simple effect on the Fourier transform. We would expect
the magnitude of the Fourier transform |Ff(s)| to stay the same, since shifting the original signal in time
should not change the energy at any point in the spectrum. Hence the only change should be a phase shift
in Ff(s), and that’s exactly what happens.

To compute the Fourier transform of f(t+ b) for any constant b, we have
∫ ∞

−∞
f(t+ b)e−2πist dt =

∫ ∞

−∞
f(u)e−2πis(u−b) du

(substituting u = t + b; the limits still go from −∞ to ∞)

=
∫ ∞

−∞
f(u)e−2πisue2πisb du

= e2πisb

∫ ∞

−∞
f(u)e−2πisu du = e2πisbf̂ (s).
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The best notation to capture this property is probably the pair notation, f 
 F .7 Thus:

• If f(t) 
 F (s) then f(t+ b) 
 e2πisbF (s).

◦ A little more generally, f(t ± b) 
 e±2πisbF (s).

Notice that, as promised, the magnitude of the Fourier transform has not changed under a time shift
because the factor out front has magnitude 1:

∣∣∣e±2πisbF (s)
∣∣∣ =

∣∣∣e±2πisb
∣∣∣ |F (s)| = |F (s)| .

2.2.8 The stretch (similarity) theorem

How does the Fourier transform change if we stretch or shrink the variable in the time domain? More
precisely, we want to know if we scale t to at what happens to the Fourier transform of f(at). First suppose
a > 0. Then

∫ ∞

−∞
f(at)e−2πist dt =

∫ ∞

−∞
f(u)e−2πis(u/a) 1

a
du

(substituting u = at; the limits go the same way because a > 0)

=
1
a

∫ ∞

−∞
f(u)e−2πi(s/a)u du =

1
a
Ff
( s
a

)

If a < 0 the limits of integration are reversed when we make the substitution u = ax, and so the resulting
transform is (−1/a)Ff(s/a). Since −a is positive when a is negative, we can combine the two cases and
present the Stretch Theorem in its full glory:

• If f(t) 
 F (s) then f(at) 
 1
|a|F

( s
a

)
.

This is also sometimes called the Similarity Theorem because changing the variable from x to ax is a
change of scale, also known as a similarity.

There’s an important observation that goes with the stretch theorem. Let’s take a to be positive, just
to be definite. If a is large (bigger than 1, at least) then the graph of f(at) is squeezed horizontally
compared to f(t). Something different is happening in the frequency domain, in fact in two ways. The
Fourier transform is (1/a)F (s/a). If a is large then F (s/a) is stretched out compared to F (s), rather than
squeezed in. Furthermore, multiplying by 1/a, since the transform is (1/a)F (a/s), also squashes down the
values of the transform.

The opposite happens if a is small (less than 1). In that case the graph of f(at) is stretched out horizon-
tally compared to f(t), while the Fourier transform is compressed horizontally and stretched vertically.
The phrase that’s often used to describe this phenomenon is that a signal cannot be localized (meaning

7 This is, however, an excellent opportunity to complain about notational matters. Writing Ff(t+b) invites the same anxieties
that some of us had when changing signs. What’s being transformed? What’s being plugged in? There’s no room to write
an s. The hat notation is even worse — there’s no place for the s, again, and do you really want to write ̂f(t + b) with such
a wide hat?
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concentrated at a point) in both the time domain and the frequency domain. We will see more precise
formulations of this principle.8

To sum up, a function stretched out in the time domain is squeezed in the frequency domain, and vice
versa. This is somewhat analogous to what happens to the spectrum of a periodic function for long or
short periods. Say the period is T , and recall that the points in the spectrum are spaced 1/T apart, a
fact we’ve used several times. If T is large then it’s fair to think of the function as spread out in the time
domain — it goes a long time before repeating. But then since 1/T is small, the spectrum is squeezed. On
the other hand, if T is small then the function is squeezed in the time domain — it goes only a short time
before repeating — while the spectrum is spread out, since 1/T is large.

Careful here In the discussion just above I tried not to talk in terms of properties of the
graph of the transform — though you may have reflexively thought in those terms and I slipped
into it a little — because the transform is generally complex valued. You do see this squeezing
and spreading phenomenon geometrically by looking at the graphs of f(t) in the time domain
and the magnitude of the Fourier transform in the frequency domain.9

Example: The stretched rect Hardly a felicitous phrase, “stretched rect”, but the function comes up
often in applications. Let p > 0 and define

Πp(t) =

{
1 |t| < p/2
0 |t| ≥ p/2

Thus Πp is a rect function of width p. We can find its Fourier transform by direct integration, but we can
also find it by means of the stretch theorem if we observe that

Πp(t) = Π(t/p) .

To see this, write down the definition of Π and follow through:

Π(t/p) =

{
1 |t/p| < 1/2
0 |t/p| ≥ 1/2

=

{
1 |t| < p/2
0 |t| ≥ p/2

= Πp(t) .

Now since Π(t) 
 sinc s, by the stretch theorem

Π(t/p) 
 p sinc ps ,

and so
FΠp(s) = p sinc ps .

This is useful to know.

Here are plots of the Fourier transform pairs for p = 1/5 and p = 5, respectively. Note the scales on the
axes.

8 In fact, the famous Heisenberg Uncertainty Principle in quantum mechanics is an example.

9 We observed this for the one-sided exponential decay and its Fourier transform, and you should now go back to that example
and match up the graphs of |Ff | with the various values of the parameter.
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2.2.9 Combining shifts and stretches

We can combine the shift theorem and the stretch theorem to find the Fourier transform of f(ax+ b), but
it’s a little involved.

Let’s do an example first. It’s easy to find the Fourier transform of f(x) = Π((x−3)/2) by direct integration.

F (s) =
∫ 4

2
e−2πisx dx

= − 1
2πis

e−2πisx
]x=4

x=2
= − 1

2πis
(e−8πis − e−4πis) .

We can still bring the sinc function into this, but the factoring is a little trickier.

e−8πis − e−4πis = e−6πis(e−2πis − e2πis) = e−6πis(−2i) sin2πs .

Plugging this into the above gives

F (s) = e−6πis sin 2πs
πs

= 2e−6πis sinc 2s .

The Fourier transform has become complex — shifting the rect function has destroyed its symmetry.

Here’s a plot of Π((x− 3)/2) and of 4sinc22s, the square of the magnitude of its Fourier transform. Once
again, looking at the latter gives you no information about the phases in the spectrum, only on the energies.

0 1

1

3 5−1−3−5
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As an exercise you can establish the following general formula on how shifts and stretches combine:

• If f(t) 
 F (s) then f(at± b) = f
(
a
(
t± b

a

))

 1

|a|
e±2πisb/aF

(
s

a

)
.

Try this on Π((x− 3)/2) = Π
(

1
2x− 3

2

)
. With a = 1/2 and b = −3/2 we get

F
(
Π
(

1
2x− 3

2

))
= 2e−6πisΠ̂(2s) = 2e−6πis sinc 2s

just like before. Was there any doubt? (Note that I used the notation F here along with the hat notation.
It’s not ideal either, but it seemed like the best of a bad set of ways of writing the result.)

Example: two-sided exponential decay Here’s an example of how you might combine the properties
we’ve developed. Let’s find the Fourier transform of the two-sided exponential decay

g(t) = e−a|t| , a a positive constant.

Here are plots of g(t) for a = 0.5, 1, 2. Match them!
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We could find the transform directly — plugging into the formula for the Fourier transform would give us
integrals we could do. However, we’ve already done half the work, so to speak, when we found the Fourier
transform of the one-sided exponential decay. Recall that for

f(t) =

{
0 t < 0
e−at t ≥ 0

⇒ F (s) = f̂(s) =
1

2πis + a

and now realize
g(t) is almost equal to f(t) + f(−t) .

They agree except at the origin, where g(0) = 1 and f(t) and f(−t) are both one. But two functions which
agree except for one point (or even finitely many points10) will clearly give the same result when integrated
against e−2πist. Therefore

G(s) = Fg(s) = F (s) + F (−s)

=
1

2πis+ a
+

1
−2πis+ a

=
2a

a2 + 4π2s2
.

Note that g(t) is even and G(s) is real. These sorts of quick checks on correctness and consistency (evenness,
oddness, real or purely imaginary, etc.) are useful when you’re doing calculations. Here are plots of G(s)
for the a = 0.5, 1, 2. Match them!

10 Or, more generally, sets of “measure zero”
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In the future, we’ll see an application of the two-sided exponential decay to solving a second order ordinary
differential equation.

Example: Other Gaussians As mentioned, there are other ways of normalizing a Gaussian. For
example, instead of e−πx2

we can take

g(x) =
1

σ
√

2π
e−x2/2σ2

.

You might recognize this from applications to probability and statistics as the Gaussian with mean zero
and standard deviation σ (or variance σ2). The Gaussian with mean µ and standard deviation σ is the
shifted version of this:

g(x, µ, σ) =
1

σ
√

2π
e−(x−µ)2/2σ2

.

Geometrically, σ is a measure of how peaked or spread out the curve is about the mean. In terms of the
graph, the inflection points occur at µ ± σ; thus if σ is large the curve is spread out and if σ is small the
curve is sharply peaked. The area under the graph is still 1.

The question for us is what happens to the Fourier transform when the Gaussian is modified in this way.
This can be answered by our results on shifts and stretches, since that’s all that’s ever involved. Take
the case of µ = 0, for simplicity. To find the Fourier transform we can apply the similarity theorem:
f(ax) 
 (1/|a|)F (s/a). With a = 1/σ

√
2π This gives

g(t) =
1

σ
√

2π
e−x2/2σ2 ⇒ ĝ(s) = e−2π2σ2s2

still a Gaussian, but not an exact replica of what we started with. Note that with µ = 0 the Gaussian is
even and the Fourier transform is real and even.
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Chapter 3

Convolution

3.1 A ∗ is Born

How can we use one signal to modify another? Some of the properties of the Fourier transform that we
have already derived can be thought of as addressing this question. The easiest is the result on additivity,
according to which

F(f + g) = Ff + Fg.

Adding the signal g(t) to the signal f(t) adds the amounts Fg(s) to the frequency components Ff(s).
(Symmetrically, f(t) modifies g(t) in the same way.) The spectrum of f + g may be more or less “compli-
cated” than the spectrum of f and g alone, and it’s an elementary operation in both the time domain and
the frequency domain that produces or eliminates the complications. It’s an operation that’s also easily
undone: See some frequencies you don’t like in the spectrum (a bad buzz)? Then try adding something in
or subtracting something out and see what the signal looks like.

We can view the question of using one signal to modify another in either the time domain or in the frequency
domain, sometimes with equal ease and sometimes with one point of view preferred. We just looked at
sums, what about products? The trivial case is multiplying by a constant, as in F(af)(s) = aFf(s). The
energies of the harmonics are all affected by the same amount, so, thinking of music for example, the signal
sounds the same, only louder or softer. It’s much less obvious how to scale the harmonics separately. That
is, as a question “in the frequency domain”, we ask:

Is there some combination of the signals f(t) and g(t) so that in the frequency domain the
Fourier transform is

Fg(s)Ff(s) ?

In other words, in the time domain can we combine the signal g(t) with the signal f(t) so that
the frequency components Ff(s) of f(t) are scaled by the frequency components Fg(s) of g(t)?
(Once again this is symmetric — we could say that the frequency components Fg(s) are scaled
by the frequency components Ff(s).)

Let’s check this out, and remember that the rigor police are off duty. No arrests will be made for unstated
assumptions, divergent integrals, etc.

The product of the Fourier transforms of f(t) and g(t) is

Fg(s)Ff(s) =
∫ ∞

−∞
e−2πistg(t) dt

∫ ∞

−∞
e−2πisxf(x) dx .
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We used different variables of integration in the two integrals because we’re going to combine the product
into an iterated integral.1

∫ ∞

−∞
e−2πistg(t) dt

∫ ∞

−∞
e−2πisxf(x) dx =

∫ ∞

−∞

∫ ∞

−∞
e−2πiste−2πisxg(t)f(x) dt dx

=
∫ ∞

−∞

∫ ∞

−∞
e−2πis(t+x)g(t)f(x) dt dx

=
∫ ∞

−∞

(∫ ∞

−∞
e−2πis(t+x)g(t) dt

)
f(x) dx

Now make the change of variable u = t + x in the inner integral. Then t = u− x, du = dt, and the limits
are the same. The result is

∫ ∞

−∞

(∫ ∞

−∞
e−2πis(t+x)g(t) dt

)
f(x) dx =

∫ ∞

−∞

(∫ ∞

−∞
e−2πisug(u− x) du

)
f(x) dx

Next, switch the order of integration:
∫ ∞

−∞

(∫ ∞

−∞
e−2πisug(u− x) du

)
f(x) dx =

∫ ∞

−∞

∫ ∞

−∞
e−2πisug(u− x)f(x) du dx

=
∫ ∞

−∞

∫ ∞

−∞
e−2πisug(u− x)f(x) dx du

=
∫ ∞

−∞
e−2πisu

(∫ ∞

−∞
g(u− x)f(x) dx

)
du

Look at what’s happened here. The inner integral is a function of u. Let’s set it up on its own:

h(u) =
∫ ∞

−∞
g(u− x)f(x) dx .

Then the outer integral produces the Fourier transform of h:
∫ ∞

−∞
e−2πisu

(∫ ∞

−∞
g(u− x)f(x) dx

)
du =

∫ ∞

−∞
e−2πisuh(u) du = Fh(s)

Switching the variable name for h from h(u) to h(t) (solely for psychological comfort), we have discovered
that the signals f(t) and g(t) are combined into a signal

h(t) =
∫ ∞

−∞
g(t− x)f(x) dx .

In other words,
Fh(s) = Fg(s)Ff(s) .

Remarkable.

We have solved our problem. The only thing to do is to realize what we’ve done and declare it to the
world. We make the following definition:

1 If you’re uneasy with this (never mind issues of convergence) you might convince yourself that it’s correct by working your
way backwards from the double integral to the product of the two single integrals.
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• Convolution defined The convolution of two functions g(t) and f(t) is the function

h(t) =
∫ ∞

−∞
g(t− x)f(x) dx .

We use the notation
(g ∗ f)(t) =

∫ ∞

−∞
g(t− x)f(x) dx .

We can now proudly announce:

• Convolution Theorem F(g ∗ f)(s) = Fg(s)Ff(s)

◦ In other notation: If f(t) 
 F (s) and g(t) 
 G(s) then (g ∗ f)(t) 
 G(s)F (s).

• In words: Convolution in the time domain corresponds to multiplication in the frequency domain.2

Recall that when we studied Fourier series, convolution came up in the form

(g ∗ f)(t) =
∫ 1

0
g(t− x)f(x) dx .

In that setting, for the integral to make sense, i.e., to be able to evaluate g(t − x) at points outside the
interval from 0 to 1, we had to assume that g was periodic. That’s not an issue in the present setting,
where we assume that f(t) and g(t) are defined for all t, so the factors in the integral

∫ ∞

−∞
g(t− x)f(x) dx

are defined everywhere. There may be questions to raise about whether the integral converges, and there
are, but at least the setup makes sense.

Remark on notation, again It’s common to see the people write the convolution as g(t)∗f(t), putting
the variable t in each of g and f . There are times when that’s OK, even sometimes preferable to introducing
a lot of extra notation, but in general I think it’s a bad idea because it can lead to all sorts of abuses and
possible mistakes. For example, what’s g(2t)∗ f(t)? If you plugged in too casually you might write this as
the integral ∫ ∞

−∞
g(2t− x)f(x) dx .

That’s wrong. The right answer in convolving g(2t) and f(t) is
∫ ∞

−∞
g(2(t− x))f(x) dx =

∫ ∞

−∞
g(2t− 2x)f(x) dx .

Make sure you understand why the first is wrong and second is right.3

2 What we’ve just gone through is the same sort of thing we did when we “found” the formula for the Fourier coefficients for a
periodic function. Remember the principle: First suppose the problem is solved and see what the answer must be. The second
step, assuming the first one works, is to turn that solution into a definition and then announce to the world that you have
solved your original problem based on your brilliant definition. Mathematicians, in particular, are very good at presenting
their results and writing their books in this way — do step one in secret and tell the world only step two. It’s extremely
irritating.
3 The way to be unambiguous about this is to say something like: “Let”s define h(t) = g(2t), then (h ∗ f)(t) =

R∞
−∞ h(t −

x)f(x)dx = . . . .” I concede that this is too much of a hassle in most cases. Just be careful.
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Let’s see a quick application of our brilliant new discovery. As an exercise you can show (by hand) that

(Π ∗ Π)(x) = Λ(x)

Recall that Λ is the triangle function. Applying the Convolution Theorem, we find that

FΛ(s) = F(Π ∗Π)(s) = sinc s · sinc s = sinc2 s ,

just like before. Was there any doubt?

Convolving in the frequency domain If you look at the argument for the convolution theorem
F(g ∗ f) = Fg · Ff , you’ll see that we could have carried the whole thing out for the inverse Fourier
transform, and given the symmetry between the Fourier transform and its inverse that’s not surprising.
That is, we also have

F−1(g ∗ f) = F−1g · F−1f .

What’s more interesting, and doesn’t follow without a little additional argument, is this:

F(gf)(s) = (Fg ∗ Ff)(s) .

In words:

• Multiplication in the time domain corresponds to convolution in the frequency domain.

Here’s how the derivation goes. We’ll need one of the duality formulas, the one that says

F(Ff)(s) = f(−s) or F(Ff) = f− without the variable.

To derive the identity F(gf) = Fg ∗ Ff , we write, for convenience, h = Ff and k = Fg. Then we’re to
show

F(gf) = k ∗ h .

The one thing we know is how to take the Fourier transform of a convolution, so, in the present notation,
F(k ∗ h) = (Fk)(Fh). But now Fk = FFg = g−, from the identity above, and likewise Fh = FFf = f−.
So F(k ∗ h) = g−f− = (gf)−, or

gf = F(k ∗ h)− .

Now, finally, take the Fourier transform of both sides of this last equation and appeal to the FF identity
again:

F(gf) = F(F(k ∗ h)−) = k ∗ h = Fg ∗ Ff .

We’re done.

Remark You may wonder why we didn’t start by trying to prove F(gf)(s) = (Fg ∗ Ff)(s) rather than
F(g ∗ f) = (Ff)(Fg) as we did. That is, it seems more “natural” to multiply signals in the time domain
and see what effect this has in the frequency domain, so why not work with F(fg) directly? But write the
integral for F(gf); there’s nothing you can do with it to get toward Fg ∗ Ff .
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3.2 What is Convolution, Really?

There’s not a single answer to that question. Those of you who have had a course in “Signals and Systems”
probably saw convolution in connection with Linear Time Invariant Systems and the impulse response for
such a system. (This already came up in connection with our solution of the heat equation.) That’s a very
natural setting for convolution and we’ll consider it later, after we have the machinery of delta functions
et al.

The fact is that convolution is used in many ways and for many reasons, and it can be a mistake to try to
attach to it one particular meaning or interpretation. This multitude of interpretations and applications
is somewhat like the situation with the definite integral. When you learned about the integral, chances
are that it was introduced via an important motivating problem, typically recovering the distance traveled
from the velocity, or finding the area under a curve. That’s fine, but the integral is really a much more
general and flexible concept than those two sample problems might suggest. You do yourself no service if
every time you think to use an integral you think only of one of those problems. Likewise, you do yourself
no service if you insist on one particular interpretation of convolution.

To pursue the analogy with the integral a little bit further, in pretty much all applications of the integral
there is a general method at work: cut the problem into small pieces where it can be solved approximately,
sum up the solution for the pieces, and pass to a limit.4 There is also often a general method to working, or
seeking to work with convolutions: usually there’s something that has to do with smoothing and averaging,
understood broadly. You see this in both the continuous case (which we’re doing now) and the discrete
case (which we’ll do later).

For example, in using Fourier series to solve the heat equation on a circle, we saw that the solution
was expressed as a convolution of the initial heat distribution with the Green’s function (or fundamental
solution). That’s a smoothing and averaging interpretation (both!) of the convolution. It’s also a linear
systems interpretation of convolution, where the system is described by the heat equation.

In brief, we’ll get to know the convolution by seeing it in action:

• Convolution is what convolution does.

That’s probably the best answer to the question in the heading to this section.

3.2.1 But can I visualize convolution? or “Flip this, buddy”

I’m tempted to say don’t bother. Again for those of you who have seen convolution in earlier courses,
you’ve probably heard the expression “flip and drag”. For

(g ∗ f)(t) =
∫ ∞

−∞
g(t− x)f(x) dx

here’s what this means.

• Fix a value t. The graph of the function g(x− t) has the same shape as g(x) but shifted to the right
by t. Then forming g(t− x) flips the graph (left-right) about the line x = t. If the most interesting
or important features of g(x) are near x = 0, e.g., if it’s sharply peaked there, then those features
are shifted to x = t for the function g(t− x) (but there’s the extra “flip” to keep in mind).

4 This goes back to Archimedes, who called his paper on the subject “The Method”.
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• Multiply the two functions f(x) and g(t − x) and integrate with respect to x. Remember that the
value of the convolution (g∗f)(t) is not just the product of the values of f and the flipped and shifted
g, it’s the integral of the product — much harder to visualize. Integrating the product sums up these
values, that’s the “dragging” part.

Smoothing and averaging I prefer to think of the convolution operation as using one function to
smooth and average the other. (Say g is used to smooth f in g ∗ f .) In many common applications g(x)
is a positive function, concentrated near 0, with total area 1,

∫ ∞

−∞
g(x) dx= 1,

like a sharply peaked Gaussian, for example (stay tuned). Then g(t − x) is concentrated near t and still
has area 1. For a fixed t, forming the integral

∫ ∞

−∞
g(t− x)f(x) dx

is like taking a weighted average of the values of f(x) near x = t, weighted by the values of (the flipped
and shifted) g. (It’s a legitimate weighted average because

∫∞
−∞ g(x) dx = 1.)

That’s the averaging part of the description: Computing the convolution g ∗ f at t replaces the value f(t)
by a weighted average of the values of f near t. Where does the smoothing come in? Here’s where.

• Changing t (“dragging” g(t− x) through different values of t) repeats this operation.

Again take the case of an averaging-type function g(t), as above. At a given value of t, (g ∗ f)(t) is a
weighted average of values of f near t. Move t a little to a point t′. Then (g ∗ f)(t′) is a weighted average
of values of f near t′, which will include values of f that entered into the average near t. Thus the values
of the convolutions (g ∗ f)(t) and (g ∗ f)(t′) will likely be closer to each other than are the values f(t) and
f(t′). That is, (g ∗ f)(t) is “smoothing” f as t varies — there’s less of a change between values of the
convolution than between values of f .

We’ll study this in more detail later, but you’ve already seen at least one example of smoothing. The rect
function Π(x) is discontinuous — it has jumps at ±1/2. The convolution Π ∗ Π is the triangle function
Λ, which is continuous — the jumps at the endpoints have been smoothed out. There’s still a corner, but
there’s no discontinuity.

In fact, as an aphorism we can state

• The convolution g ∗ f is at least as smooth a function as g and f are separately.

A smear job, too Now, be a little careful in how you think about this averaging and smoothing process.
Computing any value of (g ∗ f)(t) involves all of the values of g and all of the values of f , and adding the
products of corresponding values of g and f with one of the functions flipped and dragged. If both f(t) and
g(t) become identically zero after awhile then the convolution g ∗ f will also be identically zero outside of
some interval. But if either f(t) or g(t) does not become identically zero then neither will the convolution.
In addition to averaging and smoothing the convolution also “smears” out the factors — not a becoming
description, but an accurate one.
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Definitely keep the general description we’ve just gone through in mind, but as far as visualizing the
convolution of any two old functions, I think it’s of dubious value to beat yourself up trying to do that.
It’s hard geometrically, and it’s hard computationally, in the sense that you have to calculate some tedious
integrals. (You do have to do a few of these in your life — hence the homework assignment — but only a
few.) For developing further intuition, I do recommend the Johns Hopkins web page on signals, systems
and control:

http://www.jhu.edu/~signals/

There you’ll find a Java applet called “Joy of Convolution” (and many other things). It will allow you
to select sample curves f(t) and g(t), or to draw your own curves with a mouse, and then produce the
convolution (g ∗ f)(t).

By the way, of course you can try to get some intuition for how the convolution looks by thinking of what’s
happening in the frequency domain. It’s not so far fetched to try to imagine the Fourier transforms Ff ,
Fg, and their product, and then imagine the inverse transform to get you g ∗ f .

3.3 Properties of Convolution: It’s a Lot like Multiplication

Convolution behaves in many ways (not all ways) like multiplication. For example, it is commutative:

f ∗ g = g ∗ f .

So although it looks like the respective roles of f and g are different — one is “flipped and dragged”, the
other isn’t — in fact they share equally in the end result.

Do we have to prove this? Not among friends. After all, we defined the convolution so that the convolution
theorem holds, that is so that F(g ∗ f) = FgFf . But g and f enter symmetrically on the right hand side,
so g ∗ f = f ∗ g — g(t) can be used to modify f(t) or f(t) can be used to modify g(t).

Nevertheless, the commutativity property is easy to check from the definition:

(f ∗ g)(t) =
∫ ∞

−∞
f(t − u)g(u) du

=
∫ ∞

−∞
g(t− v)f(v) dv (making the substitution v = t− u)

= (g ∗ f)(t) .

The same idea, a change of variable but with more bookkeeping, establishes that convolution is associative
(an exercise for you in integrals):

(f ∗ g) ∗ h = f ∗ (g ∗ h) .

Much more easily one gets that
f ∗ (g + h) = f ∗ g + f ∗ h .

The corresponding statements are easily verified in the frequency domain.

How about a “1”? Is there a function which is to convolution as 1 is to multiplication? Is there a function
g such that

(g ∗ f)(t) = f(t), for all functions f?
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What property would such a g have? Take Fourier transforms of both sides:

Ff(s)Fg(s) = Ff(s) .

Then g(x) must be such that
Fg(s) = 1 .

Is there such a g? Applying the inverse Fourier transform would lead to
∫ ∞

−∞
e2πisx dx ,

and that integral does not exist — even I wouldn’t try to slip that by the rigor police. Something is up
here. Maybe Fourier inversion doesn’t work in this case, or else there’s no classical function whose Fourier
transform is 1, or something. In fact, though the integral does not exist in any sense, the problem of a
“1 for convolution” leads exactly to the delta function, or unit impulse — not a classical function, but a
“generalized” function. We’ll return to that shortly.

How about “division”? Suppose we know h and g in

h = f ∗ g

and we want to solve for f . Again, taking Fourier transforms we would say

Fh = Ff · Fg ⇒ Ff =
Fh
Fg .

We’d like the convolution quotient to be the inverse Fourier transform of Fh/Fg. But there are problems
caused by places where Fg = 0, along with the usual problems with the integral for the inverse Fourier
transform to exist.

Solving for f(t) is the deconvolution problem, which is extremely important in applications. Many times
a noisy signal comes to you in the form h = f ∗ g; the signal is f , the noise is g, you receive h. You make
some assumptions about the nature of the noise, usually statistical assumptions, and you want to separate
the signal from the noise. You want to deconvolve.

Other identities It’s not hard to combine the various rules we have and develop an algebra of convolu-
tions. Such identities can be of great use — it beats calculating integrals. Here’s an assortment. (Lower
and uppercase letters are Fourier pairs.)

(
(f · g) ∗ (h · k)

)
(t) 


(
(F ∗G) · (H ∗K)

)
(s)(

(f(t) + g(t)) · (h(t) + k(t)
)



(
((F + G) ∗ (H +K))

)
(s)(

f(t) · (g ∗ h)(t) 

(
F ∗ (G ·H)

)
(s)

You can write down others. Be confident — careful, but confident.

3.4 Convolution in Action I: A Little Bit on Filtering

“Filtering” is a generic term for just about any operation one might want to apply to a signal. We have
to be reasonable, of course — there’s usually some feature of the signal that one wants to enhance or
eliminate, and one expects something of the original signal to be recognizable or recoverable after it’s been
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filtered. Most filters are described as somehow modifying the spectral content of a signal, and they are
thus set up as an operation on the Fourier transform of a signal. We’ll take up this topic in more detail
when we discuss linear time invariant (LTI) systems, but it’s worthwhile saying a little bit now because the
most common filters operate through multiplication in the frequency domain, hence through convolution
in the time domain.

The features are:

• An input signal v(t)

• An output signal w(t)

• The operation that produces w(t) from v(t) in the time domain is convolution with a function h(t):

w(t) = (h ∗ v)(t) =
∫ ∞

−∞
h(t− x)v(x) dx

With this description the Fourier transforms of the input and output are related by multiplication in the
frequency domain:

W (s) = H(s)V (s) ,

where, following tradition, we denote the Fourier transforms by the corresponding capital letters. In this
context h(t) is usually called the impulse response 5 and H(s) is called the transfer function. It seems to
be a matter of course always to denote the impulse response by h(t) and always to denote the transfer
function by H(s). Who am I to do otherwise?

Remember that h(t), hence H(s), is “fixed” in this discussion. It’s wired into the circuit or coded into the
software and it does what it does to any input you may give it. Filters based on convolution are usually
designed to have a specific effect on the spectrum of an input, and so to design a filter is to design a transfer
function. The operations, which you’re invited to draw a block diagram for, are thus

Input → Fourier transform → Multiply by H → Inverse Fourier transform = output

We want to see some examples of this today — filters that are in day-to-day use and the principles that
go into their design.

One preliminary comment about how the spectra of the input and output are related. Write

V (s) = |V (s)|eiφV (s), φV (s) = tan−1

(
ImV (s)
ReV (s)

)
,

so the phase of V (s) is φV (s), with similar notations for the phases of W (s) and H(s). Then

|W (s)|eiφW (s) = |H(s)| eiφH(s) |V (s) |eiφV (s)

= |H(s)| |V (s)| ei(φH(s)+φV (s)).

Thus the magnitudes multiply and the phases add :

|W (s)| = |H(s)| |V (s)|
φW (s) = φV (s) + φH(s)

5 Because, as we’ll see, it is how the system “responds” to a unit impulse.
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Multiplying V (s) by H(s) can’t make the spectrum of V (s) any bigger6, but it can make the spectrum
smaller by zeroing out parts of it. Furthermore, there is no phase change when φH(s) = 0, and this
happens when H(s) is real. In this case only the amplitude is changed when the signal goes through the
filter. Common examples of filters that do both of these things — modify some part of the magnitude of
the spectrum with no phase change — are lowpass, bandpass, highpass, and notch filters, to which we’ll
now turn.

3.4.1 Designing filters

Lowpass filters An ideal lowpass filter cuts off all frequencies above a certain amount νc (“c” for “cutoff”)
and lets all frequencies below νc pass through unchanged. (Hence the description “lowpass”.) If we write
the operation as

w(t) = (h ∗ v)(t) 
 W (s) = H(s)V (s) ,

then the transfer function we want is

H(s) =

{
1 |s| < νc

0 |s| ≥ νc

Multiplying V (s) by H(s) leaves unchanged the spectrum of v for |s| < νc and eliminates the other
frequencies. The transfer function is just a scaled rect function, and we can write it (to remind you) as

H(s) = Π2νc(s) = Π(s/2νc) =

{
1 |s/2νc| < 1

2

0 |s/2νc| ≥ 1
2

=

{
1 |s| < νc

0 |s| ≥ νc

In the time domain the impulse response is the inverse Fourier transform of Π2νc , and this is

h(t) = 2νc sinc(2νct) .

By the way, why is this called just a “lowpass filter”; aren’t the frequencies below −νc also eliminated
and so not “passed” by the filter? Yes, but remember that for real signals v(t) (which is where this is
applied) one has the symmetry relation V (−s) = V (s). The positive and negative frequencies combine in
reconstructing the real signal in the inverse Fourier transform, much like what happens with Fourier series.
Thus one wants to pass the frequencies with −νc < s < νc and eliminate the frequencies with s ≥ νc and
s ≤ −νc.

And, by the way, why is this called an ideal lowpass filter? Because the cutoff is a sharp one — right at
a particular frequency νc. In practice this cannot be achieved, and much of the original art of filter design
is concerned with useful approximations to a sharp cutoff.

Bandpass filters Another very common filter passes a particular band of frequencies through unchanged
and eliminates all others. This is the ideal bandpass filter. Its transfer function, B(s), can be constructed
by shifting and combining the transfer function H(s) for the lowpass filter.

We center our bandpass filter at ±ν0 and cut off frequencies more than νc above and below ν0; just as for
the lowpass filter we pass symmetric bands of positive frequencies and negative frequencies, and eliminate

6 In s, that is; the spectrum of the output takes up no more of R than the spectrum of the input. One says that no new
frequencies are added to the spectrum
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everything else. That is, we define the transfer function of a bandpass filter to be

B(s) =

{
1 ν0 − νc < |s| < ν0 + νc

0 otherwise

= H(s− ν0) +H(s+ ν0)

Here’s the graph.

1

0 +ν0−ν0

2νc 2νc

From the representation of B(s) in terms of H(s) it’s easy to find the impulse response, b(t). That’s given
by

b(t) = h(t)e2πiν0t + h(t)e−2πiν0t (using the shift theorem or the modulation theorem)
= 4νc cos(2πν0t) sinc(2νct).

Here’s a plot of b(t) for ν0 = 10 and νc = 2:
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Now, tell the truth, do you really think you could just flip and drag and figure out what the convolution
looks like of that thing with some other thing?
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Highpass filters The twin to an ideal lowpass filter is an ideal high pass filter, where all frequencies
above a cutoff frequency νc are passed through unchanged and all frequencies below are eliminated. You
might use this, for example, if there’s a slow “drift” in your data that suggests a low frequency disturbance
or noise that you may want to eliminate. Highpass filters are used on images to sharpen edges and details
(associated with high spatial frequencies) and eliminate blurring (associated with low spatial frequencies).

The graph of the transfer function for an ideal highpass filter looks like:

1

0 νc−νc

It’s easy to write a formula for this; it’s just

High(s) = 1 − Π2νc(s) ,

where νc is the cutoff frequency.7 At this point we’re stuck. We can’t find the impulse response because
we haven’t yet gained the knowledge that the inverse Fourier transform of 1 is the δ function. Think of
the highpass filter as the evil twin of the lowpass filter.

Notch filters The evil twin of a bandpass filter is a notch filter. The effect of a notch filter is to eliminate
frequencies within a given band (the “notch”) and to pass frequencies outside that band. To get the transfer
function we just subtract a bandpass transfer function from 1. Using the one we already have:

Notch(s) = 1 − B(s) = 1− (H(s− ν0) +H(s+ ν0)) .

This will eliminate the positive frequencies between ν0 − νc and ν0 + νc, and the symmetric corresponding
negative frequencies between −ν0 − νc and −ν0 + νc, and pass all frequencies outside of these two bands.
You can draw your own graph of that.

Unfortunately, for the impulse response we’re in the same position here as we were for the highpass filter.
We cannot write down the impulse response without recourse to δ’s, so this will have to wait.

3.5 Convolution in Action II: Differential Equations

One of the most common uses of convolution and the Fourier transform is in solving differential equations.
Solving differential equations was Fourier’s original motivation for Fourier series and the use of the Fourier
transform to this end has continued to exercise a strong influence on the theory and the applications. We’ll
consider several illustrations, from a simple ordinary differential equation to problems associated with the
heat equation. We’ll also revisit the problem of a signal propagating along a cable.

7 OK, this High(s) is 1 at the endpoints ±νc instead of 0, but that makes no practical difference. On the other hand, this is
a further argument for defining Π to have value 1/2 at the endpoints, for then the transfer functions for the low and highpass
filters agree in how they cut.
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The derivative formula To put the Fourier transform to work, we need a formula for the Fourier
transform of the derivative, and as you found in homework:

(Ff ′)(s) = 2πisFf(s) .

We see that differentiation has been transformed into multiplication, another remarkable feature of the
Fourier transform and another reason for its usefulness. Formulas for higher derivatives also hold, and the
result is:

(Ff (n))(s) = (2πis)nFf(s) .

We’ll come back to these formulas in another context a little later.

In general, a differential operator can be thought of as a polynomial in d/dx, say of the form

P
(

d

dx

)
= an

(
d

dx

)n
+ an−1

(
d

dx

)n−1
+ · · ·+ a1

d

dx
+ a0 ,

and when applied to a function f(x) the result is

anf
(n) + an−1f

(n−1) + · · ·+ a1f
′ + a0f .

If we now take the Fourier transform of this expression, we wind up with the Fourier transform of f
multiplied by the corresponding n-th degree polynomial evaluated at 2πis.

(
F
(
P
(

d

dx

)
f
))

(s) = P (2πis)Ff(s)

=
(
an(2πis)n + an−1(2πis)n−1 + · · ·+ a1(2πis) + a0

)
Ff(s) .

Don’t underestimate how important this is.

A simple ordinary differential equation and how to solve it You might like starting off with the
classic second order, ordinary differential equation

u′′ − u = −f

Maybe you’ve looked at a different form of this equation, but I’m writing it this way to make the subsequent
calculations a little easier. f(t) is a given function and you want to find u(t).

Take the Fourier transform of both sides:

(2πis)2Fu− Fu = −Ff

−4π2s2Fu− Fu = −Ff

(1 + 4π2s2)Fu = Ff

So we can solve for Fu as
Fu =

1
1 + 4π2s2

Ff ,

and — with a little struggle — we recognize 1/(1 + 4π2s2) as the Fourier transform of 1
2e
−|t|, that is,

Fu = F
(

1
2e
−|t|
)
· Ff .

The right hand side is the product of two Fourier transforms. Therefore, according to the convolution
theorem,

u(t) = 1
2e
−|t| ∗ f(t) .

Written out in full this is
u(t) = 1

2

∫ ∞

−∞
e−|t−τ |f(τ) dτ .

And there you have the two-sided exponential decay in action, as well as convolution.
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The heat equation Remember the heat equation? In one spatial dimension, the equation that describes
the rates of change of the temperature u(x, t) of the body at a point x and time t (with some normalization
of the constants associated with the material) is the partial differential equation

ut = 1
2uxx .

In our earlier work on Fourier series we considered heat flow on a circle, and we looked for solutions that
are periodic function of x on the interval [0, 1], so u was to satisfy u(x+ 1, t) = u(x, t). This time we want
to consider the problem of heat flow on the “infinite rod”. A rod of great length (effectively of infinite
length) is provided with an initial temperature distribution f(x) and we want to find a solution u(x, t) of
the heat equation with

u(x, 0) = f(x) .

Both f(x) and u(x, t) are defined for −∞ < x < ∞, and there is no assumption of periodicity. Knowing
the Fourier transform of the Gaussian is essential for the treatment we’re about to give.

The idea is to take the Fourier transform of both sides of the heat equation, “with respect to x”. The
Fourier transform of the right hand side of the equation, 1

2uxx(x, t), is

1
2Fuxx(s, t) = 1

2(2πis)2Fu(s, t) = −2π2s2Fu(s, t) ,

from the derivative formula. Observe that the “frequency variable” s is now in the first slot of the trans-
formed function and that the time variable t is just going along for the ride. For the left hand side, ut(x, t),
we do something different. We have

Fut(s, t) =
∫ ∞

−∞
ut(x, t)e−2πisx dx (Fourier transform in x)

=
∫ ∞

−∞

∂

∂t
u(x, t)e−2πisx dx

=
∂

∂t

∫ ∞

−∞
u(x, t)e−2πisx dx =

∂

∂t
û(s, t).

Thus taking the Fourier transform (with respect to x) of both sides of the equation

ut = 1
2uxx

leads to
∂Fu(s, t)

∂t
= −2π2s2Fu(s, t) .

This is a differential equation in t — an ordinary differential equation, despite the partial derivative symbol
— and we can solve it:

Fu(s, t) = Fu(s, 0)e−2π2s2t .

What is the initial condition, Fu(s, 0)?

Fu(s, 0) =
∫ ∞

−∞
u(x, 0)e−2πisx dx

=
∫ ∞

−∞
f(x)e−2πisx dx = Ff(s)

Putting it all together,
Fu(s, t) = Ff(s)e−2π2s2t .
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We recognize (we are good) that the exponential factor on the right hand side is the Fourier transform of
the Gaussian,

g(x, t) =
1√
2πt

e−x2/2t .

We then have a product of two Fourier transforms,

Fu(s, t) = Fg(s, t)Ff(s)

and we invert this to obtain a convolution in the spatial domain:

u(x, t) = g(x, t) ∗ f(x) =
(

1√
2πt

e−x2/2t

)
∗ f(x) (convolution in x)

or, written out,

u(x, t) =
∫ ∞

−∞

1√
2πt

e−(x−y)2/2tf(y) dy .

It’s reasonable to believe that the temperature u(x, t) of the rod at a point x at a time t > 0 is some kind
of averaged, smoothed version of the initial temperature f(x) = u(x, 0). That’s convolution at work.

The function
g(x, t) =

1√
2πt

e−x2/2t .

is called the heat kernel (or Green’s function, or fundamental solution) for the heat equation for the infinite
rod. Here are plots of g(x, t), as a function of x, for t = 1, 0.5, 0.1, 0.05, 0.01.
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You can see that the curves are becoming more concentrated near x = 0. Nevertheless, they are doing so
in a way that keeps the area under each curve 1. For

∫ ∞

−∞

1√
2πt

e−x2/2t dx =
1√
2πt

∫ ∞

−∞
e−πu2 √

2πt du (making the substitution u = x/
√

2πt.)

=
∫ ∞

−∞
e−πu2

du = 1

We’ll see later that the g(x, t) serve as an approximation to the δ function as t→ 0.

You might ask at this point: Didn’t we already solve the heat equation? Is what we did then related to
what we just did now? Indeed we did and indeed they are: see Section 3.5.

More on diffusion — back to the cable Recall from our earlier discussion that William Thomson
appealed to the heat equation to study the delay in a signal sent along a long, undersea telegraph cable. The
physical intuition, as of the mid 19th century, was that charge “diffused” along the cable. To reconstruct
part of Thomson’s solution (essentially) we must begin with a slightly different setup. The equation is the
same

ut = 1
2uxx ,

so we’re choosing constants as above and not explicitly incorporating physical parameters such as resistance
per length, capacitance per length, etc., but the initial and boundary conditions are different.

We consider a semi-infinite rod, having one end (at x = 0) but effectively extending infinitely in the
positive x-direction. Instead of an initial distribution of temperature along the entire rod, we consider a
source of heat (or voltage) f(t) at the end x = 0. Thus we have the initial condition

u(0, t) = f(t) .

We suppose that
u(x, 0) = 0 ,

meaning that at t = 0 there’s no temperature (or charge) in the rod. We also assume that u(x, t) and its
derivatives tend to zero as x→ ∞. Finally, we set

u(x, t) = 0 for x < 0

so that we can regard u(x, t) as defined for all x. We want a solution that expresses u(x, t), the temperature
(or voltage) at a position x > 0 and time t > 0 in terms of the initial temperature (or voltage) f(t) at the
endpoint x = 0.

The analysis of this is really involved. It’s quite a striking formula that works out in the end, but, be
warned, the end is a way off. Proceed only if interested.

First take the Fourier transform of u(x, t) with respect to x (the notation û seems more natural here):

û(s, t) =
∫ ∞

−∞
e−2πisxu(x, t) dx .

Then, using the heat equation,

∂

∂t
û(s, t) =

∫ ∞

−∞
e−2πisx ∂

∂t
u(x, t) dx=

∫ ∞

−∞
e−2πisx ∂2

∂x2
1
2u(x, t) dx .
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We need integrate only from 0 to ∞ since u(x, t) is identically 0 for x < 0. We integrate by parts once:
∫ ∞

0
e−2πisx 1

2
∂2

∂x2
u(x, t) dx =

1
2

([
e−2πisx ∂

∂x
u(x, t)

]x=∞

x=0
+ 2πis

∫ ∞

0

∂

∂x
u(x, t) e−2πisx dx

)

= −1
2ux(0, t) + πis

∫ ∞

0

∂

∂x
u(x, t) e−2πisx dx ,

taking the boundary conditions on u(x, t) into account. Now integrate by parts a second time:
∫ ∞

0

∂

∂x
u(x, t) e−2πisx dx =

[
e−2πisx u(x, t)

]x=∞

x=0
+ 2πis

∫ ∞

0
e−2πist u(x, t) dx

= −u(0, t) + 2πis
∫ ∞

0

e−2πist u(x, t) dx

= −f(t) + 2πis
∫ ∞

−∞
e−2πist u(x, t) dx

(we drop the bottom limit back to −∞ to bring back the
Fourier transform)

= −f(t) + 2πis û(s, t).

Putting these calculations together yields

∂

∂t
û(s, t) = −1

2ux(0, t)− πisf(t) − 2π2s2û(s, t) .

Now, this is a linear, first order, ordinary differential equation (in t) for û. It’s of the general type

y′(t) + P (t)y(t) = Q(t) ,

and if you cast your mind back and search for knowledge from the dim past you will recall that to solve
such an equation you multiply both sides by the integrating factor

e
R t
0 P (τ)dτ

which produces (
y(t)e

R t
0 P (τ)dτ

)′
= e

R t
0 P (τ) dτQ(t) .

From here you get y(t) by direct integration. For our particular application we have

P (t) = 2π2s2 (that’s a constant as far as we’re concerned because there’s no t)
Q(t) = −1

2ux(0, t)− πisf(t).

The integrating factor is e2π2s2t and we’re to solve8

(e2π2s2tû(t))′ = e2π2s2t
(
−1

2ux(0, t)− πisf(t)
)
.

Write τ for t and integrate both sides from 0 to t with respect to τ :

e2π2s2tû(s, t) − û(s, 0) =
∫ t

0
e2πs2τ

(
−1

2ux(0, τ)− πisf(τ)
)
dτ .

8 I want to carry this out so you don’t miss anything
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But û(s, 0) = 0 since u(x, 0) is identically 0, so

û(s, t) = e−2π2s2t

∫ t

0
e2πs2τ

(
−1

2ux(0, τ)− πisf(τ)
)
dτ

=
∫ t

0
e−2π2s2(t−τ)

(
−1

2ux(0, τ)− πisf(τ)
)
dτ.

We need to take the inverse transform of this to get u(x, t). Be not afraid:

u(x, t) =
∫ ∞

−∞
e2πisxû(s, t) ds

=
∫ ∞

−∞
e2πisx

( ∫ t

0
e−2π2s2(t−τ)

(
−1

2ux(0, τ)− πisf(τ)
)
dτ
)
ds

=
∫ t

0

∫ ∞

−∞
e2πisxe−2π2s2(t−τ)

(
−1

2ux(0, τ)− πisf(τ)
)
ds dτ .

Appearances to the contrary, this is not hopeless. Let’s pull out the inner integral for further examination:
∫ ∞

−∞
e2πisx(e−2π2s2(t−τ)

(
−1

2ux(0, τ)− πisf(τ))
)
ds =

− 1
2ux(0, τ)

∫ ∞

−∞
e2πisxe−2π2s2(t−τ) ds− πif(τ)

∫ ∞

−∞
e2πisx s e−2π2s2(t−τ) ds

The first integral is the inverse Fourier transform of a Gaussian; we want to find F−1
(
e−2πs2(t−τ)

)
. Recall

the formulas
F
( 1

σ
√

2π
e−x2/2σ2

)
= e−2π2σ2s2

, F(e−x2/2σ2
) = σ

√
2π e−2π2σ2s2

.

Apply this with
σ =

1
2π

√
(t − τ )

.

Then, using duality and evenness of the Gaussian, we have

∫ ∞

−∞
e2πisxe−2πs2(t−τ) ds = F−1

(
e−2πs2(t−τ)

)
=

e−x2/2(t−τ)

√
2π(t− τ)

.

In the second integral we want to find F−1(s e−2π2s2(t−τ)). For this, note that

se−2π2s2(t−τ) = − 1
4π2(t − τ )

d

ds
e−2π2s2(t−τ)

and hence
∫ ∞

−∞
e2πisx s e−2π2s2(t−τ) ds = F−1

(
− 1

4π2(t − τ )
d

ds
e−2π2s2(t−τ)

)
= − 1

4π2(t − τ )
F−1

(
d

ds
e−2π2s2(t−τ)

)
.

We know how to take the inverse Fourier transform of a derivative, or rather we know how to take the
(forward) Fourier transform, and that’s all we need by another application of duality. We use, for a general
function f ,

F−1f ′ = (Ff ′)− = (2πixFf)− = −2πix(Ff)− = −2πixF−1f .
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Apply this to

F−1

(
d

ds
e−2π2s2(t−τ)

)
= −2πixF−1

(
e−2π2s2(t−τ)

)

= −2πix
1√

2π(t − τ )
e−x2/2(t−τ) (from our earlier calculation, fortunately)

Then

− 1
4π2(t − τ )

F−1
(

d

ds
e−2π2s2(t−τ)

)
=

2πix

4π2(t − τ )
e−x2/2(t−τ)

√
2π(t − τ )

=
i

2π

x e−x2/2(t−τ)

√
2π(t − τ )3

.

That is,

F−1
(
s e−2π2s2(t−τ)

)
=

i

2π

x e−x2/2(t−τ)

√
2π(t − τ )3

.

Finally getting back to the expression for u(x, t), we can combine what we’ve calculated for the inverse
Fourier transforms and write

u(x, t) = −1
2

∫ t

0
ux(0, τ)F−1

(
e−2πs2(t−τ)

)
dτ − πi

∫ t

0
f(τ)F−1

(
s e−2π2s2(t−τ)

)
dτ

= −1
2

∫ t

0

ux(0, τ)
e−x2/2(t−τ)

√
2π(t − τ )

dτ + 1
2

∫ t

0

f(τ)
x e−x2/2(t−τ)

√
2π(t − τ )3

dτ.

We’re almost there. We’d like to eliminate ux(0, τ) from this formula and express u(x, t) in terms of f(t)
only. This can be accomplished by a very clever, and I’d say highly nonobvious observation. We know
that u(x, t) is zero for x < 0; we have defined it to be so. Hence the integral expression for u(x, t) is zero
for x < 0. Because of the evenness and oddness in x of the two integrands this has a consequence for the
values of the integrals when x is positive. (The first integrand is even in x and the second is odd in x.) In
fact, the integrals are equal!

Let me explain what happens in a general situation, stripped down, so you can see the idea. Suppose we
have

Φ(x, t) =
∫ t

0
φ(x, τ) dτ +

∫ t

0
ψ(x, τ) dτ

where we know that: Φ(x, t) is zero for x < 0; φ(x, τ) is even in x; ψ(x, τ) is odd in x. Take a > 0. Then
Φ(−a, τ) = 0, hence using the evenness of φ(x, τ) and the oddness of ψ(x, τ),

0 =
∫ t

0

φ(−a, τ) dτ +
∫ t

0

ψ(−a, τ) dτ =
∫ t

0

φ(a, τ) dτ −
∫ t

0

ψ(a, τ) dτ .

We conclude that for all a > 0, ∫ t

0
φ(a, τ) =

∫ t

0
ψ(a, τ) dτ ,

and hence for x > 0 (writing x for a)

Φ(x, t) =
∫ t

0
φ(x, τ) dτ +

∫ t

0
ψ(x, τ) dτ

= 2
∫ t

0
ψ(x, τ) dτ = 2

∫ t

0
φ(x, τ) dτ (either φ or ψ could be used).

We apply this in our situation with

φ(x, τ) = −1
2ux(0, τ)

e−x2/2(t−τ)

√
2π(t− τ)

, ψ(x, τ) = 1
2f(τ)

x e−x2/2(t−τ)

√
2π(t− τ)3

.
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The result is that we can eliminate the integral with the ux(0, τ) and write the solution — the final solution
— as

u(x, t) =
∫ t

0

f(τ)
x e−x2/2(t−τ)

√
2π(t− τ)3

dτ .

This form of the solution was the one given by Stokes. He wrote to Thomson:

In working out myself various forms of the solution of the equation dv/dt = d2v/dx2 [Note: He
puts a 1 on the right hand side instead of a 1/2] under the condition v = 0 when t = 0 from
x = 0 to x = ∞; v = f(t) when x = 0 from t = 0 to t = ∞ I found the solution . . .was . . .

v(x, t) =
x

2
√
π

∫ t

0

(t− t′)−3/2e−x2/4(t−t′)f(t′) dt′ .

Didn’t We Already Solve the Heat Equation? Our first application of Fourier series (the first
application of Fourier series) was to solve the heat equation. Let’s recall the setup and the form of the
solution. We heat a circle, which we consider to be the interval 0 ≤ x ≤ 1 with the endpoints identified.
If the initial distribution of temperature is the function f(x) then the temperature u(x, t) at a point x at
time t > 0 is given by

u(x, t) =
∫ 1

0
g(x− y)f(y) dy ,

where

g(u) =
∞∑

n=−∞
e−2π2n2te2πinu .

That was our first encounter with convolution. Now, analogous to what we did, above, we might write
instead

g(x, t) =
∞∑

n=−∞
e−2π2n2te2πinx

and the solution as

u(x, t) = g(x, t) ∗ f(x) =
∫ 1

0

∞∑

n=−∞
e−2π2n2te2πin(x−y)f(y) dy ,

a convolution in the spatial variable, but with limits of integration just from 0 to 1. Here f(x), g(x, t), and
u(x, t) are periodic of period 1 in x.

How does this compare to what we did for the rod? If we imagine initially heating up a circle as heating
up an infinite rod by a periodic function f(x) then shouldn’t we be able to express the temperature u(x, t)
for the circle as we did for the rod? We will show that the solution for a circle does have the same form
as the solution for the infinite rod by means of the remarkable identity:

∞∑

n=−∞
e−(x−n)2/2t =

√
2πt

∞∑

n=−∞
e−2π2n2te2πinx

Needless to say, this is not obvious.

As an aside, for general interest, a special case of this identity is particularly famous. The
Jacobi theta function is defined by

ϑ(t) =
∞∑

n=−∞
e−πn2 t ,
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for t > 0. It comes up in surprisingly diverse pure and applied fields, including number theory,
and statistical mechanics (where it is used to study “partition functions”). Jacobi’s identity is

ϑ(t) =
1√
t
ϑ
(1

t

)
.

It follows from the identity above, with x = 0 and replacing t by 1/2πt.

We’ll show later why the general identity holds. But first, assuming that it does, let’s work with the
solution of the heat equation for a circle and see what we get. Applying the identity to Green’s function
g(x, t) for heat flow on the circle we have

g(x, t) =
∞∑

n=−∞
e−2π2n2te2πinx =

1√
2πt

∞∑

n=−∞
e−(x−n)2/2t

Regard the initial distribution of heat f(x) as being defined on all of R and having period 1. Then

u(x, t) =
∫ 1

0

∞∑

n=−∞
e−2π2n2te2πin(x−y)f(y) dy

=
1√
2πt

∫ 1

0

∞∑

n=−∞
e−(x−y−n)2/2tf(y) dy (using the Green’s function identity)

=
1√
2πt

∞∑

n=−∞

∫ 1

0
e−(x−y−n)2/2tf(y) dy

=
1√
2πt

∞∑

n=−∞

∫ n+1

n
e−(x−u)2/2tf(u− n) du (substituting u = y + n)

=
1√
2πt

∞∑

n=−∞

∫ n+1

n
e−(x−u)2/2tf(u) du (using that f has period 1)

=
1√
2πt

∫ ∞

−∞
e−(x−u)2/2tf(u) du .

Voilà, we are back to the solution of the heat equation on the line.

Incidentally, since the problem was originally formulated for heating a circle, the function u(x, t) is periodic
in x. Can we see that from this form of the solution? Yes, for

u(x+ 1, t) =
1√
2πt

∫ ∞

−∞
e−(x+1−u)2/2tf(u) du

=
1√
2πt

∫ ∞

−∞
e−(x−w)2/2tf(w+ 1) dw (substituting w = u− 1)

=
1√
2πt

∫ ∞

−∞
e−(x−w)2/2tf(w) dw (using the periodicity of f(x))

= u(x, t) .

Now let’s derive the identity

∞∑

n=−∞
e−(x−n)2/2t =

√
2πt

∞∑

n=−∞
e−2π2n2te2πinx
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This is a great combination of many of the things we’ve developed to this point, and it will come up again.9

Consider the left hand side as a function of x, say

h(x) =
∞∑

n=−∞
e−(x−n)2/2t .

This is a periodic function of period 1 — it’s the periodization of the Gaussian e−x2/2t. (It’s even not hard
to show that the series converges, etc., but we won’t go through that.) What are its Fourier coefficients?
We can calculate them:

ĥ(k) =
∫ 1

0
h(x)e−2πikx dx

=
∫ 1

0

( ∞∑

n=−∞
e−(x−n)2/2t

)
e−2πikx dx

=
∞∑

n=−∞

∫ 1

0
e−(x−n)2/2te−2πikx dx

=
∞∑

n=−∞

∫ −n+1

−n
e−u2/2te−2πiku du

(substituting u = x− n and using periodicity of e−2πikx)

=
∫ ∞

−∞
e−u2/2te−2πiku du

But this last integral is exactly the Fourier transform of the Gaussian e−x2/2t at s = k. We know how to
do that — the answer is

√
2πt e−2π2k2t.

We have shown that the Fourier coefficients of h(x) are

ĥ(k) =
√

2πt e−2π2k2t .

Since the function is equal to its Fourier series (really equal here because all the series converge and all
that) we conclude that

h(x) =
∞∑

n=−∞
e−(x−n)2/2t

=
∞∑

n=−∞
ĥ(n)e2πinx =

√
2πt

∞∑

n=−∞
e−2π2n2te2πinx ,

and there’s the identity we wanted to prove.

3.6 Convolution in Action III: The Central Limit Theorem

Several times we’ve met the idea that convolution is a smoothing operation. Let me begin with some
graphical examples of this, convolving a discontinuous or rough function repeatedly with itself. For home-
work you computed, by hand, the convolution of the rectangle function Π with itself a few times. Here are
plots of this, up to Π ∗ Π ∗ Π ∗ Π.

9 It’s worth your effort to go through this. The calculations in this special case will come up more generally when we do the
Poisson Summation Formula. That formula is the basis of the sampling theorem.
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Π Π ∗Π

Π ∗Π ∗Π Π ∗ Π ∗Π ∗Π

Not only are the convolutions becoming smoother, but the unmistakable shape of a Gaussian is emerging.
Is this a coincidence, based on the particularly simple nature of the function Π, or is something more
going on? Here is a plot of, literally, a random function f(x) — the values f(x) are just randomly chosen
numbers between 0 and 1 — and its self-convolution up to the four-fold convolution f ∗ f ∗ f ∗ f .
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Random Signal f
f ∗ f

f ∗ f ∗ f f ∗ f ∗ f ∗ f

From seeming chaos, again we see a Gaussian emerging. The object of this section is to explain this
phenomenon, to give substance to the following famous quotation:

Everyone believes in the normal approximation, the experimenters because they think it is a
mathematical theorem, the mathematicians because they think it is an experimental fact.

G. Lippman, French Physicist, 1845–1921

The “normal approximation” (or normal distribution) is the Gaussian. The “mathematical theorem” here
is the Central Limit Theorem. To understand the theorem and to appreciate the “experimental fact”, we
have to develop some ideas from probability.

3.6.1 Random variables

In whatever field of science or engineering you pursue you will use probabilistic ideas. You will use the
Gaussian. I’m going under the assumption that you probably know some probability, and probably some
statistics, too, even if only in an informal way. For our present work, where complete generality based
on exquisitely precise terminology is not the goal, we only need a light dose of some of the fundamental
notions.

The fundamental notion is the random variable. A random variable is a number you don’t know yet.10

By that I mean that it, or rather its value, is the numerical result of some process, like a measurement

10 I think this phrase to describe a random variable is due to Sam Savage in Management Science & Engineering.
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or the result of an experiment. The assumption is that you can make the measurement, you can perform
the experiment, but until you do you don’t know the value of the random variable. It’s called “random”
because a particular object to be measured is thought of as being drawn “at random” from a collection of
all such objects. For example:

Random Variable Value of random variable
Height of people in US population Height of particular person
Length of pins produced Length of particular pin
Momentum of atoms in a gas Momentum of particular atom
Resistance of resistors off a production line Resistance of a particular resistor
Toss of coin 0 or 1 (head or tail)
Roll of dice Sum of numbers that come up

A common notation is to write X for the name of the random variable and x for its value. If you then
think that a random variable X is just a function, you’re right, but deciding what the domain of such
a function should be, and what mathematical structure to require of both the domain and the function,
demands the kind of precision that we don’t want to get into. This was a long time in coming. Consider,
for example, Mark Kac’s comment: “independent random variables were to me (and others, including
my teacher Steinhaus) shadowy and not really well-defined objects.” Kac was one of the most eminent
probabilists of the 20th century.

3.6.2 Probability distributions and probability density functions

“Random variable” is the fundamental notion, but not the fundamental object of study. For a given
random variable what we’re most interested in is how its values are distributed. For this it’s helpful to
distinguish between two types of random variables.

• A random variable is discrete if its values are among only a finite number of possibilities.

◦ For example “Roll the die” is a discrete random variable with values 1, 2, 3, 4, 5 or 6. “Toss
the coin” is a discrete random variable with values 0 and 1. (A random variable with values 0
and 1 is the basic random variable in coding and information theory.)

• A random variable is continuous if its values do not form a discrete set, typically filling up one or
more intervals of real numbers.

◦ For example “length of a pin” is a continuous random variable since, in theory, the length of a
pin can vary continuously.

For a discrete random variable we are used to the idea of displaying the distribution of values as a histogram.
We set up bins, one corresponding to each of the possible values, we run the random process however many
times we please, and for each bin we draw a bar with height indicating the percentage that value occurs
among all actual outcomes of the runs.11 Since we plot percentages, or fractions, the total area of the
histogram is 100%, or just 1.

A series of runs of the same experiment or the same measurement will produce histograms of varying
shapes.12 We often expect some kind of limiting shape as we increase the number of runs, or we may

11 I have gotten into heated arguments with physicist friends who insist on plotting frequencies of values rather than percent-
ages. Idiots.
12 A run is like: “Do the experiment 10 times and make a histogram of your results for those 10 trials.” A series of runs is

like: “Do your run of 10 times, again. And again.”
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suppose that the ideal distribution has some shape, and then compare the actual data from a series of runs
to the ideal, theoretical answer.

• The theoretical histogram is called the probability distribution.

• The function that describes the histogram (the shape of the distribution) is called the probability
density function or pdf, of the random variable.

Is there a difference between the probability distribution and the probability density function? No, not
really — it’s like distinguishing between the graph of a function and the function. Both terms are in
common use, more or less interchangeably.

• The probability that any particular value comes up is the area of its bin in the probability distribution,
which is therefore a number between 0 and 1.

If the random variable is called X and the value we’re interested in is x we write this as

Prob(X = x) = area of the bin over x .

Also
Prob(a ≤ X ≤ b) = areas of the bins from a to b .

Thus probability is the percentage of the occurrence of a particular outcome, or range of outcomes, among
all possible outcomes. We must base the definition of probability on what we presume or assume is the
distribution function for a given random variable. A statement about probabilities for a run of experiments
is then a statement about long term trends, thought of as an approximation to the ideal distribution.

One can also introduce probability distributions and probability density functions for continuous random
variables. You can think of this — in fact you probably should think of this — as a continuous version of
a probability histogram. It’s a tricky business, however, to “take a limit” of the distribution for a discrete
random variable, which have bins of a definite size, to produce a distribution for a continuous random
variable, imagining the latter as having infinitely many infinitesimal bins.

It’s easiest, and best, to define the distribution for a continuous random variable directly.

• A probability density function is a nonnegative function p(x) with area 1, i.e.,
∫ ∞

−∞
p(x) dx = 1 .

Remember, x is the measured value of some experiment. By convention, we take x to go from −∞ to ∞
so we don’t constantly have to say how far the values extend.

Here’s one quick and important property of pdfs:

• If p(x) is a pdf and a > 0 then ap(ax) is also a pdf.

To show this we have to check that the integral of ap(ax) is 1. But
∫ ∞

−∞
ap(ax) dx =

∫ ∞

−∞
ap(u)

1
a
du =

∫ ∞

−∞
p(u) du = 1 ,

making the change of variable u = ax. We’ll soon see this property in action.
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• We think of a pdf as being associated with a random variable X whose values are x and we write pX

if we want to emphasize this. The (probability) distribution of X is the graph of pX , but, again, the
terms probability density function and probability distribution are used interchangeably.

• Probability is defined by

Prob(X ≤ a) = Area under the curve for x ≤ a

=
∫ a

−∞
pX(x) dx,

Also

Prob(a ≤ X ≤ b) =
∫ b

a
pX(x) dx .

For continuous random variables it really only makes sense to talk about the probability of a range of
values occurring, not the probability of the occurrence of a single value. Think of the pdf as describing a
limit of a (discrete) histogram: If the bins are becoming infinitely thin, what kind of event could land in
an infinitely thin bin?13

Finally, for variable t, say, we can view

P (t) =
∫ t

−∞
p(x) dx

as the “probability function”. It’s also called the cumulative probability or the cumulative density func-
tion.14 We then have

Prob(X ≤ t) = P (t)

and
Prob(a ≤ X ≤ b) = P (b)− P (a) .

According to the fundamental theorem of calculus we can recover the probability density function from
P (t) by differentiation:

d

dt
P (t) = p(t) .

In short, to know p(t) is to know P (t) and vice versa. You might not think this news is of any particular
practical importance, but you’re about to see that it is.

3.6.3 Mean, variance, and standard deviation

Suppose X is a random variable with pdf p(x). The x’s are the values assumed by X , so the mean µ of X
is the weighted average of these values, weighted according to p. That is,

µ(X) =
∫ ∞

−∞
xp(x) dx .

13 There’s also the familiar integral identity Z a

a

pX(x)dx = 0

to contend with. In this context we would interpret this as saying that Prob(X = a) = 0.
14 Cumulative density function is the preferred term because it allows for a three letter acronym: cdf.
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Be careful here — the mean of X , defined to be the integral of xp(x), is not the average value of the
function p(x). It might be that µ(X) = ∞, of course, i.e., that the integral of xpX(x) does not converge.
This has to be checked for any particular example.

If µ(X) < ∞ then we can always “subtract off the mean” to assume that X has mean zero. Here’s what
this means, no pun intended; in fact let’s do something slightly more general. What do we mean by X−a,
when X is a random variable and a is a constant? Nothing deep — you “do the experiment” to get a value
of X (X is a number you don’t know yet) then you subtract a from it. What is the pdf of X − a? To
figure that out, we have

Prob(X − a ≤ t) = Prob(X ≤ t+ a)

=
∫ t+a

−∞
p(x) dx

=
∫ t

−∞
p(u+ a) du (substituting u = x− a).

This identifies the pdf of X − a as p(x+ a), the shifted pdf of X .15

Next, what is the mean of X − a. It must be µ(X) − a (common sense, please). Let’s check this now
knowing what pdf to integrate.

µ(X − a) =
∫ ∞

−∞
xp(x+ a) dx

=
∫ ∞

−∞
(u− a)p(u) du (substituting u = x+ a)

=
∫ ∞

−∞
up(u) du− a

∫ ∞

−∞
p(u) du = µ(X)− a .

Note that translating the pdf p(x) to p(x + a) does nothing to the shape, or areas, of the distribution,
hence does nothing to calculating any probabilities based on p(x). As promised, the mean is µ(X)−a. We
are also happy to be certain now that “subtracting off the mean”, as in X − µ(X), really does result in a
random variable with mean 0. This normalization is often a convenient one to make in deriving formulas.

Suppose that the mean µ(X) is finite. The variance σ2 is a measure of the amount that the values of the
random variable deviate from the mean, on average, i.e., as weighted by the pdf p(x). Since some values
are above the mean and some are below we weight the square of the differences, (x− µ(X))2, by p(x) and
define

σ2(X) =
∫ ∞

−∞
(x− µ(X))2p(x) dx .

If we have normalized so that the mean is zero this becomes simply

σ2(X) =
∫ ∞

−∞
x2p(x) dx .

The standard deviation is σ(X), the square root of the variance. Even if the mean is finite it might be
that σ2(X) is infinite; this, too, has to be checked for any particular example.

15 This is an illustration of the practical importance of going from the probability function to the pdf. We identified the pdf
by knowing the probability function. This won’t be the last time we do this.
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We’ve just seen that we can normalize the mean of a random variable to be 0. Assuming that the variance
is finite, can we normalize it in some helpful way? Suppose X has pdf p and let a be a positive constant.
Then

Prob
(1

a
X ≤ t

)
= Prob(X ≤ at)

=
∫ at

−∞
p(x) dx

=
∫ t

−∞
ap(au) du (making the substitution u =

1
a
x)

This says that the random variable 1
aX has pdf ap(ax). (Here in action is the scaled pdf ap(ax), which we

had as an example of operations on pdf’s.) Suppose that we’ve normalized the mean of X to be 0. Then
the variance of 1

aX is

σ2
(1

a
X
)

=
∫ ∞

−∞
x2ap(ax) dx

= a

∫ ∞

−∞

1
a2
u2p(u)

1
a
du (making the substitution u = ax)

=
1
a2

∫ ∞

−∞
u2p(u) du =

1
a2
σ2(X)

In particular, if we choose a = σ(X) then the variance of 1
aX is one. This is also a convenient normalization

for many formulas.

In summary:

• Given a random variable X with finite µ(X) and σ(X) < ∞, it is possible to normalize and assume
that µ(X) = 0 and σ2(X) = 1.

You see these assumptions a lot.

3.6.4 Two examples

Let’s be sure we have two leading examples of pdfs to refer to.

The uniform distribution “Uniform” refers to a random process where all possible outcomes are
equally likely. In the discrete case tossing a coin or throwing a die are examples. All bins in the ideal
histogram have the same height, two bins of height 1/2 for the toss of a coin, six bins of height 1/6 for the
throw of a single die, and N bins of height 1/N for a discrete random variable with N values.

For a continuous random variable the uniform distribution is identically 1 on an interval of length 1 and
zero elsewhere. We’ve seen such a graph before. If we shift to the interval from −1/2 to 1/2, it’s the
graph of the ever versatile rect function. Π(x) is now starring in yet another role, that of the uniform
distribution.

The mean is 0, obviously,16 but to verify this formally:

µ =
∫ ∞

−∞
xΠ(x) dx =

∫ 1/2

−1/2
x dx = 1

2x
2

]+1/2

−1/2

= 0 .

16 . . . the mean of the random variable with pdf p(x) is not the average value of p(x) . . .
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The variance is then

σ2 =
∫ ∞

−∞
x2Π(x) dx =

∫ 1/2

−1/2

x2 dx = 1
3x

3

]+1/2

−1/2

= 1
12 ,

perhaps not quite so obvious.

The normal distribution This whole lecture is about getting to Gaussians, so it seems appropriate
that at some point I mention:

The Gaussian is a pdf.

Indeed, to borrow information from earlier work in this chapter, the Gaussian

g(x, µ, σ) =
1

σ
√

2π
e−(x−µ)2/2σ2

.

is a pdf with mean µ and variance σ2. The distribution associated with such a Gaussian is called a normal
distribution. There, it’s official. But why is it “normal”? You’re soon to find out.

3.6.5 Independence

An important extra property that random variables may have is independence. The plain English descrip-
tion of independence is that one event or measurement doesn’t influence another event or measurement.
Each flip of a coin, roll of a die, or measurement of a resistor is a new event, not influenced by previous
events.

Operationally, independence implies that the probabilities multiply: If two random variables X1 and X2

are independent then

Prob(X1 ≤ a and X2 ≤ b) = Prob(X1 ≤ a) ·Prob(X2 ≤ b) .

In words, if X1 ≤ a occurs r percent and X2 ≤ b occurs s percent then, if the events are independent, the
percent that X1 ≤ a occurs and X2 ≤ b occurs is r percent of s percent, or rs percent.

3.6.6 Convolution appears

Using the terminology we’ve developed, we can begin to be more precise about the content of the Central
Limit Theorem. That result — the ubiquity of the bell-shaped curve — has to do with sums of independent
random variables and with the distributions of those sums.

While we’ll work with continuous random variables, let’s look at the discrete random variable X = “roll
the dice” as an example. The ideal histogram for the toss of a single die is uniform — each number 1
through 6 comes up with equal probability. We might represent it pictorially like this:

I don’t mean to think just of a picture of dice here — I mean to think of the distribution as six bins of
equal height 1/6, each bin corresponding to one of the six possible tosses.
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What about the sum of the tosses of two dice? What is the distribution, theoretically, of the sums? The
possible values of the sum are 2 through 12, but the values do not occur with equal probability. There’s
only one way of making 2 and one way of making 12, but there are more ways of making the other possible
sums. In fact, 7 is the most probable sum, with six ways it can be achieved. We might represent the
distribution for the sum of two dice pictorially like this:

It’s triangular. Now let’s see . . . For the single random variable X = “roll one die” we have a distribution
like a rect function. For the sum, say random variables X1 + X2 = “roll of die 1 plus roll of die 2”, the
distribution looks like the triangle function . . . .

The key discovery is this:

Convolution and probability density functions The probability density function of the
sum of two independent random variables is the convolution of the probability density functions
of each.

What a beautiful, elegant, and useful statement! Let’s see why it works.

We can get a good intuitive sense of why this result might hold by looking again at the discrete case and
at the example of tossing two dice. To ask about the distribution of the sum of two dice is to ask about
the probabilities of particular numbers coming up, and these we can compute directly using the rules of
probability. Take, for example, the probability that the sum is 7. Count the ways, distinguishing which
throw is first:

Prob(Sum = 7) = Prob({1 and6} or{2 and5} or{3 and4} or{4 and3} or {5 and2} or {6 and1})
= Prob(1 and6) + Prob(2 and5) + Prob(3 and4) +

Prob(4 and3) + Prob(5 and2) + Prob(6 and1)
(probabilities add when events are mutually exclusive)

= Prob(1) Prob(6) + Prob(2) Prob(5) + Prob(3) Prob(4) +
Prob(4) Prob(3) + Prob(5) Prob(2) + Prob(6) Prob(1)

(probabilities multiply when events are independent)

= 6
(1

6

)2
=

1
6
.

The particular answer, Prob(Sum = 7) = 1/6, is not important here17 — it’s the form of the expression

17 But do note that it agrees with what we can observe from the graphic of the sum of two dice. We see that the total number
of possibilities for two throws is 36 and that 7 comes up 6/36 = 1/6 of the time.
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for the solution that should catch your eye. We can write it as

Prob(Sum = 7) =
6∑

k=1

Prob(k) Prob(7 − k)

which is visibly a discrete convolution of Prob with itself — it has the same form as an integral convolution
with the sum replacing the integral.

We can extend this observation by introducing

p(n) =

{
1
6 n = 1, 2, . . . , 6
0 otherwise

This is the discrete uniform density for the random variable “Throw one die”. Then, by the same reasoning
as above,

Prob(Sum of two dice = n) =
∞∑

k=−∞
p(k)p(n− k) .

You can check that this gives the right answers, including the answer 0 for n bigger than 12 or n less
than 2:

n Prob(Sum = n)
2 1/36
3 2/36
4 3/36
5 4/36
6 5/36
7 6/36
8 5/36
9 4/36
10 3/36
11 2/36
12 1/36

Now let’s turn to the case of continuous random variables, and in the following argument look for similarities
to the example we just treated. Let X1 and X2 be independent random variables with probability density
functions p1(x1) and p2(x2). Because X1 and X2 are independent,

Prob(a1 ≤ X1 ≤ b1 and a2 ≤ X2 ≤ b2) =
(∫ b1

a1

p1(x1) dx1

)(∫ b2

a2

p2(x2) dx2

)

Using what has now become a familiar trick, we write this as a double integral.
(∫ b1

a1

p1(x1) dx1

)(∫ b2

a2

p2(x2) dx2

)
=
∫ b2

a2

∫ b1

a1

p1(x1)p2(x2) dx1 dx2 ,

that is,

Prob(a1 ≤ X1 ≤ b1 and a2 ≤ X2 ≤ b2) =
∫ b2

a2

∫ b1

a1

p1(x1)p2(x2) dx1 dx2 .

If we let a1 and a2 drop to −∞ then

Prob(X1 ≤ b1 andX2 ≤ b2) =
∫ b2

−∞

∫ b1

−∞
p1(x1)p2(x2) dx1 dx2 .
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Since this holds for any b1 and b2, we can conclude that

Prob(X1 +X2 ≤ t) =
∫∫

x1+x2≤t
p1(x1)p2(x2) dx1 dx2

for every t. In words, the probability that X1 + X2 ≤ t is computed by integrating the joint probability
density p1(x1)p2(x2) over the region in the (x1, x2)-plane where x1 + x2 ≤ t.

We’re going to make a change of variable in this double integral. We let

x1 = u

x2 = v − u

Notice that x1 + x2 = v. Thus under this transformation the (oblique) line x1 + x2 = t becomes the
horizontal line v = t, and the region x1 + x2 ≤ t in the (x1, x2)-plane becomes the half-plane v ≤ t in the
(u, v)-plane.

The integral then becomes
∫∫

x1+x2≤t
p1(x1)p2(x2) dx1 dx2 =

∫ t

−∞

∫ ∞

−∞
p1(u)p2(v − u) du dv

(the convolution of p1 and p2 is inside!)

=
∫ t

−∞
(p2 ∗ p1)(v) dv .

To summarize, we now see that the probability Prob(X1 +X2 ≤ t) for any t is given by

Prob(X1 +X2 ≤ t) =
∫ t

−∞
(p2 ∗ p1)(v) dv .

Therefore the probability density function of X1 +X2 is (p2 ∗ p1)(t).
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This extends to the sum of any finite number of random variables: If X1, X2, . . . , Xn are independent
random variables with probability density functions p1, p2, . . . , pn, respectively, then the probability density
function of X1 +X2 + · · ·+Xn is p1 ∗ p2 ∗ · · · ∗ pn. Cool. Cool. . . . Cool.

For a single probability density p(x) we’ll write

p∗n(x) = (p ∗ p ∗ · · · ∗ p)(x) (n factors of p, i.e., n − 1 convolutions of p with itself).

3.7 The Central Limit Theorem: The Bell Curve Tolls for Thee

The Central Limit Theorem says something like the sum of n independent random variables is well ap-
proximated by a Gaussian if n is large. That means the sum is distributed like a Gaussian. To make a true
statement, we have to make a few assumptions — but not many — on how the random variables them-
selves are distributed. Call the random variables X1, X2,. . . , Xn. We assume first of all that the X ’s are
independent. We also assume that all of X ’s have the same probability density function.18 There’s some
terminology and an acronym that goes along with this, naturally. One says that the X ’s are independent
and identically distributed, or iid. In particular the X ’s all have the same mean, say µ, and they all have
the same standard deviation, say σ.

Consider the sum
Sn = X1 +X2 + · · ·Xn .

We want to say that Sn is distributed like a Gaussian as n increases, but which Gaussian? The mean and
standard deviation for the X ’s are all the same, but for Sn they are changing with n. It’s not hard to
show, though, that for Sn the mean scales by n and thus the standard deviation scales by

√
n:

µ(Sn) = nµ

σ(Sn) =
√
n σ

For the derivations see Section 3.9.

So to make sense of Sn approaching a particular Gaussian we should therefore recenter and rescale the
sum, say fix the mean to be zero, and fix the standard deviation to be 1. That is, we should work with

Sn − nµ√
n σ

and ask what happens as n→ ∞. One form of the Central Limit Theorem19 says that

lim
n→∞

Prob
(
a <

Sn − nµ√
nσ

< b

)
=

1√
2π

∫ b

a
e−x2/2 dx .

On the right hand side is the Gaussian (1/
√

2π)e−x2/2 with mean 0 and standard deviation 1. The
theorem says that probabilities for the normalized sum of the random variables approach those based on
this Gaussian.

18 So you can sort of think of the random variables as being the same for practical purposes, like making the same measurements
in different trials, or throwing a die hundreds of times, recording the results, and then doing it again.
19 Abbreviated, of course, as CLT.
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We’ll focus on the convergence of the pdf’s for Sn — sort of an unintegrated form of the way the CLT is
stated, above. Let p(x) be the common probability density function for the X1, X2, . . . , Xn. (The pdf for
the iid X ’s, for those who like to compress their terminology.) We’ll start by assuming already that µ = 0
and σ = 1 for the X ’s. This means that

∫ ∞

−∞
xp(x) dx = 0 and

∫ ∞

−∞
x2p(x) dx = 1 ,

in addition to ∫ ∞

−∞
p(x) dx = 1 ,

which is true for every pdf.

Now, the mean of Sn is zero, but the standard deviation is
√
n, so we want to work Sn/

√
n. What is the

pdf of this? We’ve shown that the pdf for Sn = X1 + · · ·+Xn is

p∗n(x) = (p ∗ p ∗ · · · ∗ p)(x) .

Hence the probability density function for Sn/
√
n is

pn(x) =
√
np∗n(

√
n x) .

(Careful here: It’s (p ∗ p ∗ · · · ∗ p)(
√
nx), not p(

√
n x) ∗ p(

√
n x) ∗ · · ·p(

√
n x).)

We’re all set to show:

Central Limit Theorem LetX1, X2, . . . , Xn be independent, identically distributed random
variables with mean 0 and standard deviation 1. Let pn(x) be the probability density function
for Sn/

√
n = (X1 +X2 + · · ·+Xn)/

√
n. Then

pn(x) → 1√
2π
e−x2/2 as n→ ∞ .

The idea is to take the Fourier transform of pn, which, by the Convolution Theorem, will essentially be
the product of the Fourier transforms of p. Products are easier than convolutions, and the hope is to use
the assumptions on p to get some information on the form of this product as n→ ∞.

Begin with the Fourier transform of
pn(x) =

√
np∗n(

√
n x) .

We’ll use the capital letter notation and write P (s) = Fp(s). Then the Fourier transform of pn(x) is

Pn

(
s√
n

)
(ordinary nth power here).

The normalization of mean zero and standard deviation 1 allows us to do something with P (s/
√
n). Using
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a Taylor series approximation for the exponential function, we have

P

(
s√
n

)
=
∫ ∞

−∞
e−2πisx/

√
n p(x) dx

=
∫ ∞

−∞

(
1 − 2πisx√

n
+

1
2

(
2πisx√

n

)2

+ small
)
p(x) dx

=
∫ ∞

−∞

(
1 − 2πisx√

n
− 2π2s2x2

n
+ small

)
p(x) dx

=
∫ ∞

−∞
p(x) dx− 2πis√

n

∫ ∞

−∞
xp(x) dx− 2π2s2

n

∫ ∞

−∞
x2p(x) dx+

∫ ∞

−∞
(small)p(x) dx

= 1 − 2π2s2

n
+ small .

In the last step we used the normalizations
∫ ∞

−∞
p(x) dx = 1 ,

∫ ∞

−∞
xp(x) dx = 0 ,

∫ ∞

−∞
x2p(x) dx = 1 .

That “small” term tends to 0 faster than 1/n as n→ ∞ — see Section 3.10 for more details.

Using the well known fact that
(
1 + x/n

)n → ex, we have for large n

Pn

(
s√
n

)
≈
(

1 − 2π2s2

n

)n

≈ e−2π2s2
.

Taking the inverse Fourier transform of e−2π2s2
and knowing what happens to the Gaussian, taking the

limit as n→ ∞, taking the rest of the day off for a job well done, we conclude that

pn(x) → 1√
2π
e−x2/2 .

Catch your breath and relax.

3.8 Fourier transform formulas under different normalizations

With convolution now part of our working lives we’ve seen the major operations and formulas involving
Fourier transforms. At the end of Section 2.1 we cautioned that there are different conventions for defining
the Fourier transform, and different conventions result in different formulas. Here is a summary of what
you’ll find out there.

To be as general as possible let’s write, as we did back in Section 2.1,

Ff(s) =
1
A

∫ ∞

−∞
eiBstf(t) dt .

We use A = 1 and B = −2π but different Fourier practitioners may well use any of the following pairs of
values:

A =
√

2π B = ±1
A = 1 B = ±2π
A = 1 B = ±1
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Whatever you choose, here’s what you’ll then have to live with:

FFf =
2π

A2|B|
f−F(f ′) = −iBFf

(Ff)′ = iBF(tf(t))
F(f ∗ g) = A(Ff)(Fg)

3.9 Appendix: The Mean and Standard Deviation for the Sum of Ran-

dom Variables

The setup for the Central Limit Theorem involves the sum

Sn = X1 +X2 + · · ·+Xn

of n independent random variables, all having the same pdf p(x). Thus all of the X ’s have the same mean
and the same variance

µ =
∫ ∞

−∞
xp(x) dx , σ2 =

∫ ∞

−∞
x2p(x) dx .

We needed to know that the mean and the standard deviation of Sn were

µ(Sn) = nµ , σ(Sn) =
√
n σ .

Take the first of these. The pdf for S2 = X1 +X2 is p ∗ p, and hence

µ(S2) =
∫ ∞

−∞
x(p ∗ p)(x) dx

=
∫ ∞

−∞
x

(∫ ∞

−∞
p(x− y)p(y) dy

)
dx

=
∫ ∞

−∞

(∫ ∞

−∞
xp(x− y) dx

)
p(y) dy

=
∫ ∞

−∞

(∫ ∞

−∞
(u+ y)p(u) du

)
p(y) dy (using u = x− y)

=
∫ ∞

−∞

(∫ ∞

−∞
up(u) du+ y

∫ ∞

−∞
p(u) du

)
p(y) dy

=
∫ ∞

−∞
(µ+ y)p(y) dy (using

∫∞
−∞ up(u) du = µ and

∫∞
−∞ p(u)du = 1)

= µ

∫ ∞

−∞
p(u) du+

∫ ∞

−∞
yp(y) dy

= µ+ µ .

By induction we get µ(Sn) = nµ.

How about the variance, or standard deviation? Again let’s do this for S2 = X1 + X2. We first assume
that the mean of the X ’s is 0 and therefore the mean S2 is 0, so that

∫ ∞

−∞
xp(x) dx = 0 and

∫ ∞

−∞
x(p ∗ p)(x) dx = 0 .
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Then the variance of S2 is

σ2(S2) =
∫ ∞

−∞
x2(p ∗ p)(x) dx

=
∫ ∞

−∞
x2

(∫ ∞

−∞
p(x− y)p(y) dy

)
dx

=
∫ ∞

−∞

(∫ ∞

−∞
x2p(x− y) dx

)
p(y) dy

=
∫ ∞

−∞

(∫ ∞

−∞
(u+ y)2p(u) du

)
p(y) dy (using u = x− y)

=
∫ ∞

−∞

(∫ ∞

−∞
(u2 + 2uy + y2)p(u) du

)
p(y) dy

=
∫ ∞

−∞

(∫ ∞

−∞
u2p(u) du+ 2y

∫ ∞

−∞
up(u) du+ y2

∫ ∞

−∞
p(u) du

)
p(y) dy

=
∫ ∞

−∞
(σ2 + y2)p(y) dy (using

∫∞
−∞ u

2p(u)du = σ2 and
∫∞
−∞ up(u)du = 0)

= σ2

∫ ∞

−∞
p(y) dy +

∫ ∞

−∞
y2p(y) dy

= σ2 + σ2 = 2σ2 .

So the variance is of (S2) is 2σ2 and the standard deviation is σ(S2) =
√

2σ. Once again we see by induction
that

σ(Sn) =
√
n σ .

Pretty nice, really. I’ll let you decide what to do if the mean is not zero at the start.

3.10 Appendix: More Details on the Derivation of the Central Limit

Theorem

In the proof of the Central Limit Theorem we had the following chain of equalities:

P

(
s√
n

)
=
∫ ∞

−∞
e−2πisx/

√
n p(x) dx

=
∫ ∞

−∞

(
1 − 2πisx√

n
+

1
2

(
2πisx√

n

)2

+ small
)
p(x) dx

=
∫ ∞

−∞

(
1 − 2πisx√

n
− 2π2s2x2

n
+ small

)
p(x) dx

=
∫ ∞

−∞
p(x) dx− 2πis√

n

∫ ∞

−∞
xp(x) dx− 2π2s2

n

∫ ∞

−∞
x2p(x) dx+

∫ ∞

−∞
(small)p(x) dx

= 1 − 2π2s2

n
+ small .

To see more carefully what’s going on with the “small” part, here’s a different way of writing this.

P

(
s√
n

)
=
∫ ∞

−∞
e−2πisx/

√
n p(x) dx

=
∫ ∞

−∞

(
1 − 2πisx√

n
+

1
2

(2πisx√
n

)2(
1 + εn(x)

))
p(x) dx .
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Here, εn(x) is bounded and tends to zero pointwise as n→ ∞. Therefore

P

(
s√
n

)
= 1 − 2π2s2

n

(
1 +

∫ ∞

−∞
x2εn(x)p(x) dx

)

But since, by assumption, ∫ ∞

−∞
x2p(x) dx = 1

it’s clear that ∫ ∞

−∞
x2εn(x)p(x) dx= o(1)

as n→ ∞, i.e.,

p̂

(
s√
n

)
= 1 − 2π2s2

n
(1 + o(1)) = 1 − 2π2s2

n
+

o(1)
n

.

Here we use the symbol o(1) to denote a quantity that tends to zero as n→ ∞.

3.11 Appendix: Heisenberg’s Inequality

Since we’ve gone to the trouble of introducing some of the terminology from probability and statistics
(mean, variance, etc.), I thought you might appreciate seeing another application.

Consider the stretch theorem, which reads

• If f(t) 
 F (s) then f(at) 
 1
|a|
F
(

s

a

)
.

If a is large then f(at) is squeezed and (1/|a|)F (s/a) is stretched. Conversely if a is small then f(at) is
stretched and (1/|a|)F (s/a) is squeezed.

A more quantitative statement of the trade-off between the spread of a signal and the spread of its Fourier
transform is related to (equivalent to) that most famous inequality in quantum mechanics, the Heisenberg
Uncertainty Principle.

Suppose f(x) is a signal with finite energy,
∫ ∞

−∞
|f(x)|2 dx <∞ .

We can normalize f by dividing f by the square root of its energy and thus assume that
∫ ∞

−∞
|f(x)|2 dx = 1 .

We can then regard |f(x)|2 as defining a probability density function, and it has a mean and a variance.
Now, by Parseval’s identity (which I’ve stated and will derive later),

∫ ∞

−∞
|f̂(s)|2 ds =

∫ ∞

−∞
|f(x)|2 dx = 1 .

Thus |f̂(s)|2 also defines a probability distribution, and it too has a mean and variance. How do they
compare to those of |f(x)|2?
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As earlier, we shift f(x), or rather |f(x)|2, to assume that the mean is 0. The effect on f̂ (s) of shifting
f(x) is to multiply by a complex exponential, which has absolute value 1 and hence does not affect |f̂(s)|2.
In the same manner we can shift f̂(s) so it has zero mean, and again there will be no effect on |f(x)|2.

To summarize, we assume that the probability distributions |f(x)|2 and |f̂(s)|2 each have mean 0, and we
are interested in comparing their variances;

σ2(f) =
∫ ∞

−∞
x2|f(x)|2 dx and σ2(f̂) =

∫ ∞

−∞
s2|f̂(s)|2 ds .

The Heisenberg uncertainty principle states that

σ(f)σ(f̂) ≥ 1
4π
.

In words, this says that not both of σ(f) and σ(f̂) can be small — if one is tiny, the other has
to be big enough so that their product is at least 1/4π.

After all the setup, the argument to deduce the lower bound is pretty easy, except for a little trick right
in the middle. It’s also helpful to assume that we’re working with complex-valued functions — the trick
that comes up is a little easier to verify in that case. Finally, we’re going to assume that |f(x)| decreases
rapidly enough at ±∞. You’ll see what’s needed. The result can be proved for more general functions via
approximation arguments. Here we go.

4π2σ(f)2σ(f̂)2 = 4π2

∫ ∞

−∞
x2|f(x)|2 dx

∫ ∞

−∞
s2|f̂(s)|2 ds

=
∫ ∞

−∞
x2|f(x)|2 dx

∫ ∞

−∞
|2πis|2|f̂(s)|2 ds

=
∫ ∞

−∞
|xf(x)|2 dx

∫ ∞

−∞
|f̂ ′(s)|2 ds

=
∫ ∞

−∞
|xf(x)|2 dx

∫ ∞

−∞
|f ′(x)|2 dx (by Parseval’s identity applied to f ′(x))

≥
( ∫ ∞

−∞
|xf(x)f ′(x)| dx

)2
(by the Cauchy-Schwarz inequality)

Here comes the trick. In the integrand we have |f(x)f ′(x)|. The magnitude of any complex number is
always greater than its real part; draw a picture — the complex number is a vector, which is always longer
than its x-component. Hence

|xf(x)f ′(x)| ≥ xRe{f(x)f ′(x)}

= x 1
2

(
f(x)f ′(x) + f(x)f ′(x)∗

)
= x

d

dx
1
2

(
f(x)f(x)

)
= x

d

dx
1
2 |f(x)|2 .

Use this in the last line, above:
( ∫ ∞

−∞
|xf(x)f ′(x)| dx

)2
≥
( ∫ ∞

−∞
x
d

dx
1
2 |f(x)|2 dx

)2

Now integrate by parts with u = x, dv = 1
2

d
dx |f(x)|2 dx. The term uv]∞−∞ drops out because we assume it

does, i.e., we assume that x|f(x)| goes to zero as x → ±∞. Therefore we’re left with the integral of v du
(and the whole thing is squared). That is,

(∫ ∞

−∞
x
d

dx
1
2 |f(x)|2 dx

)2
dx = 1

4

( ∫ ∞

−∞
|f(x)|2 dx

)2
= 1

4 .

To summarize, we have shown that

4π2σ(f)2σ(f̂)2 ≥ 1
4 or σ(f)σ(f̂) ≥ 1

4π
.
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Remark One can show, using the case of equality in the Cauchy-Schwarz inequality, that equality holds
in Heisenberg’s inequality exactly for constant multiples of f(x) = e−kx2

— yet another spooky appearance
of the Gaussian.

Is this quantum mechanics? The quantum mechanics of a particle moving in one dimension that goes
along with this inequality runs as follows — in skeletal form, with no attempt at motivation:

The state of a particle moving in one dimension is given by a complex-valued function ψ in L2(R), the
square integrable functions on the real line. (L2 plays a big role in quantum mechanics — you need a space
to work in, and L2 is the space. Really.) Probabilities are done with complex quantities in this business,
and the first notion is that the probability of finding the particle in the interval a ≤ x ≤ b is given by

∫ b

a

ψ(x)∗ψ(x) dx ,

where in this field it’s customary to write the complex conjugate of a quantity using an asterisk instead of
an overline.

An observable is a symmetric linear operator A, operating on some subset of functions (states) in L2(R).
The average of A in the state ψ is defined to be

∫ ∞

−∞
ψ(x)∗(Aψ)(x) dx

One important observable is the “position of the particle”, and this, as it turns out, is associated to the
operator “multiplication by x”. Thus the average position is

∫ ∞

−∞
ψ(x)∗(Aψ)(x) dx=

∫ ∞

−∞
ψ(x)∗xψ(x) dx =

∫ ∞

−∞
x|ψ(x)|2dx .

Another important observable is momentum, and this is associated with the operator

B =
1

2πi

d

dx
.

The average momentum is then
∫ ∞

−∞
ψ(x)∗(Bψ)(x) dx=

∫ ∞

−∞
ψ(x)∗

1
2πi

ψ′(x) dx

=
∫ ∞

−∞
ψ̂(s)∗sψ̂(s) ds (using the Parseval identity for products of functions)

=
∫ ∞

−∞
s|ψ(s)|2 ds .

The position and momentum operators do not commute:

(AB − BA)(ψ) =
1

2πi

(
x
d

dx
− d

dx
x

)
(ψ) = − 1

2πi
ψ .

In quantum mechanics this means that the position and momentum cannot simultaneously be measured
with arbitrary accuracy. The Heisenberg inequality, as a lower bound for the product of the two variances,
is a quantitative way of stating this.
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Chapter 4

Distributions and Their Fourier
Transforms

4.1 The Day of Reckoning

We’ve been playing a little fast and loose with the Fourier transform — applying Fourier inversion, appeal-
ing to duality, and all that. “Fast and loose” is an understatement if ever there was one, but it’s also true
that we haven’t done anything “wrong”. All of our formulas and all of our applications have been correct,
if not fully justified. Nevertheless, we have to come to terms with some fundamental questions. It will take
us some time, but in the end we will have settled on a very wide class of signals with these properties:

• The allowed signals include δ’s, unit steps, ramps, sines, cosines, and all other standard signals that
the world’s economy depends on.

• The Fourier transform and its inverse are defined for all of these signals.

• Fourier inversion works.

These are the three most important features of the development to come, but we’ll also reestablish some
of our specific results and as an added benefit we’ll even finish off differential calculus!

4.1.1 A too simple criterion and an example

It’s not hard to write down an assumption on a function that guarantees the existence of its Fourier
transform and even implies a little more than existence.

• If
∫ ∞

−∞
|f(t)| dt <∞ then Ff and F−1f exist and are continuous.

Existence follows from

|Ff(s)| =
∣∣∣∣
∫ ∞

−∞
e−2πistf(t) dt

∣∣∣∣

≤
∫ ∞

−∞
|e−2πist| |f(t)| dt=

∫ ∞

−∞
|f(t)| dt <∞ .
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Here we’ve used that the magnitude of the integral is less that the integral of the magnitude.1 There’s
actually something to say here, but while it’s not complicated, I’d just as soon defer this and other
comments on “general facts on integrals” to Section 4.3; read it if only lightly — it provides some additional
orientation.

Continuity is the little extra information we get beyond existence. Continuity follows as follows. For any
s and s′ we have

|Ff(s)− Ff(s′)| =
∣∣∣∣
∫ ∞

−∞
e−2πistf(t) dt−

∫ ∞

−∞
e−2πis′tf(t) dt

∣∣∣∣

=
∣∣∣∣
∫ ∞

−∞
(e−2πist − e−2πis′t)f(t) dt

∣∣∣∣ ≤
∫ ∞

−∞
|e−2πist − e−2πis′t| |f(t)| dt

As a consequence of
∫∞
−∞ |f(t)| dt < ∞ we can take the limit as s′ → s inside the integral. If we do that

then |e−2πist − e−2πis′t| → 0, that is,

|Ff(s)−Ff(s′)| → 0 as s′ → s

which says that Ff(s) is continuous. The same argument works to show that F−1f is continuous.2

We haven’t said anything here about Fourier inversion — no such statement appears in the criterion. Let’s
look right away at an example.

The very first example we computed, and still an important one, is the Fourier transform of Π. We found
directly that

FΠ(s) =
∫ ∞

−∞
e−2πistΠ(t) dt =

∫ 1/2

−1/2
e−2πist dt = sinc s .

No problem there, no problem whatsoever. The criterion even applies; Π is in L1(R) since
∫ ∞

−∞
|Π(t)| dt =

∫ 1/2

−1/2
1 dt = 1 .

Furthermore, the transform FΠ(s) = sinc s is continuous. That’s worth remarking on: Although the signal
jumps (Π has a discontinuity) the Fourier transform does not, just as guaranteed by the preceding result
— make this part of your intuition on the Fourier transform vis à vis the signal.

Appealing to the Fourier inversion theorem and what we called duality, we then said

Fsinc(t) =
∫ ∞

−∞
e−2πist sinc t dt = Π(s) .

Here we have a problem. The sinc function does not satisfy the integrability criterion. It is my sad duty
to inform you that ∫ ∞

−∞
| sinc t| dt = ∞ .

I’ll give you two ways of seeing the failure of | sinc t| to be integrable. First, if sinc did satisfy the criterion∫∞
−∞ | sinc t| dt < ∞ then its Fourier transform would be continuous. But its Fourier transform, which has

1 Magnitude, not absolute value, because the integral is complex number.

2 So another general fact we’ve used here is that we can take the limit inside the integral. Save yourself for other things and
let some of these “general facts” ride without insisting on complete justifications — they’re everywhere once you let the rigor
police back on the beat.



4.1 The Day of Reckoning 139

to come out to be Π, is not continuous. Or, if you don’t like that, here’s a direct argument. We can
find infinitely many intervals where | sinπt| ≥ 1/2; this happens when t is between 1/6 and 5/6, and that
repeats for infinitely many intervals, for example on In = [16 + 2n, 5

6 + 2n], n = 0, 1, 2, . . . , because sinπt
is periodic of period 2. The In all have length 2/3. On In we have |t| ≤ 5

6 + 2n, so

1
|t| ≥

1
5/6 + 2n

and ∫

In

| sinπt|
π|t|

dt ≥ 1
2π

1
5/6 + 2n

∫

In

dt =
1
2π

2
3

1
5/6 + 2n

.

Then ∫ ∞

−∞

| sinπt|
π|t|

dt ≥
∑

n

∫

In

| sinπt|
π|t|

dt =
1
3π

∞∑

n=1

1
5/6 + 2n

= ∞ .

It’s true that | sinc t| = | sinπt/πt| tends to 0 as t→ ±∞ — the 1/t factor makes that happen — but not
“fast enough” to make the integral of | sinc t| converge.

This is the most basic example in the theory! It’s not clear that the integral defining the Fourier transform
of sinc exists, at least it doesn’t follow from the criterion. Doesn’t this bother you? Isn’t it a little
embarrassing that multibillion dollar industries seem to depend on integrals that don’t converge?

In fact, there isn’t so much of a problem with either Π or sinc. It is true that

∫ ∞

−∞
e−2πist sinc s ds =

{
1 |t| < 1

2

0 |t| > 1
2

However showing this — evaluating the improper integral that defines the Fourier transform — requires
special arguments and techniques. The sinc function oscillates, as do the real and imaginary parts of the
complex exponential, and integrating e−2πist sinc s involves enough cancellation for the limit

lim
a→−∞
b→∞

∫ b

a
e−2πist sinc s ds

to exist.

Thus Fourier inversion, and duality, can be pushed through in this case. At least almost. You’ll notice
that I didn’t say anything about the points t = ±1/2, where there’s a jump in Π in the time domain. In
those cases the improper integral does not exist, but with some additional interpretations one might be
able to convince a sympathetic friend that

∫ ∞

−∞
e−2πi(±1/2)s sinc s ds = 1

2

in the appropriate sense (invoking “principle value integrals” — more on this in a later lecture). At best
this is post hoc and needs some fast talking.3

The truth is that cancellations that occur in the sinc integral or in its Fourier transform are a very subtle
and dicey thing. Such risky encounters are to be avoided. We’d like a more robust, trustworthy theory.

3 One might also then argue that defining Π(±1/2) = 1/2 is the best choice. I don’t want to get into it.
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The news so far Here’s a quick summary of the situation. The Fourier transform of f(t) is defined
when ∫ ∞

−∞
|f(t)| dt <∞ .

We allow f to be complex valued in this definition. The collection of all functions on R satisfying this
condition is denoted by L1(R), the superscript 1 indicating that we integrate |f(t)| to the first power.4

The L1-norm of F is defined by

‖f‖1 =
∫ ∞

−∞
|f(t)| dt .

Many of the examples we worked with are L1-functions — the rect function, the triangle function, the
exponential decay (one or two-sided), Gaussians — so our computations of the Fourier transforms in those
cases were perfectly justifiable (and correct). Note that L1-functions can have discontinuities, as in the
rect function.

The criterion says that if f ∈ L1(R) then Ff exists. We can also say

|Ff(s)| =
∣∣∣∣
∫ ∞

−∞
e−2πistf(t) dt

∣∣∣∣ ≤
∫ ∞

−∞
|f(t)| dt = ‖f‖1 .

That is:

• The magnitude of the Fourier transform is bounded by the L1-norm of the function.

This is a handy estimate to be able to write down — we’ll use it shortly. However, to issue a warning:

Fourier transforms of L1(R) functions may themselves not be in L1, like for the sinc function, so we
don’t know without further work what more can be done, if anything.

The conclusion is that L1-integrability of a signal is just too simple a criterion on which to build a really
helpful theory. This is a serious issue for us to understand. Its resolution will greatly extend the usefulness
of the methods we have come to rely on.

There are other problems, too. Take, for example, the signal f(t) = cos 2πt. As it stands now, this signal
does not even have a Fourier transform — does not have a spectrum! — for the integral

∫ ∞

−∞
e−2πist cos 2πt dt

does not converge, no way, no how. This is no good.

Before we bury L1(R) as too restrictive for our needs, here’s one more good thing about it. There’s actually
a stronger consequence for Ff than just continuity.

• If
∫ ∞

−∞
|f(t)| dt <∞ then Ff(s) → 0 as s→ ±∞.

4 And the letter “L” indicating that it’s really the Lebesgue integral that should be employed.
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This is called the Riemann-Lebesgue lemma and it’s more difficult to prove than showing simply that Ff
is continuous. I’ll comment on it later; see Section 4.19. One might view the result as saying that Ff(s) is
at least trying to be integrable. It’s continuous and it tends to zero as s → ±∞. Unfortunately, the fact
that Ff(s) → 0 does not imply that it’s integrable (think of sinc, again).5 If we knew something, or could
insist on something about the rate at which a signal or its transform tends to zero at ±∞ then perhaps
we could push on further.

4.1.2 The path, the way

To repeat, we want our theory to encompass the following three points:

• The allowed signals include δ’s, unit steps, ramps, sines, cosines, and all other standard signals that
the world’s economy depends on.

• The Fourier transform and its inverse are defined for all of these signals.

• Fourier inversion works.

Fiddling around with L1(R) or substitutes, putting extra conditions on jumps — all have been used. The
path to success lies elsewhere. It is well marked and firmly established, but it involves a break with the
classical point of view. The outline of how all this is settled goes like this:

1. We single out a collection of functions S for which convergence of the Fourier integrals is assured,
for which a function and its Fourier transform are both in S, and for which Fourier inversion works.
Furthermore, Parseval’s identity holds:

∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|Ff(s)|2ds .

This much is classical; new ideas with new intentions, yes, but not new objects. Perhaps surprisingly
it’s not so hard to find a suitable collection S, at least if one knows what one is looking for. But
what comes next is definitely not “classical”. It had been first anticipated and used effectively in an
early form by O. Heaviside, developed, somewhat, and dismissed, mostly, soon after by less talented
people, then cultivated by and often associated with the work of P. Dirac, and finally refined by
L. Schwartz.

2. S forms a class of test functions which, in turn, serve to define a larger class of generalized functions or
distributions, called, for this class of test functions the tempered distributions, T . Precisely because
S was chosen to be the ideal Fourier friendly space of classical signals, the tempered distributions
are likewise well suited for Fourier methods. The collection of tempered distributions includes, for
example, L1 and L2-functions (which can be wildly discontinuous), the sinc function, and complex
exponentials (hence periodic functions). But it includes much more, like the delta functions and
related objects.

3. The Fourier transform and its inverse will be defined so as to operate on these tempered distributions,
and they operate to produce distributions of the same type. Thus the inverse Fourier transform can
be applied, and the Fourier inversion theorem holds in this setting.

4. In the case when a tempered distributions “comes from a function” — in a way we’ll make precise
— the Fourier transform reduces to the usual definition as an integral, when the integral makes
sense. However, tempered distributions are more general than functions, so we really will have done
something new and we won’t have lost anything in the process.

5 For that matter, a function in L1(R) need not tend to zero at ±∞; that’s also discussed in Appendix 1.
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Our goal is to hit the relatively few main ideas in the outline above, suppressing the considerable mass
of details. In practical terms this will enable us to introduce delta functions and the like as tools for
computation, and to feel a greater measure of confidence in the range of applicability of the formulas.
We’re taking this path because it works, it’s very interesting, and it’s easy to compute with. I especially
want you to believe the last point.

We’ll touch on some other approaches to defining distributions and generalized Fourier transforms, but
as far as I’m concerned they are the equivalent of vacuum tube technology. You can do distributions in
other ways, and some people really love building things with vacuum tubes, but wouldn’t you rather learn
something a little more up to date?

4.2 The Right Functions for Fourier Transforms: Rapidly Decreasing
Functions

Mathematics progresses more by making intelligent definitions than by proving theorems. The hardest
work is often in formulating the fundamental concepts in the right way, a way that will then make the
deductions from those definitions (relatively) easy and natural. This can take awhile to sort out, and
a subject might be reworked several times as it matures; when new discoveries are made and one sees
where things end up, there’s a tendency to go back and change the starting point so that the trip becomes
easier. Mathematicians may be more self-conscious about this process, but there are certainly examples
in engineering where close attention to the basic definitions has shaped a field — think of Shannon’s work
on Information Theory, for a particularly striking example.

Nevertheless, engineers, in particular, often find this tiresome, wanting to do something and not “just talk
about it”: “Devices don’t have hypotheses”, as one of my colleagues put it. One can also have too much
of a good thing — too many trips back to the starting point to rewrite the rules can make it hard to
follow the game, especially if one has already played by the earlier rules. I’m sympathetic to both of these
criticisms, and for our present work on the Fourier transform I’ll try to steer a course that makes the
definitions reasonable and lets us make steady forward progress.

4.2.1 Smoothness and decay

To ask “how fast” Ff(s) might tend to zero, depending on what additional assumptions we might make
about the function f(x) beyond integrability, will lead to our defining “rapidly decreasing functions”,
and this is the key. Integrability is too weak a condition on the signal f , but it does imply that Ff(s) is
continuous and tends to 0 at ±∞. What we’re going to do is study the relationship between the smoothness
of a function — not just continuity, but how many times it can be differentiated — and the rate at which
its Fourier transform decays at infinity.

We’ll always assume that f(x) is absolutely integrable, and so has a Fourier transform. Let’s suppose,
more stringently, that

• xf(x) is integrable, i.e.,
∫ ∞

−∞
|xf(x)| dx <∞ .
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Then xf(x) has a Fourier transform, and so does −2πixf(x) and its Fourier transform is

F(−2πixf(x)) =
∫ ∞

−∞
(−2πix)e−2πisxf(x) dx

=
∫ ∞

−∞

(
d

ds
e−2πisx

)
f(x) dx =

d

ds

∫ ∞

−∞
e−2πisxf(x) dx

(switching d/ds and the integral is justified by the integrability of |xf(x)|)

=
d

ds
(Ff)(s)

This says that the Fourier transform Ff(s) is differentiable and that its derivative is F(−2πixf(x)). When
f(x) is merely integrable we know that Ff(s) is merely continuous, but with the extra assumption on the
integrability of xf(x) we conclude that Ff(s) is actually differentiable. (And its derivative is continuous.
Why?)

For one more go-round in this direction, what if x2f(x) is integrable? Then, by the same argument,

F((−2πix)2f(x)) =
∫ ∞

−∞
(−2πix)2e−2πisxf(x) dx

=
∫ ∞

−∞

(
d2

ds2
e−2πisx

)
f(x) dx =

d2

ds2

∫ ∞

−∞
e−2πisxf(x) dx =

d2

ds2
(Ff)(s) ,

and we see that Ff is twice differentiable. (And its second derivative is continuous.)

Clearly we can proceed like this, and as a somewhat imprecise headline we might then announce:

• Faster decay of f(x) at infinity leads to a greater smoothness of the Fourier transform.

Now let’s take this in another direction, with an assumption on the smoothness of the signal. Suppose
f(x) is differentiable, that its derivative is integrable, and that f(x) → 0 as x → ±∞. I’ve thrown in all
the assumptions I need to justify the following calculation:

Ff(s) =
∫ ∞

−∞
e−2πisxf(x) dx

=
[
f(x)

e−2πisx

−2πis

]x=∞

x=−∞
−
∫ ∞

−∞

e−2πisx

−2πis
f ′(x) dx

(integration by parts with u = f(x), dv = e−2πisxdx)

=
1

2πis

∫ ∞

−∞
e−2πisxf ′(x) dx (using f(x) → 0 as x→ ±∞)

=
1

2πis
(Ff ′)(s)

We then have
|Ff(s)| = 1

2πs
|(Ff ′)(s)| ≤ 1

2πs
‖f ′‖1 .

The last inequality follows from the result: “The Fourier transform is bounded by the L1-norm of the
function”. This says that Ff(s) tends to 0 at ±∞ like 1/s. (Remember that ‖f ′‖1 is some fixed number
here, independent of s.) Earlier we commented (without proof) that if f is integrable then Ff tends to 0
at ±∞, but here with the stronger assumptions we get a stronger conclusion, that Ff tends to zero at a
certain rate.
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Let’s go one step further in this direction. Suppose f(x) is twice differentiable, that its first and second
derivatives are integrable, and that f(x) and f ′(x) tend to 0 as x→ ±∞. The same argument gives

Ff(s) =
∫ ∞

−∞
e−2πisxf(x) dx

=
1

2πis

∫ ∞

−∞
e−2πisxf ′(x) dx (picking up on where we were before)

=
1

2πis

([
f ′(x)

e−2πisx

−2πis

]x=∞

x=−∞
−
∫ ∞

−∞

e−2πisx

−2πis
f ′′(x) dx

)

(integration by parts with u = f ′(x), dv = e−2πisxdx)

=
1

(2πis)2

∫ ∞

−∞
e−2πisxf ′′(x) dx (using f ′(x) → 0 as x→ ±∞)

=
1

(2πis)2
(Ff ′′)(s)

Thus
|Ff(s)| ≤ 1

|2πs|2
‖f ′′‖1

and we see that Ff(s) tends to 0 like 1/s2.

The headline:

• Greater smoothness of f(x), plus integrability, leads to faster decay of the Fourier transform at ∞.

Remark on the derivative formula for the Fourier transform The astute reader will have noticed
that in the course of our work we rederived the derivative formula

Ff ′(s) = 2πisFf(s)

which we’ve used before, but here we needed the assumption that f(x) → 0, which we didn’t mention
before. What’s up? With the technology we have available to us now, the derivation we gave, above, is
the correct derivation. That is, it proceeds via integration by parts, and requires some assumption like
f(x) → 0 as x → ±∞. In homework (and in the solutions to the homework) you may have given a
derivation that used duality. That only works if Fourier inversion is known to hold. This was OK when the
rigor police were off duty, but not now, on this day of reckoning. Later, when we develop a generalization
of the Fourier transform, we’ll see that the derivative formula again holds without what seem now to be
extraneous conditions.

We could go on as we did above, comparing the consequences of higher differentiability, integrability,
smoothness and decay, bouncing back and forth between the function and its Fourier transform. The great
insight in making use of these observations is that the simplest and most useful way to coordinate all these
phenomena is to allow for arbitrarily great smoothness and arbitrarily fast decay. We would like to have
both phenomena in play. Here is the crucial definition.

Rapidly decreasing functions

A function f(x) is said to be rapidly decreasing at ±∞ if
1. It is infinitely differentiable.
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2. For all positive integers m and n,
∣∣∣∣xm dn

dxn
f(x)

∣∣∣∣→ 0 as x→ ±∞

In words, any positive power of x times any order derivative of f tends to zero at infinity.

Note that m and n are independent in this definition. That is, we insist that, say, the 5th power of x times
the 17th derivative of f(x) tends to zero, and that the 100th power of x times the first derivative of f(x)
tends to zero; and whatever you want.

Are there any such functions? Any infinitely differentiable function that is identically zero outside some
finite interval is one example, and I’ll even write down a formula for one of these later. Another example is
f(x) = e−x2

. You may already be familiar with the phrase “the exponential grows faster than any power
of x”, and likewise with the phrase “e−x2

decays faster than any power of x.”6 In fact, any derivative of
e−x2

decays faster than any power of x as x → ±∞, as you can check with L’Hopital’s rule, for example.
We can express this exactly as in the definition:

∣∣∣∣xm dn

dxn
e−x2

∣∣∣∣→ 0 as x→ ±∞

There are plenty of other rapidly decreasing functions. We also remark that if f(x) is rapidly decreasing
then it is in L1(R) and in L2(R); check that yourself.

An alternative definition An equivalent definition for a function to be rapidly decreasing is to assume
that for any positive integers m and n there is a constant Cmn such that

∣∣∣∣xm dn

dxn
f(x)

∣∣∣∣ ≤ Cmn as x→ ±∞ .

In words, the mth power of x times the nth derivative of f remains bounded for all m and n, though the
constant will depend on which m and n we take. This condition implies the “tends to zero” condition,
above. Convince yourself of that, the key being that m and n are arbitrary and independent. We’ll use
this second, equivalent condition often, and it’s a matter of taste which one takes as a definition.

Let us now praise famous men It was the French mathematician Laurent Schwartz who singled out
this relatively simple condition to use in the service of the Fourier transform. In his honor the set of rapidly
decreasing functions is usually denoted by S (a script S) and called the Schwartz class of functions.

Let’s start to see why this was such a good idea.

1. The Fourier transform of a rapidly decreasing function is rapidly decreasing. Let f(x) be
a function in S. We want to show that Ff(s) is also in S. The condition involves derivatives of Ff , so
what comes in is the derivative formula for the Fourier transform and the version of that formula for higher
derivatives. As we’ve already seen

2πisFf(s) =
(
F d

dx
f
)
(s) .

6 I used e−x2
as an example instead of e−x (for which the statement is true as x → ∞) because I wanted to include x → ±∞,

and I used e−x2
instead of e−|x| because I wanted the example to be smooth. e−|x| has a corner at x = 0.
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As we also noted,
d

ds
Ff(s) = F(−2πixf(x)) .

Because f(x) is rapidly decreasing, the higher order versions of these formulas are valid; the derivations
require either integration by parts or differentiating under the integral sign, both of which are justified.
That is,

(2πis)nFf(s) =
(
F dn

dxn
f
)
(s)

dn

dsn
Ff(s) = F

(
(−2πix)nf(x)

)
.

(We follow the convention that the zeroth order derivative leaves the function alone.)

Combining these formulas one can show, inductively, that for all nonnegative integers m and n,

F
(

dn

dxn

(
(−2πix)mf(x)

))
= (2πis)n dm

dsm
Ff(s) .

Note how m and n enter in the two sides of the equation.

We use this last identity together with the estimate for the Fourier transform in terms of the L1-norm of
the function. Namely,

|s|n
∣∣∣∣

dm

dsm
Ff(s)

∣∣∣∣ = (2π)m−n

∣∣∣∣F
(

dn

dxn
(xmf(x))

)∣∣∣∣ ≤ (2π)m−n

∥∥∥∥
dn

dxn
(xmf(x))

∥∥∥∥
1

The L1-norm on the right hand side is finite because f is rapidly decreasing. Since the right hand side
depends on m and n, we have shown that there is a constant Cmn with

∣∣∣∣sn
dm

dsm
Ff(s)

∣∣∣∣ ≤ Cmn .

This implies that Ff is rapidly decreasing. Done.

2. Fourier inversion works on S. We first establish the inversion theorem for a timelimited function
in S. Suppose that f(t) is smooth and for some T is identically zero for |t| ≥ T/2, rather than just tending
to zero at ±∞. In this case we can periodize f(t) to get a smooth, periodic function of period T . Expand
the periodic function as a converging Fourier series. Then for −T/2 ≤ t ≤ T/2,

f(t) =
∞∑

n=−∞
cne

2πint/T

=
∞∑

n=−∞
e2πint/T

(
1
T

∫ T/2

−T/2
e−2πinx/T f(x) dx

)

=
∞∑

n=−∞
e2πint/T

(
1
T

∫ ∞

−∞
e−2πinx/T f(x) dx

)
=

∞∑

n=−∞
e2πint/TFf

(
n

T

) 1
T
.

Our intention is to let T get larger and larger. What we see is a Riemann sum for the integral
∫ ∞

−∞
e2πistFf(s) ds = F−1Ff(t) ,
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and the Riemann sum converges to the integral because of the smoothness of f . (I have not slipped
anything past you here, but I don’t want to quote the precise results that make all this legitimate.) Thus

f(t) = F−1Ff(t) ,

and the Fourier inversion theorem is established for timelimited functions in S.

When f is not timelimited we use “windowing”. The idea is to cut f(t) off smoothly.7 The interesting
thing in the present context — for theoretical rather than practical use — is to make the window so smooth
that the “windowed” function is still in S. Some of the details are in Section 4.20, but here’s the setup.

We take a function c(t) that is identically 1 for −1/2 ≤ t ≤ 1/2, that goes smoothly (infinitely differentiable)
down to zero as t goes from 1/2 to 1 and from −1/2 to −1, and is then identically 0 for t ≥ 1 and t ≤ −1.
This is a smoothed version of the rectangle function Π(t); instead of cutting off sharply at ±1/2 we bring
the function smoothly down to zero. You can certainly imagine drawing such a function:

In Section 4.20 I’ll give an explicit formula for this.

Now scale c(t) to cn(t) = c(t/n). That is, cn(t) is 1 for t between −n/2 and n/2, goes smoothly down
to 0 between ±n/2 and ±n and is then identically 0 for |t| ≥ n. Next, the function fn(t) = cn(t) · f(t) is
a timelimited function in S. Hence the earlier reasoning shows that the Fourier inversion theorem holds
for fn and Ffn. The window eventually moves past every t, that is, fn(t) → f(t) as n → ∞. Some
estimates based on the properties of the cut-off function — which I won’t go through — show that the
Fourier inversion theorem also holds in the limit.

3. Parseval holds in S. We’ll actually derive a more general result than Parseval’s identity, namely:

If f(x) and g(x) are complex valued functions in S then
∫ ∞

−∞
f(x)g(x)dx =

∫ ∞

−∞
Ff(s)Fg(s)ds .

As a special case, if we take f = g then f(x)f(x) = |f(x)|2 and the identity becomes
∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|Ff(s)|2ds .

7 The design of windows, like the design of filters, is as much an art as a science.
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To get the first result we’ll use the fact that we can recover g from its Fourier transform via the inversion
theorem. That is,

g(x) =
∫ ∞

−∞
Fg(s)e2πisx ds .

The complex conjugate of the integral is the integral of the complex conjugate, hence

g(x) =
∫ ∞

−∞
Fg(s)e−2πisx ds .

The derivation is straightforward, using one of our favorite tricks of interchanging the order of integration:
∫ ∞

−∞
f(x)g(x)dx =

∫ ∞

−∞
f(x)

(∫ ∞

−∞
Fg(s)e−2πisx ds

)
dx

=
∫ ∞

−∞

∫ ∞

−∞
f(x)Fg(s)e−2πisx ds ds

=
∫ ∞

−∞

∫ ∞

−∞
f(x)Fg(s)e−2πisx dx dx

=
∫ ∞

−∞

(∫ ∞

−∞
f(x)e−2πisx dx

)
Fg(s)ds

=
∫ ∞

−∞
Ff(s)Fg(s)ds

All of this works perfectly — the initial appeal to the Fourier inversion theorem, switching the order of
integration — if f and g are rapidly decreasing.

4.3 A Very Little on Integrals

This section on integrals, more of a mid-chapter appendix, is not a short course on integration. It’s here
to provide a little, but only a little, background explanation for some of the statements made earlier. The
star of this section is you. Here you go.

Integrals are first defined for positive functions In the general approach to integration (of real-
valued functions) you first set out to define the integral for nonnegative functions. Why? Because however
general a theory you’re constructing, an integral is going to be some kind of limit of sums and you’ll want to
know when that kind of limit exists. If you work with positive (or at least nonnegative) functions then the
issues for limits will be about how big the function gets, or about how big the sets are where the function
is or isn’t big. You feel better able to analyze accumulations than to control conspiratorial cancellations.

So you first define your integral for functions f(x) with f(x) ≥ 0. This works fine. However, you know
full well that your definition won’t be too useful if you can’t extend it to functions which are both positive
and negative. Here’s how you do this. For any function f(x) you let f+(x) be its positive part :

f+(x) = max{f(x), 0}

Likewise, you let
f−(x) = max{−f(x), 0}

be its negative part.8 (Tricky: the “negative part” as you’ve defined it is actually a positive function; taking
−f(x) flips over the places where f(x) is negative to be positive. You like that kind of thing.) Then

f = f+ − f−

8 A different use of the notation f− than we had before, but we’ll never use this one again.
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while
|f | = f+ + f− .

You now say that f is integrable if both f+ and f− are integrable — a condition which makes sense since
f+ and f− are both nonnegative functions — and by definition you set

Z
f =

Z
f+ −

Z
f− .

(For complex-valued functions you apply this to the real and imaginary parts.) You follow this approach
for integrating functions on a finite interval or on the whole real line. Moreover, according to this definition
|f | is integrable if f is because then

Z
|f | =

Z
(f+ + f−) =

Z
f+ +

Z
f−

and f+ and f− are each integrable.9 It’s also true, conversely, that if |f | is integrable then so is f . You
show this by observing that

f+ ≤ |f | and f− ≤ |f |

and this implies that both f+ and f− are integrable.

• You now know where the implication
∫ ∞

−∞
|f(t)| dt <∞ ⇒ Ff exists comes from.

You get an easy inequality out of this development:
∣∣∣
Z
f
∣∣∣ ≤

Z
|f | .

In words, “the absolute value of the integral is at most the integral of the absolute value”. And sure that’s
true, because

∫
f may involve cancellations of the positive and negative values of f while

∫
|f | won’t have

such cancellations. You don’t shirk from a more formal argument:
∣∣∣
Z
f
∣∣∣ =

∣∣∣
Z

(f+ − f−)
∣∣∣ =

∣∣∣
Z
f+ −

Z
f−
∣∣∣

≤
∣∣∣
Z
f+
∣∣∣+
∣∣∣
Z
f−
∣∣∣ =

Z
f+ +

Z
f− (since f+ and f− are both nonnegative)

=
Z

(f+ + f−) =
Z
|f | .

• You now know where the second inequality in

|Ff(s)−Ff(s′)| =
∣∣∣∣
∫ ∞

−∞

(
e−2πist − e−2πis′ t

)
f(t) dt

∣∣∣∣ ≤
∫ ∞

−∞

∣∣∣e−2πist − e−2πis′t
∣∣∣ |f(t)| dt

comes from; this came up in showing that Ff is continuous.

9 Some authors reserve the term “summable” for the case when
R
|f | < ∞, i.e., for when both

R
f+ and

R
f− are finite. They

still define
R

f =
R

f+ −
R

f− but they allow the possibility that one of the integrals on the right may be ∞, in which caseR
f is ∞ or −∞ and they don’t refer to f as summable.
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sinc stinks What about the sinc function and trying to make sense of the following equation?

Fsinc(s) =
∫ ∞

−∞
e−2πist sinc t dt

According to the definitions you just gave, the sinc function is not integrable. In fact, the argument I gave
to show that ∫ ∞

−∞
| sinc t| dt = ∞

(the second argument) can be easily modified to show that both
∫ ∞

−∞
sinc+t dt = ∞ and

∫ ∞

−∞
sinc−t dt = ∞ .

So if you wanted to write ∫ ∞

−∞
sinc t dt =

∫ ∞

−∞
sinc+t dt−

∫ ∞

−∞
sinc−t dt

you’d be faced with ∞−∞. Bad. The integral of sinc (and also the integral of F sinc) has to be understood
as a limit,

lim
a→−∞, b→∞

∫ b

a

e−2πist sinc t dt

Evaluating this is a classic of contour integration and the residue theorem, which you may have seen in a
class on “Functions of a Complex Variable”. I won’t do it. You won’t do it. Ahlfors did it: See Complex

Analysis, third edition, by Lars Ahlfors, pp. 156–159.

You can relax now. I’ll take it from here.

Subtlety vs. cleverness. For the full mathematical theory of Fourier series and Fourier integrals one
needs the Lebesgue integral, as I’ve mentioned before. Lebesgue’s approach to defining the integral allows
a wider class of functions to be integrated and it allows one to establish very general, very helpful results
of the type “the limit of the integral is the integral of the limit”, as in

fn → f ⇒ lim
n→∞

∫ ∞

−∞
fn(t) dt =

∫ ∞

−∞
lim

n→∞
fn(t) dt =

∫ ∞

−∞
f(t) dt .

You probably do things like this routinely, and so do mathematicians, but it takes them a year or so of
graduate school before they feel good about it. More on this in just a moment.

The definition of the Lebesgue integral is based on a study of the size, or measure, of the sets where a
function is big or small, and you don’t wind up writing down the same kinds of “Riemann sums” you
used in calculus to define the integral. Interestingly, the constructions and definitions of measure theory,
as Lebesgue and others developed it, were later used in reworking the foundations of probability. But now
take note of the following quote of the mathematician T. Körner from his book Fourier Analysis :

Mathematicians find it easier to understand and enjoy ideas which are clever rather than subtle.
Measure theory is subtle rather than clever and so requires hard work to master.

More work than we’re willing to do, and need to do. But here’s one more thing:
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The general result allowing one to pull a limit inside the integral sign is the Lebesgue dominated convergence
theorem. It says: If fn is a sequence of integrable functions that converges pointwise to a function f except
possibly on a set of measure 0, and if there is an integrable function g with |fn| ≤ g for all n (the
“dominated” hypothesis) then f is integrable and

lim
n→∞

∫ ∞

−∞
fn(t) dt =

∫ ∞

−∞
f(t) dt .

There’s a variant of this that applies when the integrand depends on a parameter. It goes: If f(x, t0) =
limt→t0 f(x, t) for all x, and if there is an integrable function g such that |f(x, t)| ≤ g(x) for all x then

lim
t→t0

∫ ∞

−∞
f(x, t) dt =

∫ ∞

−∞
f(x, t0) dx .

The situation described in this result comes up in many applications, and it’s good to know that it holds
in great generality.

Integrals are not always just like sums. Here’s one way they’re different, and it’s important to realize
this for our work on Fourier transforms. For sums we have the result that

∑

n

an converges implies an → 0 .

We used this fact together with Parseval’s identity for Fourier series to conclude that the Fourier coefficients
tend to zero. You also all know the classic counterexample to the converse of the statement:

1
n
→ 0 but

∞∑

n=1

1
n

diverges .

For integrals, however, it is possible that ∫ ∞

−∞
f(x) dx

exists but f(x) does not tend to zero at ±∞. Make f(x) nonzero (make it equal to 1, if you want) on
thinner and thinner intervals going out toward infinity. Then f(x) doesn’t decay to zero, but you can make
the intervals thin enough so that the integral converges. I’ll leave an exact construction up to you.

How about this example?
∑∞

n=1 nΠ
(
n3(x− n)

)

How shall we test for convergence of integrals? The answer depends on the context, and different
choices are possible. Since the convergence of Fourier integrals is at stake, the important thing to measure
is the size of a function “at infinity” — does it decay fast enough for the integrals to converge.10 Any kind
of measuring requires a “standard”, and for judging the decay (or growth) of a function the easiest and
most common standard is to measure using powers of x. The “ruler” based on powers of x reads:

∫ ∞

a

dx

xp
is

{
infinite if 0 < p ≤ 1
finite if p > 1

10 For now, at least, let’s assume that the only cause for concern in convergence of integrals is decay of the function at infinity,
not some singularity at a finite point.
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You can check this by direct integration. We take the lower limit a to be positive, but a particular value is
irrelevant since the convergence or divergence of the integral depends on the decay near infinity. You can
formulate the analogous statements for integrals −∞ to −a.

To measure the decay of a function f(x) at ±∞ we look at

lim
x→±∞

|x|p|f(x)|

If, for some p > 1, this is bounded then f(x) is integrable. If there is a 0 < p ≤ 1 for which the limit is
unbounded, i.e., equals ∞, then f(x) is not integrable.

Standards are good only if they’re easy to use, and powers of x, together with the conditions on their
integrals are easy to use. You can use these tests to show that every rapidly decreasing function is in both
L1(R) and L2(R).

4.4 Distributions

Our program to extend the applicability of the Fourier transform has several steps. We took the first step
last time:

We defined S, the collection of rapidly decreasing functions. In words, these are the infinitely
differentiable functions whose derivatives decrease faster than any power of x at infinity. These
functions have the properties that:

1. If f(x) is in S then Ff(s) is in S.

2. If f(x) is in S then F−1Ff = f .

We’ll sometimes refer to the functions in S simply as Schwartz functions.

The next step is to use the functions in S to define a broad class of “generalized functions”, or as we’ll say,
tempered distributions T , which will include S as well as some nonintegrable functions, sine and cosine, δ
functions, and much more, and for which the two properties, above, continue to hold.

I want to give a straightforward, no frills treatment of how to do this. There are two possible approaches.

1. Tempered distributions defined as limits of functions in S.

This is the “classical” (vacuum tube) way of defining generalized functions, and it pretty much applies
only to the delta function, and constructions based on the delta function. This is an important enough
example, however, to make the approach worth our while.

The other approach, the one we’ll develop more fully, is:

2. Tempered distributions defined via operating on functions in S.

We also use a different terminology and say that tempered distributions are paired with functions
in S, returning a number for the pairing of a distribution with a Schwartz function.

In both cases it’s fair to say that “distributions are what distributions do”, in that fundamentally they are
defined by how they act on “genuine” functions, those in S. In the case of “distributions as limits”, the
nature of the action will be clear but the kind of objects that result from the limiting process is sort of
hazy. (That’s the problem with this approach.) In the case of “distributions as operators” the nature of
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the objects is clear, but just how they are supposed to act is sort of hazy. (And that’s the problem with
this approach, but it’s less of a problem.) You may find the second approach conceptually more difficult,
but removing the “take a limit” aspect from center stage really does result in a clearer and computationally
easier setup. The second approach is actually present in the first, but there it’s cluttered up by framing
the discussion in terms of approximations and limits. Take your pick which point of view you prefer, but
it’s best if you’re comfortable with both.

4.4.1 Distributions as limits

The first approach is to view generalized functions as some kind of limit of ordinary functions. Here we’ll
work with functions in S, but other functions can be used; see Appendix 3.

Let’s consider the delta function as a typical and important example. You probably met δ as a mathe-
matical, idealized impulse. You learned: “It’s concentrated at the point zero, actually infinite at the point
zero, and it vanishes elsewhere.” You probably learned to represent this graphically as a spike:

Don’t worry, I don’t want to disabuse you of these ideas, or of the picture. I just want to refine things
somewhat.

As an approximation to δ through functions in S one might consider the family of Gaussians

g(x, t) =
1√
2πt

e−x2/2t, t > 0 .

We remarked earlier that the Gaussians are rapidly decreasing functions.

Here’s a plot of some functions in the family for t = 2, 1, 0.5, 0.1, 0.05 and 0.01. The smaller the value
of t, the more sharply peaked the function is at 0 (it’s more and more “concentrated” there), while away
from 0 the functions are hugging the axis more and more closely. These are the properties we’re trying to
capture, approximately.
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As an idealization of a function concentrated at x = 0, δ should then be a limit

δ(x) = lim
t→0

g(x, t) .

This limit doesn’t make sense as a pointwise statement — it doesn’t define a function — but it begins to
make sense when one shows how the limit works operationally when “paired” with other functions. The
pairing, by definition, is by integration, and to anticipate the second approach to distributions, we’ll write
this as

〈g(x, t), ϕ〉=
∫ ∞

−∞
g(x, t)ϕ(x)dx .

(Don’t think of this as an inner product. The angle bracket notation is just a good notation for pairing.11)
The fundamental result — what it means for the g(x, t) to be “concentrated at 0” as t→ 0 — is

lim
t→0

∫ ∞

−∞
g(x, t)ϕ(x) dx= ϕ(0) .

Now, whereas you’ll have a hard time making sense of limt→0 g(x, t) alone, there’s no trouble making sense
of the limit of the integral, and, in fact, no trouble proving the statement just above. Do observe, however,
that the statement: “The limit of the integral is the integral of the limit.” is thus not true in this case.
The limit of the integral makes sense but not the integral of the limit.12

We can and will define the distribution δ by this result, and write

〈δ, ϕ〉 = lim
t→0

∫ ∞

−∞
g(x, t)ϕ(x) dx= ϕ(0) .

I won’t go through the argument for this here, but see Section 4.6.1 for other ways of getting to δ and for
a general result along these lines.

11 Like one pairs “bra” vectors with “ket” vectors in quantum mechanics to make a 〈A|B〉 — a bracket.
12 If you read the Appendix on integrals from the preceding lecture, where the validity of such a result is stated as a variant

of the Lebesgue Dominated Convergence theorem, what goes wrong here is that g(t, x)ϕ(x) will not be dominated by an
integrable function since g(0, t) is tending to ∞.
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The Gaussians tend to ∞ at x = 0 as t → 0, and that’s why writing simply δ(x) = limt→0 g(x, t) doesn’t
make sense. One would have to say (and people do say, though I have a hard time with it) that the delta
function has these properties:

• δ(x) = 0 for x 6= 0

• δ(0) = ∞

•
∫ ∞

−∞
δ(x) dx = 1

These reflect the corresponding (genuine) properties of the g(x, t):

• lim
t→0

g(x, t) = 0 if x 6= 0

• lim
t→0

g(0, t) = ∞

•
∫ ∞

−∞
g(x, t) dx= 1

The third property is our old friend, the second is clear from the formula, and you can begin to believe the
first from the shape of the graphs. The first property is the flip side of “concentrated at a point”, namely
to be zero away from the point where the function is concentrated.

The limiting process also works with convolution:

lim
t→0

(g ∗ ϕ)(a) = lim
t→0

∫ ∞

−∞
g(a− x, t)ϕ(x) dx= ϕ(a) .

This is written
(δ ∗ ϕ)(a) = ϕ(a)

as shorthand for the limiting process that got us there, and the notation is then pushed so far as to write
the delta function itself under the integral, as in

(δ ∗ ϕ)(a) =
∫ ∞

−∞
δ(a− x)ϕ(x) dx = ϕ(a) .

Let me declare now that I am not going to try to talk you out of writing this.

The equation
(δ ∗ ϕ)(a) = ϕ(a)

completes the analogy: “δ is to 1 as convolution is to multiplication”.

Why concentrate? Why would one want a function concentrated at a point in the first place? We’ll
certainly have plenty of applications of delta functions very shortly, and you’ve probably already seen a
variety through classes on systems and signals in EE or on quantum mechanics in physics. Indeed, it
would be wrong to hide the origin of the delta function. Heaviside used δ (without the notation) in his
applications and reworking of Maxwell’s theory of electromagnetism. In EE applications, starting with
Heaviside, you find the “unit impulse” used, as an idealization, in studying how systems respond to sharp,
sudden inputs. We’ll come back to this latter interpretation when we talk about linear systems. The
symbolism, and the three defining properties of δ listed above, were introduced later by P. Dirac in the
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service of calculations in quantum mechanics. Because of Dirac’s work, δ is often referred to as the “Dirac
δ function”.

For the present, let’s take a look back at the heat equation and how the delta function comes in there.
We’re perfectly set up for that.

We have seen the family of Gaussians

g(x, t) =
1√
2πt

e−x2/2t, t > 0

before. They arose in solving the heat equation for an “infinite rod”. Recall that the temperature u(x, t)
at a point x and time t satisfies the partial differential equation

ut = 1
2uxx .

When an infinite rod (the real line, in other words) is given an initial temperature f(x) then u(x, t) is given
by the convolution with g(x, t):

u(x, t) = g(x, t) ∗ f(x) =
1√
2πt

e−x2/2t ∗ f(x) =
∫ ∞

−∞

1√
2πt

e−(x−y)2/2tf(y) dy .

One thing I didn’t say at the time, knowing that this day would come, is how one recovers the initial
temperature f(x) from this formula. The initial temperature is at t = 0, so this evidently requires that we
take the limit:

lim
t→0+

u(x, t) = lim
t→0+

g(x, t) ∗ f(x) = (δ ∗ f)(x) = f(x) .

Out pops the initial temperature. Perfect. (Well, there have to be some assumptions on f(x), but that’s
another story.)

4.4.2 Distributions as linear functionals

Farewell to vacuum tubes The approach to distributions we’ve just followed, illustrated by defining δ,
can be very helpful in particular cases and where there’s a natural desire to have everything look as
“classical” as possible. Still and all, I maintain that adopting this approach wholesale to defining and
working with distributions is using technology from a bygone era. I haven’t yet defined the collection of
tempered distributions T which is supposed to be the answer to all our Fourier prayers, and I don’t know
how to do it from a purely “distributions as limits” point of view. It’s time to transistorize.

In the preceding discussion we did wind up by considering a distribution, at least δ, in terms of how it acts
when paired with a Schwartz function. We wrote

〈δ, ϕ〉 = ϕ(0)

as shorthand for the result of taking the limit of the pairing

〈g(x, t), ϕ(x)〉 =
∫ ∞

−∞
g(x, t)ϕ(x) dx .

The second approach to defining distributions takes this idea — “the outcome” of a distribution acting
on a test function — as a starting point rather than as a conclusion. The question to ask is what aspects
of “outcome”, as present in the approach via limits, do we try to capture and incorporate in the basic
definition?
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Mathematical functions defined on R, “live at points”, to use the hip phrase. That is, you plug in a
particular point from R, the domain of the function, and you get a particular value in the range, as for
instance in the simple case when the function is given by an algebraic expression and you plug values into
the expression. Generalized functions — distributions — do not live at points. The domain of a generalized
function is not a set of numbers. The value of a generalized function is not determined by plugging in a
number from R and determining a corresponding number. Rather, a particular value of a distribution is
determined by how it “operates” on a particular test function. The domain of a generalized function is a
set of test functions. As they say in Computer Science, helpfully:

• You pass a distribution a test function and it returns a number.

That’s not so outlandish. There are all sorts of operations you’ve run across that take a signal as an
argument and return a number. The terminology of “distributions” and “test functions”, from the dawn of
the subject, is even supposed to be some kind of desperate appeal to physical reality to make this reworking
of the earlier approaches more appealing and less “abstract”. See label 4.5 for a weak attempt at this, but
I can only keep up that physical pretense for so long.

Having come this far, but still looking backward a little, recall that we asked which properties of a pairing
— integration, as we wrote it in a particular case in the first approach — do we want to subsume in the
general definition. To get all we need, we need remarkably little. Here’s the definition:

Tempered distributions A tempered distribution T is a complex-valued continuous linear functional
on the collection S of Schwartz functions (called test functions). We denote the collection of all tempered
distributions by T .

That’s the complete definition, but we can unpack it a bit:

1. If ϕ is in S then T (ϕ) is a complex number. (You pass a distribution a Schwartz function, it returns
a complex number.)

• We often write this action of T on ϕ as 〈T, ϕ〉 and say that T is paired with ϕ. (This terminology
and notation are conventions, not commandments.)

2. A tempered distribution is linear operating on test functions:

T (α1ϕ1 + α2ϕ2) = α1T (ϕ1) + α2T (ϕ2)

or, in the other notation,

〈T, α1ϕ1 + α2ϕ2〉 = α1〈T, ϕ1〉 + α2〈T, ϕ2〉,

for test functions ϕ1, ϕ2 and complex numbers α1, α2.

3. A tempered distribution is continuous: if ϕn is a sequence of test functions in S with ϕn → ϕ in S
then

T (ϕn) → T (ϕ) , also written 〈T, ϕn〉 → 〈T, ϕ〉 .

Also note that two tempered distributions T1 and T2 are equal if they agree on all test functions:

T1 = T2 if T1(ϕ) = T2(ϕ) (〈T1, ϕ〉 = 〈T2, ϕ〉) for all ϕ in S .

This isn’t part of the definition, it’s just useful to write down.
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There’s a catch There is one hard part in the definition, namely, what it means for a sequence of test
functions in S to converge in S. To say that ϕn → ϕ in S is to control the convergence of ϕn together
with all its derivatives. We won’t enter into this, and it won’t be an issue for us. If you look in standard
mathematics books on the theory of distributions you will find long, difficult discussions of the appropriate
topologies on spaces of functions that must be used to talk about convergence. And you will be discouraged
from going any further. Don’t go there.

It’s another question to ask why continuity is included in the definition. Let me just say that this is
important when one considers limits of distributions and approximations to distributions.

Other classes of distributions This settles the question of what a tempered distribution is : it’s a
continuous linear functional on S. For those who know the terminology, T is the dual space of the space
S. In general, the dual space to a vector space is the set of continuous linear functionals on the vector space,
the catch being to define continuity appropriately. From this point of view one can imagine defining types
of distributions other than the tempered distributions. They arise by taking the dual spaces of collections
of test functions other than S. Though we’ll state things for tempered distributions, most general facts
(those not pertaining to the Fourier transform, yet to come) also hold for other types of distributions.
We’ll discuss this in the last section.

4.4.3 Two important examples of distributions

Let us now understand:

1. How T somehow includes the functions we’d like it to include for the purposes of extending the
Fourier transform.

2. How δ fits into this new scheme.

The first item is a general construction and the second is an example of a specific distribution defined in
this new way.

How functions determine tempered distributions, and why the tempered distributions include
the functions we want. Suppose f(x) is a function for which

∫ ∞

−∞
f(x)ϕ(x) dx

exists for all Schwartz functions ϕ(x). This is not asking too much, considering that Schwartz functions
decrease so rapidly that they’re plenty likely to make a product f(x)ϕ(x) integrable. We’ll look at some
examples, below.

In this case the function f(x) determines (“defines” or “induces” or “corresponds to” — pick your preferred
descriptive phrase) a tempered distribution Tf by means of the formula

Tf(ϕ) =
∫ ∞

−∞
f(x)ϕ(x) dx .

In words, Tf acts on a test function ϕ by integration of ϕ against f . Alternatively, we say that the function
f determines a distribution Tf through the pairing

〈Tf , ϕ〉 =
∫ ∞

−∞
f(x)ϕ(x) dx , ϕ a test function.
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This is just what we considered in the earlier approach that led to δ, pairing Gaussians with a Schwartz
function. In the present terminology we would say that the Gaussian g(x, t) determines a distribution Tg

according to the formula

〈Tg, ϕ〉 =
∫ ∞

−∞
g(x, t)ϕ(x) dx .

Let’s check that the pairing 〈Tf , ϕ〉 meets the standard of the definition of a distribution. The pairing is
linear because integration is linear:

〈Tf , α1ϕ1 + α2ϕ2〉 =
∫ ∞

−∞
f(x)(α1ϕ1(x) + α2ϕ2(x)) dx

=
∫ ∞

−∞
f(x)α1ϕ1(x) dx+

∫ ∞

−∞
f(x)α2ϕ2(x) dx

= α1〈Tf , ϕ1〉 + α2〈Tf , ϕ2〉

What about continuity? We have to take a sequence of Schwartz functions ϕn converging to a Schwartz
function ϕ and consider the limit

lim
n→∞

〈Tf , ϕn〉 = lim
n→∞

∫ ∞

−∞
f(x)ϕn(x) dx .

Again, we haven’t said anything precisely about the meaning of ϕn → ϕ, but the standard results on taking
the limit inside the integral will apply in this case and allow us to conclude that

lim
n→∞

∫ ∞

−∞
f(x)ϕn(x) dx.=

∫ ∞

−∞
f(x)ϕ(x) dx

i.e., that
lim

n→∞
〈Tf , ϕn〉 = 〈Tf , ϕ〉 .

This is continuity.

Using a function f(x) to determine a distribution Tf this way is a very common way of constructing
distributions. We will use it frequently. Now, you might ask yourself whether different functions can give
rise to the same distribution. That is, if Tf1 = Tf2 as distributions, then must we have f1(x) = f2(x)? Yes,
fortunately, for if Tf1 = Tf2 then for all test functions ϕ(x) we have

∫ ∞

−∞
f1(x)ϕ(x) dx =

∫ ∞

−∞
f2(x)ϕ(x) dx

hence ∫ ∞

−∞
(f1(x)− f2(x))ϕ(x) dx= 0 .

Since this holds for all test functions ϕ(x) we can conclude that f1(x) = f2(x).

Because a function f(x) determines a unique distribution, it’s natural to “identify” the function f(x) with
the corresponding distribution Tf . Sometimes we then write just f for the corresponding distribution
rather than writing Tf , and we write the pairing as

〈f, ϕ〉 =
∫ ∞

−∞
f(x)ϕ(x) dx

rather than as 〈Tf , ϕ〉.
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• It is in this sense — identifying a function f with the distribution Tf it determines— that a class of
distributions “contains” classical functions.

Let’s look at some examples.

Examples The sinc function defines a tempered distribution, because, though sinc is not integrable,
(sincx)ϕ(x) is integrable for any Schwartz function ϕ(x). Remember that a Schwartz function ϕ(x) dies
off faster than any power of x and that’s more than enough to pull sinc down rapidly enough at ±∞ to
make the integral exist. I’m not going to prove this but I have no qualms asserting it. For example, here’s
a plot of e−x2

times the sinc function on the interval −3.5 ≤ x ≤ 3.5:

For the same reason any complex exponential, and also sine and cosine, define tempered distributions.
Here’s a plot of e−x2

times cos 2πx on the range −3.5 ≤ x ≤ 3.5:
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Take two more examples, the Heaviside unit step H(x) and the unit ramp u(x):

H(x) =

{
0 x < 0
1 x ≥ 0

u(x) =

{
0 x ≤ 0
x x ≥ 0

Neither function is integrable; indeed, u(x) even tends to ∞ as x → ∞, but it does so only to the first
power (exactly) of x. Multiplying by a Schwartz function brings H(x) and u(x) down, and they each
determine tempered distributions. Here are plots of e−x2

times H(x) and u(x), respectively:

The upshot is that the sinc, complex exponentials, the unit step, the unit ramp, and many others, can
all be considered to be tempered distributions. This is a good thing, because we’re aiming to define the
Fourier transform of a tempered distribution, and we want to be able to apply it to the signals society
needs. (We’ll also get back to our good old formula Fsinc = Π, and all will be right with the world.)

Do all tempered distributions “come from functions” in this way? In the next section we’ll define δ as
a (tempered) distribution, i.e., as a linear functional. δ does not come from a function in the way we’ve
just described (or in any way). This adds to the feeling that we really have defined something new, that
“generalized functions” include many (classical) functions but go beyond the classical functions.
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Two final points. As we’ve just remarked, not every distribution comes from a function and so the nature
of the pairing of a given tempered distribution T with a Schwartz function ϕ is unspecified, so to speak.
By that I mean, don’t think that 〈T, ϕ〉 is an integral, as in

〈T, ϕ〉 =
∫ ∞

−∞
T (x)ϕ(x) dx

for any old tempered distribution T .13 The pairing is an integral when the distribution comes from a
function, but there’s more to tempered distributions than that.

Finally a note of caution. Not every function determines a tempered distribution. For example ex
2

doesn’t.14 It doesn’t because e−x2
is a Schwartz function and
∫ ∞

−∞
ex

2
e−x2

dx =
∫ ∞

−∞
1 dx = ∞ .

δ as a tempered distribution The limiting approach to the delta function culminated with our writing

〈δ, ϕ〉 = ϕ(0)

as the result of
lim
t→0

∫ ∞

−∞
g(x, t)ϕ(x) dx= ϕ(0) .

Now with our second approach, tempered distributions as linear functionals on S, we can simply define
the tempered distribution δ by how it should operate on a function ϕ in S so as to achieve this outcome,
and obviously what we want is

δ(ϕ) = ϕ(0), or in the bracket notation 〈δ, ϕ〉 = ϕ(0);

you pass δ a test function and it returns the value of the test function at 0.

Let’s check the definition. For linearity,

〈δ, ϕ1 + ϕ2〉 = ϕ1(0) + ϕ2(0) = 〈δ, ϕ1〉 + 〈δ, ϕ2〉
〈δ, αϕ〉 = αϕ(0) = α〈δ, ϕ〉 .

For continuity, if ϕn(x) → ϕ(0) then in particular ϕn(0) → ϕ(0) and so

〈δ, ϕn〉 = ϕn(0) → ϕ(0) = 〈δ, ϕ〉 .

So the mysterious δ, clouded in controversy by statements like

δ(x) = 0 for x 6= 0

δ(0) = ∞∫ ∞

−∞
δ(x) dx = 1

13 For one thing it doesn’t make sense, strictly speaking, even to write T (x); you don’t pass a distribution a number x to
evaluate, you pass it a function.
14 It does determine other kinds of distributions, ones based on other classes of test functions. See Section 4.20.
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now emerges as the simplest possible nontrivial tempered distribution — it’s just the functional described
in words by “evaluate at 0”!

There was a second identity that we had from the “δ as limit” development, namely

(δa ∗ ϕ) = ϕ(a) .

as a result of
lim
t→0

∫ ∞

−∞
g(a− x, t)ϕ(x) dx= ϕ(a)

We’ll get back to convolution with distributions, but there’s another way we can capture this outcome
without mentioning convolution. We define a tempered distribution δa (the δ function based at a) by the
formula

〈δa, ϕ〉 = ϕ(a) .

In words, you pass δa a test function and it returns the value of the test function at a. I won’t check that
δa satisfies the definition — it’s the same argument as for δ.

δ and δa are two different distributions (for a 6= 0). Classically, if that word makes sense here, one would
write δa as δ(x − a), just a shifted δ. We’ll get to that, and use that notation too, but a bit later. As
tempered distributions, δ and δa are defined to have the property we want them to have. It’s air tight —
no muss, no fuss. That’s δ. That’s δa.

Would we have come upon this simple, direct definition without having gone through the “distributions as
limits” approach? Would we have the transistor without first having vacuum tubes? Perhaps so, perhaps
not. That first approach via limits provided the basic insights that allowed people, Schwartz in particular,
to reinvent the theory of distributions based on linear functionals as we have done here (as he did).

4.4.4 Other types of distributions

We have already seen that the functions in S work well for Fourier transforms. We’ll soon see that the
tempered distributions T based on S are the right objects to be operated on by a generalized Fourier
transform. However, S isn’t the only possible collection of test functions and T isn’t the only possible
collection of distributions.

Another useful set of test functions are the smooth functions that are timelimited, to use terminology from
EE. That is, we let C be the set of infinitely differentiable functions which are identically zero beyond a
point:

ϕ(x) is in C if ϕ(x) has derivatives of all orders and if ϕ(x) = 0 for |x| ≥ x0 (where x0 can
depend on ϕ).

The mathematical terminology for such a function is that it has compact support. The support of a function
is the complement of the largest set where the function is identically zero. (The letter C is supposed to
connote “compact”.)

The continuous linear functionals on C also form a collection of distributions, denoted by D. In fact, when
most people use the term “distribution” (without the adjective tempered) they are usually thinking of an
element of D. We use the same notation as before for the pairing: 〈T, ϕ〉 for T in D and ϕ in C.
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δ and δa belong to D as well as to T , and the definition is the same:

〈δ, ϕ〉 = ϕ(0) and 〈δa, ϕ〉 = ϕ(a) .

It’s the same δ. It’s not a new distribution, it’s only operating on a different class of test functions.

D is a bigger collection of distributions than T because C is a smaller collection of test functions than
S. The latter point should be clear to you: To say that ϕ(x) is smooth and vanishes identically outside
some interval is a stronger condition than requiring merely that it decays at infinity (albeit faster than any
power of x). Thus if ϕ(x) is in C then it’s also in S. Why is D bigger than T ? Since C is contained in
S, a continuous linear functional on S is automatically a continuous linear functional on C. That is, T is
contained in D.

Just as we did for T , we say that a function f(x) determines a distribution in D if
∫ ∞

−∞
f(x)ϕ(x) dx

exists for all test functions ϕ in C. As before, we write Tf for the distribution induced by a function f ,
and the pairing as

〈Tf , ϕ〉 =
∫ ∞

−∞
f(x)ϕ(x) dx .

As before, a function determines a unique distribution in this way, so we identify f with Tf and write the
pairing as

〈f, ϕ〉 =
∫ ∞

−∞
f(x)ϕ(x) dx .

It’s easier to satisfy the integrability condition for C than for S because multiplying f(x) by a function
in C kills it off completely outside some interval, rather than just bringing it smoothly down to zero at
infinity as would happen when multiplying by a function in S. This is another reason why D is a bigger
class of distributions than T — more functions determine distributions. For example, we observed that
the function ex

2
doesn’t determine a tempered distribution, but it does determine an element of D.

4.5 A Physical Analogy for Distributions

Think of heat distributed over a region in space. A number associated with heat is temperature, and we
want to measure the temperature at a point using a thermometer. But does it really make sense to ask for
the temperature “at a point”? What kind of test instrument could possibly measure the temperature at a
point?

What makes more sense is that a thermometer registers some overall value of the temperature near a point.
That is, the temperature is whatever the thermometer says it is, and is determined by a pairing of the heat
(the distribution) with the thermometer (a test function or test device). The more “concentrated” the
thermometer (the more sharply peaked the test function) the more accurate the measurement, meaning
the closer the reading is to being the temperature “at a point”.

A pairing of a test function with the heat is somehow supposed to model how the thermometer responds
to the distribution of heat. One particular way to model this is to say that if f is the heat and ϕ is the
test function, then the reading on the thermometer is

∫
f(x)ϕ(x) dx ,
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an integrated, average temperature. I’ve left limits off the integral to suggest that it is taken over some
region of space where the heat is distributed.

Such measurements (temperature or other sorts of physical measurements) are supposed to obey laws of
superposition (linearity) and the like, which, in this model case, translates to

∫
f(x)(α1ϕ1(x) + α2(x)ϕ2(x)) dx = α1

∫
f(x)ϕ1(x) dx+ α2

∫
f(x)ϕ2(x) dx

for test functions ϕ1 and ϕ2. That’s why we incorporate linearity into the definition of distributions. With
enough wishful thinking you can pass from this motivation to the general definition. Sure you can.

4.6 Limits of Distributions

There’s a very useful general result that allows us to define distributions by means of limits. The statement
goes:

Suppose that Tn is a sequence of tempered distributions and that 〈Tn, ϕ〉 (a sequence of num-
bers) converges for every Schwartz function ϕ. Then Tn converges to a tempered distribution T
and

〈T, ϕ〉 = lim
n→∞

〈Tn, ϕ〉

Briefly, distributions can be defined by taking limits of sequences of distributions, and the result says that
if the parings converge then the distributions converge. This is by no means a trivial fact, the key issue
being the proper notion of convergence of distributions, and that’s hard. We’ll have to be content with the
statement and let it go at that.

You might not spot it from the statement, but one practical consequence of this result is that if different
converging sequences have the same effect on test functions then they must be converging to the same
distribution. More precisely, if limn→∞〈Sn, ϕ〉 and limn→∞〈Tn, ϕ〉 both exist and are equal for every test
function ϕ then Sn and Tn both converge to the same distribution. That’s certainly possible — different
sequences can have the same limit, after all.

To illustrate just why this is helpful to know, let’s consider different ways of approximating δ.

4.6.1 Other Approximating Sequences for δ

Go back to the idea that δ is an idealization of an impulse concentrated at a point. Earlier we used a family
of Gaussians to approach δ, but there are many other ways we could try to approximate this characteristic
behavior of δ in the limit. For example, take the family of scaled Π functions

Rε(x) =
1
ε
Πε(x) =

1
ε
Π
(

x

ε

)
=

{
1
ε |x| < ε

2

0 |x| ≥ ε
2

where ε is a positive constant. Here’s a plot of Rε(x) for ε = 2, 1, 0.5, 0.1, some of the same values we
used for the parameter in the family of Gaussians.
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What happens if we integrate Rε(x) against a test function ϕ(x)? The function ϕ(x) could be a Schwartz
function, if we wanted to stay within the class of tempered distributions, or an element of C. In fact, all
that we require is that ϕ(x) is smooth near the origin so that we can use a Taylor approximation (and we
could get away with less than that). We write

〈Rε, ϕ〉 =
∫ ∞

−∞
Rε(x)ϕ(x) dx=

1
ε

∫ ε/2

−ε/2
ϕ(x) dx

=
1
ε

∫ ε/2

−ε/2
(ϕ(0) + ϕ′′(0)x+ O(x2)) dx = ϕ(0) +

1
ε

∫ ε/2

−ε/2
O(x2) dx = ϕ(0) + O(ε2) .

If we let ε→ 0 we obtain
lim
ε→0

〈Rε, ϕ〉 = ϕ(0) .

In the limit, the result of pairing the Rε with a test function is the same as pairing a Gaussian with a test
function:

lim
ε→0

〈Rε, ϕ〉 = ϕ(0) = lim
t→0

〈g(x, t), ϕ(x)〉 .

Thus the distributions defined by Rε and by g(x, t) each converge and to the same distribution, namely δ.15

A general way to get to δ There’s a general, flexible and simple approach to getting to δ by a limit.
It can be useful to know this if one model approximation might be preferred to another in a particular
computation or application. Start with a function f(x) having

∫ ∞

−∞
f(x) dx = 1

and form
fp(x) = pf(px) , p > 0 .

15 Note that the convergence isn’t phrased in terms of a sequential limit with n → ∞, but that’s not important — we could
have set, for example, εn = 1/n, tn = 1/n and let n → ∞ to get ε → 0, t → 0.
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Then one has
fp → δ .

How does fp compare with f? As p increases, the scaled function f(px) concentrates near x = 0, that
is, the graph is squeezed in the horizontal direction. Multiplying by p to form pf(px) then stretches the
values in the vertical direction. Nevertheless

∫ ∞

−∞
fp(x) dx = 1

as we see by making the change of variable u = px.

To show that fp converges to δ, we pair fp(x) with a test function ϕ(x) via integration and show

lim
p→∞

∫ ∞

−∞
fp(x)ϕ(x) dx= ϕ(0) = 〈δ, ϕ〉 .

There is a nice argument to show this. Write
∫ ∞

−∞
fp(x)ϕ(x) dx=

∫ ∞

−∞
fp(x)(ϕ(x)− ϕ(0) + ϕ(0)) dx

=
∫ ∞

−∞
fp(x)(ϕ(x)− ϕ(0)) dx+ ϕ(0)

∫ ∞

−∞
fp(x) dx

=
∫ ∞

−∞
fp(x)(ϕ(x)− ϕ(0)) dx+ ϕ(0)

=
∫ ∞

−∞
f(x)(ϕ(x/p)− ϕ(0)) dx+ ϕ(0),

where we have used that the integral of fp is 1 and have made a change of variable in the last integral.

The object now is to show that the integral of f(x)(ϕ(x/p) − ϕ(0)) goes to zero as p → ∞. There are
two parts to this. Since the integral of f(x)(ϕ(x/p)−ϕ(0)) is finite, the tails at ±∞ are arbitrarily small,
meaning, more formally, that for any ε > 0 there is an a > 0 such that

∣∣∣∣
∫ ∞

a
f(x)(ϕ(x/p)− ϕ(0)) dx

∣∣∣∣ +
∣∣∣∣
∫ −a

−∞
f(x)(ϕ(x/p)− ϕ(0)) dx

∣∣∣∣< ε .

This didn’t involve letting p tend to ∞; that comes in now. Fix a as above. It remains to work with the
integral ∫ a

−a
f(x)(ϕ(x/p)− ϕ(0)) dx

and show that this too can be made arbitrarily small. Now
∫ a

−a
|f(x)| dx

is a fixed number, say M , and we can take p so large that |ϕ(x/p)−ϕ(0)| < ε/M for |x/p| ≤ a. With this,
∣∣∣∣
∫ a

−a
f(x)(ϕ(x/p)− ϕ(0)) dx

∣∣∣∣≤
∫ a

−a
|f(x)| |ϕ(x/p)− ϕ(0)| dx < ε .

Combining the three estimates we have
∣∣∣∣
∫ ∞

−∞
f(x)(ϕ(x/p)− ϕ(0)) dx

∣∣∣∣< 2ε ,
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and we’re done.

We’ve already seen two applications of this construction, to

f(x) = Π(x)

and, originally, to
f(x) =

1√
2π
ex

2/2 , take p = 1/
√
t .

Another possible choice, believe it or not, is

f(x) = sincx .

This works because the integral ∫ ∞

−∞
sinc x dx

is the Fourier transform of sinc at 0, and you’ll recall that we stated the true fact that
∫ ∞

−∞
e−2πist sinc t dt =

{
1 |t| < 1

2

0 |t| > 1
2

4.7 The Fourier Transform of a Tempered Distribution

It’s time to show how to generalize the Fourier transform to tempered distributions.16 It will take us one
or two more steps to get to the starting line, but after that it’s a downhill race passing effortlessly (almost)
through all the important gates.

How to extend an operation from functions to distributions: Try a function first. To define
a distribution T is to say what it does to a test function. You give me a test function ϕ and I have to tell
you 〈T, ϕ〉 — how T operates on ϕ. We have done this in two cases, one particular and one general. In
particular, we defined δ directly by

〈δ, ϕ〉 = ϕ(0) .

In general, we showed how a function f determines a distribution Tf by

〈Tf , ϕ〉 =
∫ ∞

−∞
f(x)ϕ(x) dx

provided that the integral exists for every test function. We also say that the distribution comes from a
function. When no confusion can arise we identify the distribution Tf with the function f it comes from
and write

〈f, ϕ〉 =
∫ ∞

−∞
f(x)ϕ(x) dx .

When we want to extend an operation from functions to distributions — e.g., when we want to define
the Fourier transform of a distribution, or the reverse of distribution, or the shift of a distribution, or the
derivative of a distribution — we take our cue from the way functions determine distributions and ask
how the operation works in the case when the pairing is given by integration. What we hope to see is an
outcome that suggests a direct definition (as happened with δ, for example). This is a procedure to follow.
It’s something to try. See Appendix 1 for a discussion of why this is really the natural thing to do, but for
now let’s see how it works for the operation we’re most interested in.

16 In other words, it’s time to put up, or shut up.
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4.7.1 The Fourier transform defined

Suppose T is a tempered distribution. Why should such an object have a Fourier transform, and how on
earth shall we define it? It can’t be an integral, because T isn’t a function so there’s nothing to integrate.
If FT is to be itself a tempered distribution (just as Fϕ is again a Schwartz function if ϕ is a Schwartz
function) then we have to say how FT pairs with a Schwartz function, because that’s what tempered
distributions do. So how?

We have a toe-hold here. If ψ is a Schwartz function then Fψ is again a Schwartz function and we can
ask: How does the Schwartz function Fψ pair with another Schwartz function ϕ? What is the outcome
of 〈Fψ, ϕ〉? We know how to pair a distribution that comes from a function (Fψ in this case) with a
Schwartz function; it’s

〈Fψ, ϕ〉=
∫ ∞

−∞
Fψ(x)ϕ(x)dx .

But we can work with the right hand side:

〈Fψ, ϕ〉=
∫ ∞

−∞
Fψ(x)ϕ(x)dx

=
∫ ∞

−∞

(∫ ∞

−∞
e−2πixyψ(y) dy

)
ϕ(x) dx

=
∫ ∞

−∞

∫ ∞

−∞
e−2πixyψ(y)ϕ(x) dydx

=
∫ ∞

−∞

(∫ ∞

−∞
e−2πixyϕ(x) dx

)
ψ(y) dy

(the interchange of integrals is justified because ϕ(x)e−2πisx

and ψ(x)e−2πisx are integrable)

=
∫ ∞

−∞
Fϕ(y)ψ(y)dy

= 〈ψ,Fϕ〉

The outcome of pairing Fψ with ϕ is:
〈Fψ, ϕ〉= 〈ψ,Fϕ〉 .

This tells us how we should make the definition in general:

• Let T be a tempered distribution. The Fourier transform of T , denoted by F(T ) or T̂ , is the tempered
distribution defined by

〈FT, ϕ〉= 〈T,Fϕ〉 .
for any Schwartz function ϕ.

This definition makes sense because when ϕ is a Schwartz function so is Fϕ; it is only then that the pairing
〈T,Fϕ〉 is even defined.

We define the inverse Fourier transform by following the same recipe:

• Let T be a tempered distribution. The inverse Fourier transform of T , denoted by F−1(T ) or Ť , is
defined by

〈F−1T, ϕ〉 = 〈T,F−1ϕ〉 .
for any Schwartz function ϕ.



170 Chapter 4 Distributions and Their Fourier Transforms

Now all of a sudden we have

Fourier inversion:
F−1FT = T and FF−1T = T

for any tempered distribution T .

It’s a cinch. Watch. For any Schwartz function ϕ,

〈F−1(FT ), ϕ〉 = 〈FT,F−1ϕ〉
= 〈T,F(F−1ϕ)〉
= 〈T, ϕ〉 (because Fourier inversion works for Schwartz functions)

This says that F−1(FT ) and T have the same value when paired with any Schwartz function. Therefore
they are the same distribution: F−1FT = T . The second identity is derived in the same way.

Done. The most important result in the subject, done, in a few lines.

In Section 4.10 we’ll show that we’ve gained, and haven’t lost. That is, the generalized Fourier transform
“contains” the original, classical Fourier transform in the same sense that tempered distributions contain
classical functions.

4.7.2 A Fourier transform hit parade

With the definition in place it’s time to reap the benefits and find some Fourier transforms explicitly. We
note one general property

• F is linear on tempered distributions.

This means that
F(T1 + T2) = FT1 + FT2 and F(αT ) = αFT ,

α a number. These follow directly from the definition. To wit:

〈F(T1 + T2), ϕ〉 = 〈T1 + T2,Fϕ〉 = 〈T1,Fϕ〉+ 〈T2,Fϕ〉 = 〈FT1, ϕ〉+ 〈FT2, ϕ〉 = 〈FT1 + FT2, ϕ〉
〈F(αT ), ϕ〉= 〈αT,Fϕ〉 = α〈T,Fϕ〉= α〈FT, ϕ〉 = 〈αFT, ϕ〉

The Fourier transform of δ As a first illustration of computing with the generalized Fourier transform
we’ll find Fδ. The result is:

• The Fourier transform of δ is
Fδ = 1 .

This must be understood as an equality between distributions, i.e., as saying that Fδ and 1 produce the
same values when paired with any Schwartz function ϕ. Realize that “1” is the constant function, and this
defines a tempered distribution via integration:

〈1, ϕ〉 =
∫ ∞

−∞
1 · ϕ(x) dx
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That integral converges because ϕ(x) is integrable (it’s much more than integrable, but it’s certainly
integrable).

We derive the formula by appealing to the definition of the Fourier transform and the definition of δ. On
the one hand,

〈Fδ, ϕ〉 = 〈δ,Fϕ〉 = Fϕ(0) =
∫ ∞

−∞
ϕ(x) dx .

On the other hand, as we’ve just noted,

〈1, ϕ〉 =
∫ ∞

−∞
1 ·ϕ(x) dx =

∫ ∞

−∞
ϕ(x) dx .

The results are the same, and we conclude that Fδ = 1 as distributions. According to the inversion
theorem we can also say that F−11 = δ.

We can also show that
F1 = δ .

Here’s how. By definition,

〈F1, ϕ〉 = 〈1,Fϕ〉 =
∫ ∞

−∞
Fϕ(s)ds .

But we recognize the integral as giving the inverse Fourier transform of Fϕ at 0:

F−1Fϕ(t) =
∫ ∞

−∞
e2πistFϕ(s) ds and at t = 0 F−1Fϕ(0) =

∫ ∞

−∞
Fϕ(s)ds .

And now by Fourier inversion on S,
F−1Fϕ(0) = ϕ(0) .

Thus
〈F1, ϕ〉 = ϕ(0) = 〈δ, ϕ〉

and we conclude that F1 = δ. (We’ll also get this by duality and the evenness of δ once we introduce the
reverse of a distribution.)

The equations Fδ = 1 and F1 = δ are the extreme cases of the trade-off between timelimited and
bandlimited signals. δ is the idealization of the most concentrated function possible — it’s the ultimate
timelimited signal. The function 1, on the other hand, is uniformly spread out over its domain.

It’s rather satisfying that the simplest tempered distribution, δ, has the simplest Fourier transform, 1.
(Simplest other than the function that is identically zero.) Before there were tempered distributions,
however, there was δ, and before there was the Fourier transform of tempered distributions there was
Fδ = 1. In the vacuum tube days this had to be established by limiting arguments, accompanied by an
uneasiness (among some) over the nature of the limit and what exactly it produced. Our computation
of Fδ = 1 is simple and direct and leaves nothing in question about the meaning of all the quantities
involved. Whether it is conceptually simpler than the older approach is something you will have to decide
for yourself.
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The Fourier transform of δa Recall the distribution δa is defined by

〈δa, ϕ〉 = ϕ(a) .

What is the Fourier transform of δa? One way to obtain Fδa is via a generalization of the shift theorem,
which we’ll develop later. Even without that we can find Fδa directly from the definition, as follows.

The calculation is along the same lines as the one for δ. We have

〈Fδa, ϕ〉 = 〈δa,Fϕ〉 = Fϕ(a) =
∫ ∞

−∞
e−2πiaxϕ(x) dx .

This last integral, which is nothing but the definition of the Fourier transform of ϕ, can also be interpreted
as the pairing of the function e−2πiax with the Schwartz function ϕ(x). That is,

〈Fδa, ϕ〉 = 〈e−2πiax, ϕ〉

hence
Fδa = e−2πisa .

To emphasize once again what all is going on here, e−2πiax is not integrable, but it defines a tempered
distribution through ∫ ∞

−∞
e−2πiaxϕ(x) dx

which exists because ϕ(x) is integrable. So, again, the equality of Fδa and e−2πisa means they have the
same effect when paired with a function in S.

To complete the picture, we can also show that

Fe2πixa = δa .

(There’s the usual notational problem here with variables, writing the variable x on the left hand side. The
“variable problem” doesn’t go away in this more general setting.) This argument should look familiar: if
ϕ is in S then

〈Fe2πixa, ϕ〉 = 〈e2πixa,Fϕ〉

=
∫ ∞

−∞
e2πixaFϕ(x) dx (the pairing here is with respect to x)

But this last integral is the inverse Fourier transform of Fϕ at a, and so we get back ϕ(a). Hence

〈Fe2πixa, ϕ〉 = ϕ(a) = 〈δa, ϕ〉

whence
Fe2πixa = δa .

Remark on notation You might be happier using the more traditional notation δ(x) for δ and δ(x−a)
for δa (and δ(x + a) for δ−a). I don’t have any objection to this — it is a useful notation for many
problems — but try to remember that the δ-function is not a function and, really, it is not to be evaluated
“at points”; the notation δ(x) or δ(x− a) doesn’t really make sense from the distributional point of view.

In this notation the results so far appear as:

Fδ(x± a) = e±2πisa , Fe±2πixa = δ(s∓ a)
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Careful how the + and − enter.

You may also be happier writing
∫ ∞

−∞
δ(x)ϕ(x) dx= ϕ(0) and

∫ ∞

−∞
δ(a− x)ϕ(x) dx = ϕ(a) .

I want you to be happy.

The Fourier transform of sine and cosine We can combine the results above to find the Fourier
transform pairs for the sine and cosine.

F
(

1
2(δa + δ−a)

)
= 1

2(e−2πisa + e2πisa) = cos 2πsa .

I’ll even write the results “at points”:

F
(

1
2(δ(x− a) + δ(x+ a))

)
= cos 2πsa .

Going the other way,

F cos 2πax = F
(

1
2(e2πixa + e−2πixa)

)
= 1

2(δa + δ−a) .

Also written as
F cos 2πax = 1

2(δ(s− a) + δ(s+ a))) .

The Fourier transform of the cosine is often represented graphically as:

I tagged the spikes with 1/2 to indicate that they have been scaled.17

For the sine function we have, in a similar way,

F
( 1

2i
(δ(x+ a) − δ(x− a))

)
=

1
2i

(e2πisa − e−2πisa) = sin 2πsa ,

and

F sin 2πax = F
( 1

2i
(e2πixa − e−2πixa)

)
=

1
2i

(δ(s− a)− δ(s+ a)) .

The picture of F sin 2πx is

17 Of course, the height of a δa is infinite, if height means anything at all, so scaling the height doesn’t mean much. Sometimes
people speak of αδ, for example, as a δ-function “of strength α”, meaning just 〈αδ,ϕ〉 = αϕ(0).
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Remember that 1/i = −i. I’ve tagged the spike δa with −i/2 and the spike δ−a with i/2.

We’ll discuss symmetries of the generalized Fourier transform later, but you can think of F cos 2πax as
real and even and F sin 2πax as purely imaginary and odd.

We should reflect a little on what we’ve done here and not be too quick to move on. The sine and cosine
do not have Fourier transforms in the original, classical sense. It is impossible to do anything with the
integrals ∫ ∞

−∞
e−2πisx cos 2πx dx or

∫ ∞

−∞
e−2πisx sin 2πx dx .

To find the Fourier transform of such basic, important functions we must abandon the familiar, classical
terrain and plant some spikes in new territory. It’s worth the effort.

4.8 Fluxions Finis: The End of Differential Calculus

I will continue the development of the generalized Fourier transform and its properties later. For now let’s
show how introducing distributions “completes” differential calculus; how we can define the derivative of
a distribution, and consequently how we can differentiate functions you probably thought had no business
being differentiated. We’ll make use of this for Fourier transforms, too.

The motivation for how to bring about this remarkable state of affairs goes back to integration by parts, a
technique we’ve used often in our calculations with the Fourier transform. If ϕ is a test function and f is
a function for which f(x)ϕ(x) → 0 as x → ±∞ (not too much to ask), and if f is differentiable then we
can use integration by parts to write

∫ ∞

−∞
f ′(x)ϕ(x) dx=

[
f(x)ϕ(x)

]∞
−∞

−
∫ ∞

−∞
f(x)ϕ′(x) dx (u = ϕ , dv = f ′(x) dx)

= −
∫ ∞

−∞
f(x)ϕ′(x) dx.

The derivative has shifted from f to ϕ.

We can find similar formulas for higher derivatives. For example, supposing that the boundary terms in
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the integration by parts tend to 0 as x→ ±∞, we find that
∫ ∞

−∞
f ′′(x)ϕ(x) dx =

[
f ′(x)ϕ(x)

]∞
−∞

−
∫ ∞

−∞
f ′(x)ϕ′(x) dx (u = ϕ(x) , dv = f ′′(x) dx)

= −
∫ ∞

−∞
f ′(x)ϕ′(x) dx

= −
([
f(x)ϕ′(x)

]∞
−∞

−
∫ ∞

−∞
f(x)ϕ′′(x) dx

)
(u = ϕ′(x) , dv = f ′(x) dx)

=
∫ ∞

−∞
f(x)ϕ′′(x) dx .

Watch out — there’s no minus sign out front when we’ve shifted the second derivative from f to ϕ.

We’ll concentrate just on the formula for the first derivative. Let’s write it again:
∫ ∞

−∞
f ′(x)ϕ(x) dx= −

∫ ∞

−∞
f(x)ϕ′(x) dx .

The right hand side may make sense even if the left hand side does not, that is, we can view the right
hand side as a way of saying how the derivative of f would act if it had a derivative. Put in terms of our
“try a function first” procedure, if a distribution comes from a function f(x) then this formula tells us how
the “derivative” f ′(x) as a distribution, should be paired with a test function ϕ(x). It should be paired
according to the equation above:

〈f ′, ϕ〉 = −〈f, ϕ′〉 .

Turning this outcome into a definition, as our general procedure tells us we should do when passing from
functions to distributions, we define the derivative of a distribution as another distribution according to:

• If T is a distribution, then its derivative T ′ is the distribution defined by

〈T ′, ϕ〉 = −〈T, ϕ′〉

Naturally, (T1 + T2)′ = T ′1 + T ′2 and (αT )′ = αT ′. However, there is no product rule in general because
there’s no way to multiply two distributions. I’ll discuss this later in connection with convolution.

You can go on to define derivatives of higher orders in a similar way, and I’ll let you write down what the
general formula for the pairing should be. The striking thing is that you don’t have to stop: distributions
are infinitely differentiable!

Let’s see how differentiating a distribution works in practice.

Derivative of the unit step function The unit step function, also called the Heaviside function18 is
defined by19

H(x) =

{
0 x ≤ 0
1 x > 0

18 After Oliver Heaviside (1850–1925), whose work we have mentioned several times before.
19 There’s a school of thought that says H(0) should be 1/2.
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H(x) determines a tempered distribution because for any Schwartz function ϕ the paring

〈H,ϕ〉 =
∫ ∞

−∞
H(x)ϕ(x) dx=

∫ ∞

0

ϕ(x) dx

makes sense (ϕ is integrable).

From the definition of the derivative of a distribution, if ϕ(x) is any test function then

〈H ′, ϕ〉 = −〈H,ϕ′〉 = −
∫ ∞

−∞
H(x)ϕ′(x) dx = −

∫ ∞

0
1 · ϕ′(x) dx = −(ϕ(∞) − ϕ(0)) = ϕ(0) .

We see that pairing H ′ with a test function produces the same result as if we had paired δ with a test
function:

〈H ′, ϕ〉 = ϕ(0) = 〈δ, ϕ〉 .

We conclude that
H ′ = δ .

Derivative of the unit ramp The unit ramp function is defined by

u(x) =

{
0 x ≤ 0
x x > 0

If this were an introductory calculus class and you were asked “What is the derivative of u(x)?” you might
have said, “It’s 0 if x ≤ 0 and 1 if x > 0, so it looks like the unit step H(x) to me.” You’d be right, but
your jerk of a teacher would probably say you were wrong because, according to the rigor police, u(x) is
not differentiable at x = 0. But now that you know about distributions, here’s why you were right. For a
test function ϕ(x),

〈u′(x), ϕ(x)〉 = −〈u(x), ϕ′(x)〉 = −
∫ ∞

−∞
u(x)ϕ′(x) dx = −

∫ ∞

0

xϕ′(x) dx

= −
([
xϕ(x)

]∞
0

−
∫ ∞

0
ϕ(x) dx

)
=
∫ ∞

0
ϕ(x) dx

(xϕ(x) → 0 as x→ ∞ because ϕ(x) decays faster than any power of x)

= 〈H,ϕ〉

Since 〈u′(x), ϕ(x)〉 = 〈H,ϕ〉 we conclude that u′ = H as distributions. Then of course, u′′ = δ.

Derivative of the signum (or sign) function The signum (or sign) function is defined by

sgn (x) =

{
+1 x > 0
−1 x < 0

Note that sgn is not defined at x = 0, but that’s not an issue in the derivation to follow.

Let ϕ(x) be any test function. Then

〈sgn ′, ϕ〉 = −〈sgn , ϕ′〉 = −
∫ ∞

−∞
sgn (x)ϕ′(x) dx

= −
(∫ 0

−∞
(−1)ϕ′(x) dx+

∫ ∞

0
(+1)ϕ′(x) dx

)

= (ϕ(0)− ϕ(−∞)) − (ϕ(∞) − ϕ(0)) = 2ϕ(0)
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The result of pairing sgn ′ with ϕ is the same as if we had paired ϕ with 2δ;

〈sgn ′, ϕ〉 = 2ϕ(0) = 〈2δ, ϕ〉

Hence
sgn ′ = 2δ .

Observe that H(x) has a unit jump up at 0 and its derivative is δ, whereas sgn jumps up by 2 at 0 and
its derivative is 2δ.

Derivative of δ To find the derivative of the δ-function we have, for any test function ϕ,

〈δ′, ϕ〉 = −〈δ, ϕ′〉 = −ϕ′(0) .

That’s really as much of a formula as we can write. δ itself acts by pulling out the value of a test function
at 0, and δ′ acts by pulling out minus the value of the derivative of the test function at 0. I’ll let you
determine the higher derivatives of δ.

Derivative of ln |x| Remember that famous formula from calculus:

d

dx
ln |x| =

1
x
.

Any chance of something like that being true for distributions? Yes, with the proper interpretation. This
is an important example because it leads to the Hilbert transform, a tool that communications engineers
use everyday. For your information, the Hilbert transform is given by convolution of a signal with 1/πx.
Once we learn how to take the Fourier transform of 1/x, which is coming up, we’ll then see that the
Hilbert transform is a filter with the interesting property that magnitudes of the spectral components are
unchanged but their phases are shifted by ±π/2.

Because of their usefulness in applications it’s worth going through the analysis of the distributions ln |x|
and 1/x. This takes more work than the previous examples, however, so I’ve put the details in Section 4.21.

4.9 Approximations of Distributions and Justifying the “Try a Func-
tion First” Principle

We started off by enunciating the principle that to see how to extend an operation from functions to
distributions one should start by considering the case when the distribution comes from a function (and
hence that the pairing is by integration). Let me offer a justification of why this works.

It’s true that not every distribution comes from a function (δ doesn’t), but it’s also true that any distribution
can be approximated by ones that comes from functions. The statement is:

If T is any tempered distribution then there are Schwartz functions fn such that Tfn converge
to T .

This says that for any Schwartz function ϕ

〈Tfn, ϕ〉 =
∫ ∞

−∞
fn(x)ϕ(x) dx→ 〈T, ϕ〉 ,

that is, the pairing of any tempered distribution with a Schwartz function can be expressed as a limit of
the natural pairing with approximating functions via integration. We’re not saying that Tfn → Tf for
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some function f , because it’s not the Schwartz functions fn that are converging to a function, it’s the
associated distributions that are converging to a distribution. You don’t necessarily have T = Tf for some
function f . (Also, this result doesn’t say how you’re supposed to find the approximating functions, just
that they exist.)

Consider how we might apply this to justify our approach to defining the Fourier transform of a tempered
distribution. According to the approximation result, any tempered distribution T is a limit of distributions
that come from Schwartz functions, and we would have, say,

〈T, ϕ〉 = lim
n→∞

〈ψn, ϕ〉 .

Then if FT is to make sense we might understand it to be given by

〈FT, ϕ〉= lim
n→∞

〈Fψn, ϕ〉 = lim
n→∞

〈ψn,Fϕ〉 = 〈T,Fϕ〉 .

There’s our definition.

4.10 The Generalized Fourier Transform Includes the Classical Fourier

Transform

Remember that we identify a function f with the distribution Tf it defines and it is in this way we say that
the tempered distributions contain many of the classical functions. Now suppose a function f(x) defines a
distribution and that f(x) has a (classical) Fourier transform Ff(s) which also defines a distribution, i.e.,

∫ ∞

−∞
Ff(s)ϕ(s) ds

exists for every Schwartz function ϕ (which isn’t asking too much). Writing TFf for the tempered distri-
bution determined by Ff ,

〈TFf , ϕ〉 =
∫ ∞

−∞
Ff(s)ϕ(s) ds

=
∫ ∞

−∞

(∫ ∞

−∞
e−2πisxf(x) dx

)
ϕ(s) ds =

∫ ∞

−∞

∫ ∞

−∞
e−2πisxf(x)ϕ(s) ds dx

=
∫ ∞

−∞

(∫ ∞

−∞
e−2πisxϕ(s) ds

)
f(x) dx =

∫ ∞

−∞
Fϕ(x)f(x) dx= 〈Tf ,Fϕ〉

But now, by our definition of the generalized Fourier transform

〈Tf ,Fϕ〉 = 〈FTf , ϕ〉 .

Putting this together with the start of the calculation we obtain

〈TFf , ϕ〉 = 〈FTf , ϕ〉 ,

whence
TFf = FTf .

In words, if the classical Fourier transform of a function defines a distribution (TFf ), then that distribution
is the Fourier transform of the distribution that the function defines (FTf). This is a precise way of saying
that the generalized Fourier transform “includes” the classical Fourier transform.
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4.11 Operations on Distributions and Fourier Transforms

We want to relive our past glories — duality between F and F−1, evenness and oddness, shifts and
stretches, convolution — in the more general setting we’ve developed. The new versions of the old results
will ultimately look the same as they did before; it’s a question of setting things up properly to apply the
new definitions. There will be some new results, however. Among them will be formulas for the Fourier
transform of sgn x, 1/x, and the unit step H(x), to take a representative sample. None of these would have
been possible before. We’ll also point out special properties of δ along the way. Pay particular attention
to these because we’ll be using them a lot in applications.

Before you dive in, let me offer a reader’s guide. There’s a lot of material in here — way more than you
need to know for your day-to-day working life. Furthermore, almost all the results are accompanied by
some necessary extra notation; the truth is that it’s somewhat more cumbersome to define operations on
distributions than on functions, and there’s no way of getting around it. We have to have this material
in some fashion but you should probably treat the sections to follow mostly as a reference. Feel free to
use the formulas you need when you need them, and remember that our aim is to recover the formulas we
know from earlier work in pretty much the same shape as you first learned them.

4.12 Duality, Changing Signs, Evenness and Oddness

One of the first things we observed about the Fourier transform and its inverse is that they’re pretty much
the same thing except for a change in sign; see Chapter 2. The relationships are

Ff(−s) = F−1f(s)

F−1f(−t) = Ff(t)

We had similar results when we changed the sign of the variable first and then took the Fourier transform.
The relationships are

F(f(−t)) = F−1f(s)

F−1(f(−s)) = Ff(s)

We referred to these collectively as the “duality” between Fourier transform pairs, and we’d like to have
similar duality formulas when we take the Fourier transforms of distributions.

The problem is that for distributions we don’t really have “variables” to change the sign of. We don’t
really write FT (s), or FT (−s), or T (−s), because distributions don’t operate on points s — they operate
on test functions. What we can do easily is to define a “reversed distribution”, and once this is done the
rest is plain sailing.

Reversed distributions Recall that we introduced the reversed signal of a signal f(x) by means of

f−(x) = f(−x)

and this helped us to write clean, “variable free” versions of the duality results. Using this notation the
above results become

(Ff)− = F−1f, (F−1f)− = Ff , Ff− = F−1f, F−1f− = Ff .
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A variant version is to apply F or F−1 twice, resulting in

FFf = f−, F−1F−1f = f− .

My personal favorites among formulas of this type are:

Ff− = (Ff)−, F−1f− = (F−1f)− .

What can “sign change”, or “reversal” mean for a distribution T? Our standard approach is first to take
the case when the distribution comes from a function f(x). The pairing of Tf with a test function ϕ is

〈Tf , ϕ〉 =
∫ ∞

−∞
f(x)ϕ(x) dx .

We might well believe that reversing Tf (i.e., a possible definition of (Tf)−) should derive from reversing f ,
that is, integrating f− against a test function. The paring of Tf− with ϕ is

〈Tf−, ϕ〉 =
∫ ∞

−∞
f(−x)ϕ(x) dx

=
∫ −∞

∞
f(u)ϕ(−u) (−du) (making the change of variable u = −x)

=
∫ ∞

−∞
f(u)ϕ(−u) du.

This says that f− is paired with ϕ(x) in the same way as f is paired with ϕ−, more precisely:

〈Tf−, ϕ〉 = 〈Tf , ϕ
−〉 .

Wouldn’t it then make sense to say we have found a meaning for (Tf)− (i.e., have defined (Tf)−) via the
formula

〈(Tf)−, ϕ〉 = 〈Tf , ϕ
−〉 (the right-hand-side is defined because ϕ− is defined) .

The “outcome” — how this result should be turned into a general definition — is before our eyes:

• If T is a distribution we define the reversed distribution T− according to

(T−, ϕ) = (T, ϕ−) .

Note that with this definition we have, quite agreeably,

(Tf)− = Tf− .

If you understand what’s just been done you’ll understand this last equation. Understand it.

Duality It’s now easy to state the duality relations between the Fourier transform and its inverse.
Adopting the notation, above, we want to look at (FT )− and how it compares to F−1T . For a test
function ϕ,

((FT )−, ϕ) = (FT, ϕ−)
= (T,F(ϕ−)) (that’s how the Fourier transform is defined)

= (T,F−1ϕ) (because of duality for ordinary Fourier transforms)

= (F−1T, ϕ) (that’s how the inverse Fourier transform is defined)
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Pretty slick, really. We can now write simply

(FT )− = F−1T .

We also then have
FT = (F−1T )− .

Same formulas as in the classical setting.

To take one more example,

〈F(T−), ϕ〉 = 〈T−,Fϕ〉 = 〈T, (Fϕ)−〉 = 〈T,F−1ϕ〉 = 〈F−1T, ϕ〉 ,

and there’s the identity
F(T−) = F−1T

popping out. Finally, we have
F−1(T−) = FT .

Combining these,
FT− = (FT )−, F−1T− = (F−1T )− .

Applying F or F−1 twice leads to

FFT = T−, F−1F−1T = T− .

That’s all of them.

Even and odd distributions: δ is even Now that we know how to reverse a distribution we can define
what it means for a distribution to be even or odd.

• A distribution T is even if T− = T . A distribution is odd if T− = −T .

Observe that if f(x) determines a distribution Tf and if f(x) is even or odd then Tf has the same property.
For, as we noted earlier,

(Tf)− = Tf− = T±f = ±Tf .

Let’s next establish the useful fact:

• δ is even.

This is quick:
〈δ−, ϕ〉 = 〈δ, ϕ−〉 = ϕ−(0) = ϕ(−0) = ϕ(0) = 〈δ, ϕ〉

Let’s now use this result plus duality to rederive F1 = δ. This is quick, too:

F1 = (F−11)− = δ− = δ .

δa + δ−a is even. δa − δ−a is odd. Any distribution is the sum of an even and an odd distribution.

You can now show that all of our old results on evenness and oddness of a signal and its Fourier transform
extend in like form to the Fourier transform of distributions. For example, if T is even then so is FT , for

(FT )− = FT− = FT ,
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and if T is odd then
(FT )− = FT− = F(−T ) = −FT ,

thus FT is odd.

Notice how this works for the cosine (even) and the sine (odd) and their respective Fourier transforms:

F cos 2πax = 1
2(δa + δ−a)

F sin 2πax =
1
2i

(δa − δ−a)

I’ll let you define what it means for a distribution to be real, or purely imaginary.

Fourier transform of sinc

F sinc = F(FΠ)
= Π− (one of the duality equaltions)
= Π (Π is even)

At last. To be really careful here: F sinc makes sense only as a tempered distribution. So the equality
F sinc = Π has to be understood as an equation between distributions, meaning that F sinc and Π give
the same result when paired with any Schwartz function. But you should lose no sleep over this. From
now on, write F sinc = Π, think in terms of functions, and start your company.

4.13 A Function Times a Distribution Makes Sense

There’s no way to define the product of two distributions that works consistently with all the rest of the
definitions and properties — try as you might, it just won’t work. However, it is possible (and easy) to
define the product of a function and a distribution.

Say T is a distribution and g is a function. What is gT as a distribution? I have to tell you what 〈gT, ϕ〉
is for a test function ϕ. We take our usual approach to looking for the outcome when T comes from a
function, T = Tf . The pairing of gTf and ϕ is given by

〈gTf , ϕ〉 =
∫ ∞

−∞
g(x)f(x)ϕ(x) dx=

∫ ∞

−∞
f(x)(g(x)ϕ(x)) dx

As long as gϕ is still a test function (so, certainly, g has to be infinitely differentiable) this last integral is
the pairing 〈Tf , gϕ〉. The outcome is 〈gTf , ϕ〉 = 〈Tf , gϕ〉. We thus make the following definition:

• Let T be a distribution. If g is a smooth function such that gϕ is a test function whenever ϕ is a
test function, then gT is the distribution defined by

〈gT, ϕ〉 = 〈T, gϕ〉 .

This looks as simple as can be, and it is. You may wonder why I even singled out this operation for
comment. In fact, some funny things can happen, as we’ll now see.
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4.13.1 A function times δ

Watch what happens if we multiply δ by g(x):

〈gδ, ϕ〉 = 〈δ, gϕ〉 = g(0)ϕ(0)

This is the same result as if we had paired g(0)δ with ϕ. Thus

g(x)δ = g(0)δ

In particular if g(0) = 0 then the result is 0! For example

xδ = 0

or for that matter
xnδ = 0

for any positive power of x.

Along with gδ = g(0)δ we have
g(x)δa = g(a)δa .

To show this:
〈gδa, ϕ〉 = 〈δa, gϕ〉 = g(a)ϕ(a) = g(a)〈δa, ϕ〉 = 〈g(a)δa, ϕ〉 .

If you want to write this identity more classically, it is

g(x)δ(x− a) = g(a)δ(x− a) .

We’ll use this property in many applications, for example when we talk about sampling.

More on a function times δ There’s a converse to one of the above properties that’s interesting in
itself and that we’ll use in the next section when we find some particular Fourier transforms.

• If T is a distribution and xT = 0 then T = cδ for some constant c.

I’ll show you the proof of this, but you can skip it if you want. The argument is more involved than the
simple statement might suggest, but it’s a nice example, and a fairly typical example, of the kind of tricks
that are used to prove things in this area. Each to their own tastes.

Knowing where this is going, let me start with an innocent observation.20 If ψ is a smooth function then

ψ(x) = ψ(0) +
∫ x

0

ψ′(t) dt

= ψ(0) +
∫ 1

0
xψ′(xu) du (using the substitution u = t/x)

= ψ(0) + x

∫ 1

0
ψ′(xu) du .

Let

Ψ(x) =
∫ 1

0
ψ′(xu) du

20 This innocent observation is actually the beginning of deriving Taylor series “with remainder”.
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so that
ψ(x) = ψ(0) + xΨ(x) .

We’ll now use this innocent observation in the case when ψ(0) = 0, for then

ψ(x) = xΨ(x) .

It’s clear from the definition of Ψ that Ψ is as smooth as ψ is and that if, for example, ψ is rapidly
decreasing then so is Ψ. Put informally, we’ve shown that if ψ(0) = 0 we can “factor out an x” and still
have a function that’s as good as ψ.

Now suppose xT = 0, meaning that
〈xT, ϕ〉 = 0

for every test function ϕ. Fix a smooth windowing function ϕ0 that is identically 1 on an interval about
x = 0, goes down to zero smoothly and is identically zero far enough away from x = 0; we mentioned
smooth windows earlier — see Section 4.20, below.

Since ϕ0 is fixed in this argument, T operating on ϕ0 gives some fixed number, say

〈T, ϕ0〉 = c .

Now write
ϕ(x) = ϕ(0)ϕ0(x) + (ϕ(x)− ϕ(0)ϕ0(x)) = ϕ(0)ϕ0(x) + ψ(x)

where, by this clever way of writing ϕ, the function ψ(x) = ϕ(x) − ϕ(0)ϕ0(x) has the property that

ψ(0) = ϕ(0)− ϕ(0)ϕ0(0) = ϕ(0)− ϕ(0) = 0

because ϕ0(0) = 1. This means that we can factor out an x and write

ψ(x) = xΨ(x)

where Ψ is again a test function, and then

ϕ(x) = ϕ(0)ϕ0(x) + xΨ(x) .

But now

〈T, ϕ(x)〉 = 〈T, ϕ(0)ϕ0 + xΨ〉
= 〈T, ϕ(0)ϕ0〉+ 〈T, xΨ〉
= ϕ(0)〈T, ϕ0〉+ 〈T, xΨ〉 (linearity)
= ϕ(0)〈T, ϕ0〉+ 〈xT,Ψ〉 (that’s how mutiplying T by the smooth function x works)
= ϕ(0)〈T, ϕ0〉+ 0 (because 〈xT,Ψ〉 = 0!)
= cϕ(0)
= 〈cδ, ϕ〉
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We conclude that
T = cδ .

4.14 The Derivative Theorem

Another basic property of the Fourier transform is how it behaves in relation to differentiation — “dif-
ferentiation becomes multiplication” is the shorthand way of describing the situation. We know how to
differentiate a distribution, and it’s an easy step to bring the Fourier transform into the picture. We’ll
then use this to find the Fourier transform for some common functions that heretofore we have not been
able to treat.

Let’s recall the formulas for functions, best written:

f ′(t) 
 2πisF (s) and − 2πitf(t) 
 F ′(s)

where f(t) 
 F (s).

We first want to find FT ′ for a distribution T . For any test function ϕ,

〈FT ′, ϕ〉 = 〈T ′,Fϕ〉 = −〈T, (Fϕ)′〉
= −〈T,F(−2πisϕ)〉 (from the second formula above)
= −〈FT,−2πisϕ〉 (moving F back over to T )
= 〈2πisFT,ϕ〉
(cancelling minus signs and moving the smooth function 2πis back onto FT )

So the second formula for functions has helped us derive the version of the first formula for distributions:

FT ′ = 2πisFT .

On the right hand side, that’s the smooth function 2πis times the distribution FT .

Now let’s work with (FT )′:

〈(FT )′, ϕ〉 = −〈FT, ϕ′〉 = −〈T,F(ϕ′)〉
= −〈T, 2πisFϕ〉 (from the first formula for functions)
= 〈−2πisT,Fϕ〉
= 〈F(−2πisT ), ϕ〉

Therefore
(FT )′ = F(−2πisT ) .

4.14.1 Fourier transforms of sgn, 1/x, and the unit step

We can put the derivative formula to use to find the Fourier transform of the sgn function, and from that
the Fourier transform of the unit step.

On the one hand, sgn ′ = 2δ, from an earlier calculation, so Fsgn ′ = 2Fδ = 2. On the other hand, using
the derivative theorem,

Fsgn ′ = 2πisFsgn .

Hence
2πisFsgn = 2 .
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We’d like to say that

Fsgn =
1
πis

where 1/s is the Cauchy principal value distribution. In fact this is the case, but it requires a little more
of an argument. From 2πisFsgn = 2 we can say that

Fsgn =
1
πis

+ cδ

where c is a constant. Why the extra δ term? We need it for generality. If T is such that sT = 0 then
2πisFsgn and 2 + sT , will have the same effect when paired with a test function. But earlier we showed
that such a T must be cδ for some constant c. Thus we write

Fsgn =
1
πis

+ cδ .

Now, sgn is odd and so is its Fourier transform, and so is 1/2πis. But δ is even, and the only way 1/πis+cδ
can be odd is to have c = 0.

To repeat, we have now found

Fsgn =
1
πis

.

Gray and Goodman p. 217 (and also Bracewell) give a derivation of this result using limiting arguments.

By duality we also now know the Fourier transform of 1/x. The distributions are odd, hence

F
(1

x

)
= −πi sgn s .

Having found Fsgn it’s easy to find the Fourier transform of the unit step H . Indeed,

H(t) = 1
2(1 + sgn t)

and from this
FH = 1

2

(
δ +

1
πis

)
.

4.15 Shifts and the Shift Theorem

Let’s start with shifts. What should we make of T (x± b) for a distribution T when, once again, it doesn’t
make sense to evaluate T at a point x± b? We use the same strategy as before, starting by assuming that
T comes from a function f and asking how we should pair, say, f(x − b) with a test function ϕ(x). For
that, we want

∫ ∞

−∞
f(x− b)ϕ(x) dx=

∫ ∞

−∞
f(u)ϕ(u+ b) du (making the substitution u = x− b.)

As we did when we analyzed “changing signs” our work on shifts is made easier (really) if we introduce a
notation.
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The shift or delay operator It’s pretty common to let τb stand for “translate by b”, or “delay by b”.
That is, for any function ϕ the delayed signal, τbϕ, is the new function defined by

(τbϕ)(x) = ϕ(x− b) .

Admittedly there’s some awkwardness in the notation here; one has to remember that τb corresponds
to x− b.

In terms of τb the integrals above can be written (using x as a variable of integration in both cases):

〈τbf, ϕ〉 =
∫ ∞

−∞
(τbf)(x)ϕ(x) dx=

∫ ∞

−∞
f(x)(τ−bϕ)(x) dx = 〈f, τ−bϕ〉 .

Note that on the left hand side f is shifted by b while on the right hand side ϕ is shifted by −b. This result
guides us in making the general definition:

• If T is a distribution we define τbT (T delayed by b) by

〈τbT, ϕ〉 = 〈T, τ−bϕ〉 .

You can check that for a distribution Tf coming from a function f we have

τbTf = Tτbf .

δa is a shifted δ To close the loop on some things we said earlier, watch what happens when we delay
δ by a:

〈τaδ, ϕ〉 = 〈δ, τ−aϕ〉
= (τ−aϕ)(0)
= ϕ(a) (remember, τ−aϕ(x) = ϕ(x+ a))
= 〈δa, ϕ〉

We have shown that
τaδ = δa .

This is the variable-free way of writing δ(x− a).

The shift theorem: We’re now ready for the general form of the shift theorem:

If T is a distribution then
F(τbT ) = e−2πibxFT .

To verify this, first

〈F(τbT ), ϕ〉 = 〈τbT,Fϕ〉 = 〈T, τ−bFϕ〉 .
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We can evaluate the test function in the last term:

τ−b(Fϕ)(s) = Fϕ(s+ b)

=
∫ ∞

−∞
e−2πi(s+b)xϕ(x) dx

=
∫ ∞

−∞
e−2πisxe−2πibxϕ(x) dx = F(e−2πibxϕ)(s)

Now plug this into what we had before:

〈F(τbT ), ϕ〉 = 〈T, τ−bFϕ〉
= 〈T,F(e−2πibxϕ)〉
= 〈FT, e−2πibxϕ〉 = 〈e−2πibxFT, ϕ〉

Thus, keeping track of what we’re trying to show,

〈F(τbT ), ϕ〉 = 〈e−2πibxFT, ϕ〉

for all test functions ϕ, and hence
F(τbT ) = e−2πibxFT .

As one quick application of this let’s see what happens to the shifted δ. By the shift theorem

Fτaδ = e−2πiasFδ = e−2πisa

in accord with what we found earlier for Fδa directly from the definitions of δa and F .

4.16 Scaling and the Stretch Theorem

To find the appropriate form of the Stretch Theorem, or Similarity Theorem, we first have to consider
how to define T (ax). Following our now usual procedure, we check what happens when T comes from a
function f . We need to look at the pairing of f(ax) with a test function ϕ(x), and we find for a > 0 that

∫ ∞

−∞
f(ax)ϕ(x) dx =

∫ ∞

−∞
f(u)ϕ(u/a)

1
a
du ,

making the substitution u = ax, and for a < 0 that
∫ ∞

−∞
f(ax)ϕ(x) dx=

∫ −∞

∞
f(u)ϕ(u/a)

1
a
du = −

∫ ∞

−∞
f(u)ϕ(u/a)

1
a
du .

We combine the cases and write
∫ ∞

−∞
f(ax)ϕ(x) dx=

∫ ∞

−∞
f(u)

1
|a|ϕ(u/a) du .
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The scaling operator As we did to write shifts in a variable-free way, we do the same for similarities.
We let σa stand for the operator “scale by a”. That is,

(σaϕ)(x) = ϕ(ax) .

The integrals above can then be written as

〈σaf ϕ〉 =
∫ ∞

−∞
(σaf)(x)ϕ(x) dx=

∫ ∞

−∞
f(x)

1
|a|

(σ1/aϕ)(x) dx = 〈f, 1
|a|

(σ1/aϕ)〉 .

Thus for a general distribution:

• If T is a distribution we define σaT via

〈σaT, ϕ〉 = 〈T, 1
|a|
σ1/aϕ〉 .

Note also that then
〈 1
|a|σ1/aT, ϕ〉 = 〈T, σaϕ〉 .

For a distribution Tf coming from a function f the relation is

σaTf = Tσaf .

Scaling δ Since δ is concentrated at a point, however you want to interpret that, you might not think
that scaling δ(x) to δ(ax) should have any effect. But it does:

〈σaδ, ϕ〉 = 〈δ, 1
|a|σ1/aϕ〉 =

1
|a|(σ1/aϕ)(0)

=
1
|a|
ϕ(0/a) =

1
|a|
ϕ(0) = 〈 1

|a|
δ, ϕ〉

Hence
σaδ =

1
|a|
δ .

This is most often written “at points”, as in

δ(ax) =
1
|a|δ(x)

The effect of “scaling the variable” is to “scale the strength” of δ by the reciprocal amount.

The stretch theorem With the groundwork we’ve done it’s now not difficult to state and derive the
general stretch theorem:

If T is a distribution then
F(σaT ) =

1
|a|
σ1/a(FT ) .

To check this,

〈F(σaT ), ϕ〉 = 〈σaT,Fϕ〉 = 〈T, 1
|a|
σ1/aFϕ〉 .
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But now by the stretch theorem for functions
1
|a|

(σ1/aFϕ)(s) =
1
|a|

Fϕ
(s
a

)
= F(σaϕ)(s) .

Plug this back into what we had:

〈F(σaT ), ϕ〉 = 〈T, 1
|a|
σ1/aFϕ〉 = 〈T,F(σaϕ)〉 = 〈FT, σaϕ〉 = 〈 1

|a|
σ1/a(FT ), ϕ〉 .

This proves that
F(σaT ) =

1
|a|
σ1/a(FT ) .

4.17 Convolutions and the Convolution Theorem

Convolution of distributions presents some special problems and we’re not going to go into this too deeply.
It’s not so hard figuring out formally how to define S∗T for distributions S and T , it’s setting up conditions
under which the convolution exists that’s somewhat tricky. This is related to the fact of nature that it’s
impossible to define (in general) the product of two distributions, for we also want to have a convolution
theorem that says F(S ∗ T ) = (FS)(FT ) and both sides of the formula should make sense.

What works easily is the convolution of a distribution with a test function. This goes through as you might
expect (with a little twist) but in case you want to skip the following discussion I am pleased to report
right away that the convolution theorem on Fourier transforms continues to hold: If ψ is a test function
and T is a distribution then

F(ψ ∗ T ) = (Fψ)(FT ) .

The right hand side is the product of a test function and a distribution, which is defined.

Here’s the discussion that supports the development of convolution in this setting. First we consider
how to define convolution of ψ and T . As in every other case of extending operations from functions to
distributions, we suppose first that a distribution T comes from a function f . If ψ is a test function we
want to look at the pairing of ψ ∗ f with a test function ϕ. This is

〈ψ ∗ f, ϕ〉 =
∫ ∞

−∞
(ψ ∗ f)(x)ϕ(x) dx

=
∫ ∞

−∞

(∫ ∞

−∞
ψ(x− y)f(y) dy

)
ϕ(x) dx

=
∫ ∞

−∞

∫ ∞

−∞
ψ(x− y)ϕ(x)f(y) dydx

=
∫ ∞

−∞

(∫ ∞

−∞
ψ(x− y)ϕ(x) dx

)
f(y) dy

(The interchange of integration in the last line is justified because every function in sight is as nice as can
be.) We almost see a convolution ψ ∗ ϕ in the inner integral — but the sign is wrong. However, bringing
back our notation ψ−(x) = ψ(−x), we can write the inner integral as the convolution ψ− ∗ϕ (or as ψ ∗ϕ−
by a change of variable). That is

〈ψ ∗ f, ϕ〉 =
∫ ∞

−∞
(ψ ∗ f)(x)ϕ(x) dx=

∫ ∞

−∞
(ψ− ∗ ϕ)(x)f(x) dx= 〈f, ψ− ∗ϕ〉 .

This tells us what to do in general:
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• If T is a distribution and ψ is a test function then ψ ∗ T is defined by

〈ψ ∗ T, ϕ〉 = 〈T, ψ− ∗ ϕ〉 .

Convolution property of δ Let’s see how this works to establish the basic convolution property of the
δ-function:

ψ ∗ δ = ψ

where on the right hand side we regard ψ as a distribution. To check this:

〈ψ ∗ δ, ϕ〉 = 〈δ, ψ− ∗ ϕ〉 = (ψ− ∗ϕ)(0)

=
∫ ∞

−∞
ψ−(−y)ϕ(y) dy =

∫ ∞

−∞
ψ(y)ϕ(y) dy = 〈ψ, ϕ〉 .

Look at this carefully, or rather, simply. It says that ψ ∗ δ has the same outcome as ψ does when paired
with φ. That is, ψ ∗ δ = ψ. Works like a charm. Air tight.

As pointed out earlier, it’s common practice to write this property of δ as an integral,

ψ(x) =
∫ ∞

−∞
δ(x− y)ψ(y) dy .

This is sometimes called the sifting property of δ. Generations of distinguished engineers and scientists
have written this identity in this way, and no harm seems to have befallen them.

We can even think of Fourier inversion as a kind of convolution identity, in fact as exactly the sifting
property of δ. The inversion theorem is sometimes presented in this way (proved, according to some
people, though it’s circular reasoning). We need to write (formally)

∫ ∞

−∞
e2πisx ds = δ(x)

viewing the left hand side as the inverse Fourier transform of 1, and then, shifting,
∫ ∞

−∞
e2πisxe−2πist ds = δ(x− t) .

And now, shamelessly,

F−1Fϕ(x) =
∫ ∞

−∞
e2πisx

(∫ ∞

−∞
e−2πistϕ(t) dt

)
ds

=
∫ ∞

−∞

∫ ∞

−∞
e2πisxe−2πistϕ(t) dt dt

=
∫ ∞

−∞

(∫ ∞

−∞
e2πisxe−2πist ds

)
ϕ(t) dt =

∫ ∞

−∞
δ(x− t)ϕ(t) dt = ϕ(x) .

At least these manipulations didn’t lead to a contradiction! I don’t mind if you think of the inversion
theorem in this way, as long as you know what’s behind it, and as long as you don’t tell anyone where you
saw it.
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The convolution theorem Having come this far, we can now derive the convolution theorem for the
Fourier transform:

〈F(ψ ∗ T ), ϕ〉 = 〈ψ ∗ T,Fϕ〉 = 〈T, ψ− ∗ Fϕ〉
= 〈T,FFψ ∗ Fϕ〉 (using the identity FFψ = ψ−)
= 〈T,F(Fψ · ϕ)〉

(for functions the convolution of the Fourier transfoms is
the Fourier transform of the product)

= 〈FT,Fψ ·ϕ〉 (bringing F back to T )
= 〈(Fψ)(FT), ϕ〉 (how multiplication by a function is defined)

Comparing where we started and where we ended up:

〈F(ψ ∗ T ), ϕ〉 = 〈(Fψ)(FT), ϕ〉 .

that is,
F(ψ ∗ T ) = (Fψ)(FT ) .

Done.

One can also show the dual identity:
F(ψT ) = Fψ ∗ FT

Pay attention to how everything makes sense here and has been previously defined. The product of the
Schwartz function ψ and the distribution T is defined, and as a tempered distribution it has a Fourier
transform. Since ψ is a Schwartz function so is its Fourier transform Fψ, and hence Fψ ∗ FT is defined.

I’ll leave it to you to check that the algebraic properties of the convolution continue to hold for distributions,
whenever all the quantities are defined.

Note that the convolution identities are consistent with ψ ∗ δ = ψ, and with ψδ = ψ(0)δ. The first of these
convolution identities says that

F(ψ ∗ δ) = FψFδ = Fψ ,

since Fδ = 1, and that jibes with ψ ∗ δ = ψ. The other identity is a little more interesting. We have

F(ψδ) = Fψ ∗ Fδ = Fψ ∗ 1 =
∫ ∞

−∞
1 · Fψ(x) dx= F−1Fψ(0) = ψ(0) .

This is consistent with F(ψδ) = F(ψ(0)δ) = ψ(0)Fδ = ψ(0).

Convolution in general I said earlier that convolution can’t be defined for every pair of distributions.
I want to say a little more about this, but only a little, and give a few examples of cases when it works out
OK.

At the beginning of this section we considered, as we always do, what convolution looks like for distributions
in the case when the distribution comes from a function. With f playing the role of the distribution and
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ψ a Schwartz function we wrote

〈ψ ∗ f, ϕ〉 =
∫ ∞

−∞
(ψ ∗ f)(x)ϕ(x) dx

=
∫ ∞

−∞

(∫ ∞

−∞
ψ(x− y)f(y) dy

)
ϕ(x) dx

=
∫ ∞

−∞

∫ ∞

−∞
ψ(x− y)ϕ(x)f(y) dydy

=
∫ ∞

−∞

(∫ ∞

−∞
ψ(x− y)ϕ(x) dx

)
f(y) dy .

At this point we stopped and wrote this as the pairing

〈ψ ∗ f, ϕ〉 = 〈f, ψ− ∗ ϕ〉

so that we could see how to define ψ ∗ T when T is a distribution.

This time, and for a different reason, I want to take the inner integral one step further and write
∫ ∞

−∞
ψ(x− y)ϕ(x) dx=

∫ ∞

−∞
ψ(u)ϕ(u+ y) du (using the substituion u = x− y).

This latter integral is the pairing 〈ψ(x), ϕ(x+y)〉, where I wrote the variable of the paring (the integration
variable) as x and I included it in the notation for pairing to indicate that what results from the pairing is
a function y. In fact, what we see from this is that 〈ψ ∗ f, ϕ〉 can be written as a “nested” pairing, namely

〈ψ ∗ f, ϕ〉 = 〈f(y), 〈ψ(x), ϕ(x+ y)〉〉

where I included the variable y in the outside pairing to keep things straight and to help recall that in the
end everything gets integrated away and the result of the nested pairing is a number.

Now, this nested pairing tells us how we might define the convolution S ∗ T of two distributions S and T .
It is, with a strong proviso:

Convolution of two distributions If S and T are two distributions then their convolution
is the distribution S ∗ T defined by

〈S ∗ T, ϕ〉 = 〈S(y), 〈T (x), ϕ(x+ y)〉〉

provided the right-hand-side exists.

We’ve written S(y) and T (x) “at points” to keep straight what gets paired with what; ϕ(x+y)
makes sense, is a function of x and y, and it’s necessary to indicate which variable x or y is
getting hooked up with T in the inner pairing and then with S in the outer pairing.

Why the proviso? Because the inner paring 〈T (x), ϕ(x+ y)〉 produces a function of y which might not be
a test function. Sad, but true. One can state some general conditions under which S ∗ T exists, but this
requires a few more definitions and a little more discussion.21 Enough is enough. It can be dicey, but we’ll
play a little fast and loose with existence of convolution and applications of the convolution theorem. Tell
the rigor police to take the day off.

21 It inevitably brings in questions about associativity of convolution, which might not hold in general, as it turns out, and,
a more detailed treatment of the convolution theorem.
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Convolving δ with itself. For various applications you may find yourself wanting to use the identity

δ ∗ δ = δ .

By all means, use it. In this case the convolution makes sense and the formula follows:

〈δ ∗ δ, ϕ〉 = 〈δ(y), 〈δ(x), ϕ(x+ y)〉〉
= 〈δ(y), ϕ(y)〉 = ϕ(0) = 〈δ, ϕ〉 .

A little more generally, we have
δa ∗ δb = δa+b ,

a nice formula! We can derive this easily from the definition:

〈δa ∗ δb, ϕ〉 = 〈δa(y), 〈δb(x), ϕ(x+ y)〉〉
= 〈δa(y), ϕ(b+ y)〉 = ϕ(b+ a) = 〈δa+b, ϕ〉 .

It would be more common to write this identity as

δ(x− a) ∗ δ(x− b) = δ(x− a − b) .

In this notation, here’s the down and dirty version of what we just did (so you know how it looks):

δ(x− a) ∗ δ(x− b) =
∫ ∞

−∞
δ(y − a)δ(x− b− y) dy

=
∫ ∞

−∞
δ(u− b− a)δ(x− u) du (using u = b+ y)

= δ(x− b− a) (by the sifting property of δ).

Convolution really is a “smoothing operation” (most of the time) I want to say a little more
about general properties of convolution (first for functions) and why convolution is a smoothing operation.
In fact, it’s often taken as a maxim when working with convolutions that:

• The function f ∗ g has the good properties of f and g.

This maxim is put to use through a result called the derivative theorem for convolutions :

(f ∗ g)′(x) = (f ∗ g′)(x) = (f ′ ∗ g)(x) .

On the left hand side is the derivative of the convolution, while on the right hand side we put the derivative
on whichever factor has a derivative.

We allow ourselves to differentiate under the integral sign — sometimes a delicate business, but set that
aside — and the derivation is easy. If g is differentiable, then

(f ∗ g)′(x) =
d

dx

∫ ∞

−∞
f(u)g(x− u) du

=
∫ ∞

−∞
f(u)

d

dx
g(x− u) du =

∫ ∞

−∞
f(u)g′(x− u) du = (f ∗ g′)(x)

The second formula follows similarly if f is differentiable.

The importance of this is that the convolution of two functions may have more smoothness than the
individual factors. We’ve seen one example of this already, where it’s not smoothness but continuity that’s
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improved. Remember Π ∗ Π = Λ; the convolution of the rectangle function with itself is the triangle
function. The rectangle function is not continuous — it has jump discontinuities at x = ±1/2 — but the
convolved function is continuous.22 We also saw that repeated convolution of a function with itself will
lead to a Gaussian.

The derivative theorem is saying: If f is rough, but g is smooth then f ∗g will be smoother than f because
we can differentiate the convolution by putting the derivative on g. We can also compute higher order
derivatives in the same way. If g is n-times differentiable then

(f ∗ g)(n)(x) = (f ∗ g(n))(x) .

Thus convolving a rough function f with an n-times differentiable function g produces an n-times differ-
entiable function f ∗ g. It is in this sense that convolution is a “smoothing” operation.

The technique of smoothing by convolution can also be applied to distributions. There one works with
ψ ∗T where ψ is, for example, a Schwartz function. Using the family of Gaussians gt(x) = (1/

√
2πt)e−x2/2t

to form gt ∗T produces the so-called regularization of T . This is the basis of the theorem on approximating
a general distribution by a sequence of distributions that come from Schwartz functions.

The distribution δ is the breakeven point for smoothing by convolution — it doesn’t do any smoothing, it
leaves the function alone, as in

δ ∗ f = f .

Going further, convolving a differentiable function with derivatives of δ produces derivatives of the function,
for example,

δ′ ∗ f = f ′ .

You can derive this from scratch using the definition of the derivative of a distribution and the definition
of convolution, or you can also think of

δ′ ∗ f = δ ∗ f ′ = f ′ .

(Careful here: This is δ′ convolved with f , not δ′ paired with f .) A similar result holds for higher derivatives:

δ(n) ∗ f = f (n) .

Sometimes one thinks of taking a derivative as making a function less smooth, so counterbalancing the
maxim that convolution is a smoothing operation, one should add that convolving with derivatives of δ
may roughen a function up.

4.18 δ Hard at Work

We’ve put a lot of effort into general theory and now it’s time to see a few applications. They range from
finishing some work on filters, to optics and diffraction, to X-ray crystallography. The latter will even lead
us toward the sampling theorem. The one thing all these examples have in common is their use of δ’s.

The main properties of δ we’ll need, along with its Fourier transform, are what happens with convolution
with a function ϕ and with multiplication by a function ϕ:

δ ∗ ϕ = ϕ and ϕδ = ϕ(0)δ .

22 In fact, it’s a general result that if f and g are merely integrable then f ∗ g is already continuous.
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We’ll tend to “write the variables” in this section, so these identities appear as
∫ ∞

−∞
δ(x− y)ϕ(y) dy = ϕ(x) and ϕ(x)δ(x) = ϕ(0)δ(x) .

(I can live with it.) There are useful variations of these formulas for a shifted δ:

δ(x− b) ∗ ϕ(x) = ϕ(x− b)
δ(x− b)ϕ(x) = ϕ(b)δ(x− b)

We also need to recall the Fourier transform for a scaled rect:

FΠa(x) = FΠ(x/a) = a sinca .

4.18.1 Filters, redux

One of our first applications of convolution was to set up and study some simple filters. Let’s recall the
terminology and some work left undone; see Section3.4. The input v(t) and the output w(t) are related
via convolution with the impulse response h(t):

w(t) = (h ∗ v)(t) .

(We’re not quite ready to explain why h is called the impulse response.) The action of the filter is easier
to understand in the frequency domain, for there, by the convolution theorem, it acts by multiplication

W (s) = H(s)V (s)

where
W = Fw, H = Fh, and V = Fv .

H(s) is called the transfer function.

The simplest example, out of which the others can be built, is the low-pass filter with transfer function

Low(s) = Π2νc(s) = Π
(

s

2νc

)
=

{
1 |s| < νc

0 |s| ≥ νc

The impulse response is
low(t) = 2νc sinc(2νct)

a scaled sinc function.23

High-pass filter Earlier we saw the graph of the transfer function for an ideal high pass filter:

23 What do you think of this convention of using “Low” for the transfer function (uppercase) and “low” for the impulse
response (lower case)? Send me your votes.
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and a formula for the transfer function

High(s) = 1 − Low(s) = 1 − Π2νc(s)

where νc is the cut-off frequency. At the time we couldn’t finish the analysis because we didn’t have δ.
Now we do. The impulse response is

high(t) = δ(t) − 2νc sinc(2νct) .

For an input v(t) the output is then

w(t) = (high ∗ v)(t)

=
(
δ(t) − 2νc sinc(2νct)

)
∗ v(t)

= v(t)− 2νc

∫ ∞

−∞
sinc(2νc(t− s))v(s) ds .

The role of the convolution property of δ in this formula shows us that the high pass filter literally subtracts
part of the signal away.

Notch filter The transfer function for the notch filter is just 1− (transfer function for band pass filter)
and it looks like this:

Frequencies in the “notch” are filtered out and all others are passed through unchanged. Suppose that the
notches are centered at ±ν0 and that they are νc wide. The formula for the transfer function, in terms of
transfer function for the low-pass filter with cutoff frequency νc, is

Notch(s) = 1 −
(
Low(s− ν0) + Low(s + ν0)

)
.

For the impulse response we obtain

notch(t) = δ(t) − (e−2πiν0tlow(t) + e2πiν0tlow(t))

= δ(t) − 4νc cos(2πν0t) sinc(2νct) .

Thus

w(t) = (δ(t)− 4νc cos(2πν0t) sinc(2νct)) ∗ v(t)

= v(t)− 4νc

∫ ∞

−∞
cos(2πν0(t− s)) sinc(2νc(t− s)) v(s) ds ,

and again we see the notch filter subtracting away part of the signal.
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4.18.2 Diffraction: The sinc function, live and in pure color

Some of the most interesting applications of the Fourier transform are in the field of optics, understood
broadly to include most of the electromagnetic spectrum in its purview. An excellent book on the subject
is Fourier Optics, by Stanford’s own J. W. Goodman — highly recommended.

The fundamental phenomenon associated with the wave theory of light is diffraction or interference. Som-
merfeld says that diffraction is “any deviation of light rays from rectilinear paths which cannot be inter-
preted as reflection or refraction.” Very helpful. Is there a difference between diffraction and interference?
In his Lectures on Physics, Feynman says “No one has ever been able to define the difference between
interference and diffraction satisfactorily. It is just a question of usage, and there is no specific, important
physical difference between them.” He does go on to say that “interference” is usually associated with
patterns caused by a few radiating sources, like two, while “diffraction” is due to many sources. Whatever
the definition, or nondefinition, you probably know what the picture is:

Such pictures, most notably the “Two Slits” experiments of Thomas Young (1773–1829), which we’ll
analyze, below, were crucial in tipping the balance away from Newton’s corpuscular theory to the wave
theory propounded by Christiaan Huygens (1629–1695). The shock of the diffraction patterns when first
seen was that light + light could be dark. Yet the experiments were easy to perform. Spoke Young in
1803 to the Royal Society: ”The experiments I am about to relate . . . may be repeated with great ease,
whenever the sun shines, and without any other apparatus than is at hand to every one.”24

24 Young also did important work in studying Egyptian hieroglyphics, completely translating a section of the Rosetta Stone.
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We are thus taking sides in the grand battle between the armies of “light is a wave” and those of “light is
a particle”. It may be that light is truly like nothing you’ve ever seen before, but for this discussion it’s a
wave. Moreover, jumping ahead to Maxwell, we assume that light is an electromagnetic wave, and for our
discussion we assume further that the light in our problems is:

• Monochromatic

◦ Meaning that the periodicity in time is a single frequency, so described by a simple sinusoid.

• Linearly polarized

◦ Meaning that the electric field vector stays in a plane as the wave moves. (Hence so too does
the magnetic field vector.)

With this, the diffraction problem can be stated as follows:

Light — an electromagnetic wave — is incident on an (opaque) screen with one or more aper-
tures (transparent openings) of various shapes. What is the intensity of the light on a screen
some distance from the diffracting screen?

We’re going to consider only a case where the analysis is fairly straightforward, the Fraunhofer approxima-
tion, or Fraunhofer diffraction. This involves a number of simplifying assumptions, but the results are used
widely. Before we embark on the analysis let me point out that reasoning very similar to what we’ll do
here is used to understand the radiation patterns of antennas. For this take on the subject see Bracewell,
Chapter 15.

Light waves We can describe the properties of light that satisfy the above assumptions by a scalar -valued
function of time and position. We’re going to discuss “scalar” diffraction theory, while more sophisticated
treatments handle the “vector” theory. The function is the magnitude of the electric field vector, say a
function of the form

u(x, y, z, t) = a(x, y, z) cos(2πνt− φ(x, y, z))

Here, a(x, y, z) is the amplitude as a function only of position in space, ν is the (single) frequency, and
φ(x, y, z) is the phase at t = 0, also as a function only of position.25

The equation
φ(x, y, z) = constant

describes a surface in space. At a fixed time, all the points on such a surface have the same phase,
by definition, or we might say equivalently that the traveling wave reaches all points of such a surface
φ(x, y, z) = constant at the same time. Thus any one of the surfaces φ(x, y, z) = constant is called a
wavefront. In general, the wave propagates through space in a direction normal to the wavefronts.

The function u(x, y, z, t) satisfies the 3-dimensional wave equation

∆u =
1
c2
∂2u

∂t2

where

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

25 It’s also common to refer to the whole argument of the cosine, 2πνt − φ, simply as “the phase”.
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is the Laplacian and c is the speed of light in vacuum. For many problems it’s helpful to separate the
spatial behavior of the wave from its temporal behavior and to introduce the complex amplitude, defined
to be

u(x, y, z) = a(x, y, z)eiφ(x,y,z) .

Then we get the time-dependent function u(x, y, z, t) as

u(x, y, z, t) = Re
(
u(x, y, z)e2πiνt

)
.

If we know u(x, y, z) we can get u(x, y, z, t). It turns out that u(x, y, z) satisfies the differential equation

∆u(x, y, z) + k2u(x, y, z) = 0

where k = 2πν/c. This is called the Helmholtz equation, and the fact that it is time independent makes it
simpler than the wave equation.

Fraunhofer diffraction We take a sideways view of the situation. Light is coming from a source at a
point O and hits a plane S. We assume that the source is so far away from S that the magnitude of the
electric field associated with the light is constant on S and has constant phase, i.e., S is a wavefront and
we have what is called a plane wave field. Let’s say the frequency is ν and the wavelength is λ. Recall that
c = λν, where c is the speed of light. (We’re also supposing that the medium the light is passing through
is isotropic, meaning that the light is traveling at velocity c in any direction, so there are no special effects
from going through different flavors of jello or something like that.)

Set up coordinates so that the z-axis is perpendicular to S and the x-axis lies in S, perpendicular to the
z-axis. (In most diagrams it is traditional to have the z-axis be horizontal and the x-axis be vertical.)

In S we have one or more rectangular apertures. We allow the length of the side of the aperture along the
x-axis to vary, but we assume that the other side (perpendicular to the plane of the diagram) has length 1.
A large distance from S is another parallel plane. Call this the image plane.
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The diffraction problem is:

• What is the electric field at a point P in the image plane?

The derivation I’m going to give to answer this question is not as detailed as is possible (for details see
Goodman’s book), but we’ll get the correct form of the answer and the point is to see how the Fourier
transform enters.

The basis for analyzing diffraction is Huygens’ principle which states, roughly, that the apertures on S
(which is a wavefront of the original source) may be regarded as (secondary) sources, and the field at P is
the sum (integral) of the fields coming from these sources on S. Putting in a little more symbolism, if E0

is the strength of the electric field on S then an aperture of area dS is a source of strength dE = E0 dS.
At a distance r from this aperture the field strength is dE ′′ = E0 dS/r, and we get the electric field at
this distance by integrating over the apertures the elements dE ′′, “each with its proper phase”. Let’s look
more carefully at the phase.

The wave leaves a point on an aperture in S, a new source, and arrives at P sometime later. Waves from
different points on S will arrive at P at different times, and hence there will be a phase difference between
the arriving waves. They also drop off in amplitude like one over the distance to P , and so by different
amounts, but if, as we’ll later assume, the size of the apertures on S are small compared to the distance
between S and the image plane then this is not as significant as the phase differences. Light is moving so
fast that even a small differences between locations of secondary point sources on S may lead to significant
differences in the phases when the waves reach P .

The phase on S is constant and we might as well assume that it’s zero. Then we write the electric field on
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S in complex form as
E = E0e

2πiνt

where E0 is constant and ν is the frequency of the light. Suppose P is at a distance r from a point x on
S. Then the phase change from x to P depends on how big r is compared to the wavelength λ — how
many wavelengths (or fractions of a wavelength) the wave goes through in going a distance r from x to P .
This is 2π(r/λ). To see this, the wave travels a distance r in a time r/c seconds, and in that time it goes
through ν(r/c) cycles. Using c = λν that’s νr/c = r/λ. This is 2πr/λ radians, and that’s the phase shift.

Take a thin slice of width dx at a height x above the origin of an aperture on S. Then the field at P due
to this source is, on account of the phase change,

dE = E0e
2πiνte2πir/λ dx .

The total field at P is

E =
∫

apertures
E0e

2πiνte2πir/λ dx = E0e
2πiνt

∫

apertures
e2πir/λ dx

There’s a Fourier transform coming, but we’re not there yet.

The key assumption that is now made in this argument is to suppose that

r� x ,

that is, the distance between the plane S and the image plane is much greater than any x in any aperture,
in particular r is large compared to any aperture size. This assumption is what makes this Fraunhofer
diffraction; it’s also referred to as far field diffraction. With this assumption we have, approximately,

r = r0 − x sin θ ,

where r0 is the distance between the origin of S to P and θ is the angle between the z-axis and P .



4.18 δ Hard at Work 203

Plug this into the formula for E:

E = E0e
2πiνte2πir0/λ

∫

apertures
e−2πix sin θ/λ dx

Drop that constant out front — as you’ll see, it won’t be important for the rest of our considerations.

We describe the apertures on S by a function A(x), which is zero most of the time (the opaque parts of
S) and 1 some of the time (apertures). Thus we can write

E ∝
∫ ∞

−∞
A(x)e−2πix sin θ/λ dx

It’s common to introduce the variable
p =

sin θ
λ

and hence to write
E ∝

∫ ∞

−∞
A(x)e−2πipx dx .

There you have it. With these approximations (the Fraunhofer approximations) the electric field (up to a
multiplicative constant) is the Fourier transform of the aperture! Note that the variables in the formula
are x, a spatial variable, and p = sin θ/λ, in terms of an angle θ. It’s the θ that’s important, and one
always speaks of diffraction “through an angle.”

Diffraction by a single slit Take the case of a single rectangular slit of width a, thus described by
A(x) = Πa(x). Then the field at P is

E ∝ a sinc ap = a sinc
(
a sin θ
λ

)
.

Now, the intensity of the light, which is what we see and what photodetectors register, is proportional to
the energy of E, i.e., to |E|2. (This is why we dropped the factors E0e

2πiνte2πir0/λ multiplying the integral.
They have magnitude 1.) So the diffraction pattern you see from a single slit, those alternating bright and
dark bands, is

intensity = a2sinc2

(
a sin θ
λ

)
.

Pretty good. The sinc function, or at least its square, live and in color. Just as promised.

We’ve seen a plot of sinc2 before, and you may very well have seen it, without knowing it, as a plot of the
intensity from a single slit diffraction experiment. Here’s a plot for a = 2, λ = 1 and −π/2 ≤ θ ≤ π/2:
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Young’s experiment As mentioned earlier, Thomas Young observed diffraction caused by light passing
through two slits. To analyze his experiment using what we’ve derived we need an expression for the
apertures that’s convenient for taking the Fourier transform.

Suppose we have two slits, each of width a, centers separated by a distance b. We can model the aperture
function by the sum of two shifted rect functions,

A(x) = Πa(x− b/2) + Πa(x+ b/2) .

(Like the transfer function of a bandpass filter.) That’s fine, but we can also shift the Πa’s by convolving
with shifted δ’s, as in

A(x) = δ(x− b/2) ∗ Πa(x) + δ(x+ b/2) ∗Πa(x)

= (δ(x− b/2) + δ(x+ b/2)) ∗ Πa(x) ,

and the advantage of writing A(x) in this way is that the convolution theorem applies to help in computing
the Fourier transform. Namely,

E(p) ∝ (2 cosπbp)(a sincap)

= 2a cos
(
πb sinθ
λ

)
sinc

(
a sin θ
λ

)

Young saw the intensity, and so would we, which is then

intensity = 4a2 cos2
(
πb sinθ
λ

)
sinc2

(
a sin θ
λ

)

Here’s a plot for a = 2, b = 6, λ = 1 for −π/2 ≤ θ ≤ π/2:

This is quite different from the diffraction pattern for one slit.

Diffraction by two point-sources Say we have two point-sources — the apertures — and that they
are at a distance b apart. In this case we can model the apertures by a pair of δ-functions:

A(x) = δ(x− b/2) + δ(x+ b/2) .
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Taking the Fourier transform then gives

E(p) ∝ 2 cosπbp = 2 cos
(
πb sinθ
λ

)
.

and the intensity as the square magnitude:

intensity = 4 cos2
(
πb sinθ
λ

)
.

Here’s a plot of this for b = 6, λ = 1 for −π/2 ≤ θ ≤ π/2:

Incidentally, two radiating point sources covers the case of two antennas “transmitting in phase from a
single oscillator”.

An optical interpretation of Fδ = 1 What if we had light radiating from a single point source?
What would the pattern be on the image plane in this circumstance? For a single point source there
is no diffraction (a point source, not a circular aperture of some definite radius) and the image plane is
illuminated uniformly. Thus the strength of the field is constant on the image plane. On the other hand,
if we regard the aperture as δ and plug into the formula we have the Fourier transform of δ,

E ∝
∫ ∞

−∞
δ(x)e−2πipx dx

This gives a physical reason why the Fourier transform of δ should be constant (if not 1).

Also note what happens to the intensity as b→ 0 of the diffraction due to two point sources at a distance b.
Physically, we have a single point source (of strength 2) and the formula gives

intensity = 4 cos2
(
πb sinθ
λ

)
→ 4 .

4.19 Appendix: The Riemann-Lebesgue lemma

The result of this section, a version of what is generally referred to as the Riemann-Lebesgue lemma, is:
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• If
∫ ∞

−∞
|f(t)| dt <∞ then |Ff(s)| → 0 as s→ ±∞.

We showed that Ff is continuous given that f is integrable; that was pretty easy. It’s a much stronger
statement to say that Ff tends to zero at infinity.

We’ll derive the result from another important fact, which we won’t prove and which you may find inter-
esting. It says that a function in L1(R) can be approximated in the L1(R) norm by functions in S, the
rapidly decreasing functions. Now, functions in L1(R) can be quite wild and functions in S are about as
nice as you can imagine so this is quite a useful statement, not to say astonishing. We’ll use it in the
following way. Let f be in L1(R) and choose a sequence of functions fn in S so that

‖f − fn‖1 =
∫ ∞

−∞
|f(t) − fn(t)| dt < 1

n .

We then use an earlier result that the Fourier transform of a function is bounded by the L1(R)-norm of
the function, so that

|Ff(s)−Ffn(s)| ≤ ‖f − fn‖1 <
1
n .

Therefore
|Ff(s)| ≤ |Ffn(s)|+ 1

n .

But since fn is rapidly decreasing, so is Ffn, and hence Ffn(s) tends to zero as s→ ±∞. Thus

lim
s→∞

|Ff(s)| < 1
n

for all n ≥ 1. Now let n→ ∞.

4.20 Appendix: Smooth Windows

One way of cutting off a function is simply to multiply by a rectangle function. For example, we can cut
a function f(x) off outside the interval [−n/2,+n/2] via

Π(x/n)f(x) =

{
f(x) |x| < n/2
0 |x| ≥ n/2

We can imagine letting n→ ∞ and in this way approximate f(x) by functions which are nonzero only in a
finite interval. The problem with this particular way of cutting off is that we may introduce discontinuities
in the cut-off.

There are smooth ways of bringing a function down to zero. Here’s a model for doing this, sort of a
smoothed version of the rectangle function. It’s amazing that you can write it down, and if any of you are
ever looking for smooth windows here’s one way to get them. The function

g(x) =





0 x ≤ 0

exp
(
−
( 1

2x

)
exp

( 1
2x− 1

))
0 < x < 1

2

1 x ≥ 1
2

is a smooth function, i.e., infinitely differentiable! It goes from the constant value 0 to the constant value 1
smoothly on the interval from 0 to 1/2.
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Then the function g(1 + x) goes up smoothly from 0 to 1 over the interval from −1 to −1/2 and the
function g(1− x) goes down smoothly from 1 to 0 over the interval from 1/2 to 1. Their product

c(x) = g(1 + x)g(1− x)

is 1 on the interval from −1/2 to 1/2, goes down smoothly to 0 between ±1/2 and ±1, and is zero for
x ≤ −1 and for x ≥ 1. Here’s the graph of c(x), the one we had earlier in the notes.

The function c(x) is a smoothed rectangle function. By scaling, say to cn(x) = c(x/n), we can smoothly
cut off a function to be zero outside a given interval [−n/2, n/2] via cn(x)f(x). As we let the interval
become larger and larger we see we are approximating a general (smooth) infinite function by a sequence
of smooth functions that are zero beyond a certain point.

For example, here’s a function and its smooth window (to be identically 0 after ±3):
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Here’s a blow-up near the endpoint 3 so you can see that it really is coming into zero smoothly.
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4.21 Appendix: 1/x as a Principal Value Distribution

We want to look at the formula
d

dx
ln |x| =

1
x
.

from a distributional point of view. First, does ln |x| — much less its derivative — even make sense as a
distribution? It has an infinite discontinuity at the origin, so there’s a question about the existence of the
integral

〈ln |x|, ϕ〉 =
∫ ∞

−∞
ln |x|ϕ(x) dx

when ϕ is a Schwartz function. Put another way, ln |x| can be defined as a distribution if we can define
a pairing with test functions (that satisfies the linearity and continuity requirements). Is the pairing by
simple integration, as above? Yes, but it takes some work.

The problem is at the origin not at ±∞, since ϕ(x) ln |x| will go down to zero fast enough to make the
tails of the integral converge. To analyze the integral near zero, let me remind you of some general facts:
When a function f(x) has a discontinuity (infinite or not) at a finite point, say at 0, then

∫ b

a
f(x) dx, a < 0, b > 0

is an improper integral and has to be defined via a limit

lim
ε1→0

∫ ε1

a
f(x) dx+ lim

ε2→0

∫ b

ε2

f(x) dx

with ε1 and ε2 tending to zero separately. If both limits exist then so does the integral — this is the
definition, i.e., you first have to take the separate limits, then add the results. If neither or only one of the
limits exists then the integral does not exist.

What’s the situation for
∫∞
−∞ ln |x|ϕ(x) dx? We’ll need to know two facts:

1. An antiderivative of ln x is x lnx− x.

2. lim|x|→0 |x|k ln |x| = 0 for any k > 0.

This is so because while ln |x| is tending to −∞ as x → 0, it’s doing so slowly enough that
multiplying it by any positive power of x will force the product to go to zero. (You can check
this with L’Hospital’s rule, for instance.)

Now write
∫ −ε1

−∞
ln(−x)ϕ(x) dx+

∫ ∞

ε2

lnxϕ(x) dx=

∫ −1

−∞
ln(−x)ϕ(x) dx+

∫ −ε1

−1
ln(−x)ϕ(x) dx+

∫ 1

ε2

ln |x|ϕ(x) dx+
∫ ∞

1
ln |x|ϕ(x) dx .

To repeat what I said earlier, the integrals going off to ±∞ aren’t a problem and only the second and third
integrals need work. For these, use a Taylor approximation to ϕ(x), writing ϕ(x) = ϕ(0) + O(x), where
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O(x) is a term of order x for |x| small. Then
∫ −ε1

−1

ln(−x)(ϕ(0) + O(x)) dx+
∫ 1

ε2

ln x(ϕ(0) + O(x)) dx

= ϕ(0)
(∫ −ε1

−1
ln(−x) dx+

∫ 1

ε2

lnx dx
)

+
∫ −ε1

−1
O(x) ln(−x) dx+

∫ 1

ε2

O(x) lnx dx

= ϕ(0)
(∫ 1

ε1

ln x dx+
∫ 1

ε2

ln x dx
)

+
∫ −ε1

−1
O(x) ln(−x) dx+

∫ 1

ε2

O(x) lnx dx

We want to let ε1 → 0 and ε2 → 0. You can now use Point 1, above, to check that the limits of the first
pair of integrals exist, and by Point 2 the second pair of integrals aren’t even improper. We’ve shown that

∫ ∞

−∞
ln |x|ϕ(x) dx

exists, hence ln |x| is a distribution. (The pairing, by integration, is obviously linear. We haven’t checked
continuity, but we never check continuity.)

Now the derivative of ln |x| is 1/x, but how does the latter define a distribution? This is trickier. We would
have to understand the pairing as a limit

〈 1
x
, ϕ〉 = lim

ε1→0

∫ ε1

−∞

ϕ(x)
x

dx+ lim
ε2→0

∫ ∞

ε2

ϕ(x)
x

dx

and this limit need not exist. What is true is that the symmetric sum
∫ −ε

−∞

ϕ(x)
x

dx+
∫ ∞

ε

ϕ(x)
x

dx

has a limit as ε → 0. This limit is called the Cauchy principal value of the improper integral, and one
writes

〈 1
x
, ϕ(x)〉 = pr.v.

∫ ∞

−∞

ϕ(x)
x

dx

(There’s not a universal agreement on the notation for a principal value integral.)

Why does the principal value exist? The analysis is much the same as we did for ln |x|. As before, write

pr.v.
∫ ∞

−∞

ϕ(x)
x

dx = lim
ε→0

(∫ −ε

−∞

ϕ(x)
x

dx+
∫ ∞

ε

ϕ(x)
x

dx

)

= lim
ε→0

(∫ −1

−∞

ϕ(x)
x

dx+
∫ −ε

−1

ϕ(x)
x

dx+
∫ 1

ε

ϕ(x)
x

dx+
∫ ∞

1

ϕ(x)
x

dx

)

=
∫ −1

−∞

ϕ(x)
x

dx+
∫ ∞

1

ϕ(x)
x

dx+ lim
ε→0

(∫ −ε

−1

ϕ(x)
x

dx+
∫ 1

ε

ϕ(x)
x

dx

)

To take the limit we do the same thing we did before and use ϕ(x) = ϕ(0)+O(x). The terms that matter
are ∫ −ε

−1

ϕ(0)
x

dx+
∫ 1

ε

ϕ(0)
x

dx

and this sum is zero.

To summarize, 1/x does define a distribution, but the pairing of 1/x with a test function is via the Cauchy
Principal Value, not just direct, uncommented upon integration. The distribution 1/x is thus often referred
to as the “Principal Value Distribution”.



Chapter 5

III, Sampling, and Interpolation

5.1 X-Ray Diffraction: Through a Glass Darkly1

Diffraction is not only an interesting phenomenon to look at, it is an important experimental tool, the tool
being diffraction gratings. A diffraction grating is an aperture plane with a large number of parallel slits,
closely spaced. See, for example

http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/grating.html.

Diffraction gratings are used to separate light of different wavelengths, and to measure wavelengths. I want
to look briefly at this latter application.

X-rays were discovered by William Roentgen in 1895. It was not known whether they were particles or
waves, but the wave hypothesis put their wavelength at about 10−8 cm. Using diffraction gratings was out
of the question for experiments on X-rays because diffraction effects are only seen if the width of the slits
is comparable to the wavelength. It was possible to build such gratings for experiments on visible light,
where the wavelengths are between 400 and 700 nanometers (10−7 cm), but that extra order of magnitude
to get to X-rays couldn’t be done.

A related set of mysteries had to do with the structure of crystals. It was thought that the macroscopic
structure of crystals could be explained by a periodic arrangement of atoms, but there was no way to test
this. In 1912 Max von Laue proposed that the purported periodic structure of crystals could be used to
diffract X-rays, just as gratings diffracted visible light. He thus had three hypotheses:

1. X-rays are waves.

2. Crystals are periodic.

3. The spacing between atoms is of the order 10−8 cm.

Friedrich and Kniping carried out experiments that confirmed von Laue’s hypotheses and the subject of
X-ray crystallography was born.

But you need to know some math.

1 1 Corinthians 13: When I was a child, I spake as a child, I understood as a child, I thought as a child: but when I became a
man, I put away childish things. For now we see through a glass, darkly, but then face to face: now I know in part; but then
shall I know even as also I am known.
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Electron density distribution An important quantity to consider in crystallography is how the elec-
trons are distributed among the atoms in the crystal. This is usually referred to as the electron density
distribution of the crystal. We want to see how we might represent this as a function, and consider what
happens to the function in the course of an X-ray diffraction experiment.

Let’s take the one-dimensional case as an illustration; we’ll look at the (more realistic) higher dimensional
case later in the course. We view a one-dimensional crystal as an evenly spaced collection of atoms along
a line. In fact, for purposes of approximation, we suppose that an infinite number of them are strung out
along a line. If we describe the electron density distribution of a single atom by a function ρ(x) then the
electron density distribution of the crystal with spacing p is the periodic function

ρp(x) =
∞∑

k=−∞
ρ(x− kp) .

As our discussion of diffraction might indicate, the Fourier transform of ρp(x) is proportional to the
“scattered amplitude” of X-rays diffracted by the crystal. Thus we want to write ρp(x) in a form that’s
amenable to taking the Fourier transform. (Incidentally, it’s not unreasonable to suppose that ρ is rapidly
decreasing — the electron density of a single atom dies off as we move away from the atom.)

As we’ll see, it’s convenient to write the periodized density as a convolution with a sum of shifted δ’s:

ρp(x) =
∞∑

k=−∞
ρ(x− pk) =

∞∑

k=−∞
δ(x− kp) ∗ ρ(x) =

( ∞∑

k=−∞
δ(x− kp)

)
∗ ρ(x) .

Now introduce

IIIp(x) =
∞∑

k=−∞
δ(x− kp) ,

so that, simply,
ρp = IIIp ∗ ρ .

IIIp is the star of the show. Bracewell calls it the “shah function”, after the Cyrillic letter, and this has
caught on. It’s also referred to as the Dirac comb (with spacing p).

Using the convolution theorem, we have

Fρp = Fρ · F IIIp .

What is F IIIp? That’s a really interesting question.

5.2 The III Distribution

We want to develop the properties of IIIp, particularly its Fourier transform. In fact, we met this distribution
earlier, in Chapter 1. Rather, we met its Fourier transform — it’s the continuous buzz signal, as we’ll
discuss further, below.

As a “standard” we take the spacing p to be 1, so we sum over the integer points and define

III(x) =
∞∑

k=−∞
δ(x− k) or III =

∞∑

k=−∞
δk .
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As above, for a series of δ’s spaced p apart we write

IIIp(x) =
∞∑

k=−∞
δ(x− kp) or IIIp =

∞∑

k=−∞
δkp .

I’ll mostly write δ’s “at points” in this section. It seems the more natural thing to do.

To see that the series for IIIp makes sense as a distribution, let ϕ be a test function; then

〈IIIp, ϕ〉 =
〈 ∞∑

k=−∞
δkp, ϕ

〉
=

∞∑

k=−∞
〈δkp, ϕ〉 =

∞∑

k=−∞
ϕ(kp) .

This sum converges because of the rapid decrease of ϕ at ±∞.

There are two facets to the III’s versatility: periodizing and sampling. We’ll consider each in turn.

5.2.1 Periodizing with III

Our first application of III was as above, to write the periodization of the electron density function ρ of a
single atom in a crystal as a convolution. The purpose was to periodize ρ to reflect the physical structure of
the crystal. This is a general procedure. The III function furnishes a handy way of generating and working
with periodic functions and distributions. Take that as an aphorism.

If f is a function or distribution for which convolution with III makes sense, then

(f ∗ IIIp)(t) =
∞∑

k=−∞
f(t− pk)

is periodic with period p. Note that

f(at + b) ∗ IIIp(t) =
∞∑

k=−∞
f(at + b− apk)

also has period p, and this can just as well be written in terms of a shifted III:

∞∑

k=−∞
f(at+ b− apk) = f(at) ∗ IIIp(t+

b

a
) .

Convolving with IIIp now emerges as the basic, familiar way to produce a periodic function. However, some
care must be taken; convolving with III to periodize doesn’t shift the graph and link them up, it shifts the
graph and adds them up.

In many cases the series
∞∑

k=−∞
f(t − pk)

will converge in some reasonable sense, often at least to define a periodic distribution (see Section 5.4). A
common application is to form f ∗ IIIp when f is zero for |t| ≥ p/2. In this case the convolution exists and
we naturally say that f ∗ IIIp is the p-periodic extension of f .
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I want to look at this operation in a little more detail, one reason being that it will make the discussion of
sampling and aliasing, soon to come, much cleaner and easier. Recall the scaled rect function

Πp(x) =

{
1 |x| < p/2
0 |x| ≥ p/2

If f is zero when |t| ≥ p/2 (note the ≥ not >) then

Πpf = f

and
f = Πp(f ∗ IIIp) .

In fact these two conditions are equivalent. That should be clear if you have the geometric picture in mind.
For example, shown below are the graphs of a function f(x) that is zero outside of |t| < p/2 and of three
cycles of its periodization; that’s f(x+ p) + f(x) + f(x− p) = f(x) ∗

∑1
k=−1 δ(x− kp).
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Here are the algebraic details that go from the picture to the formulas. If Πpf = f then

Πp(t)(f ∗ IIIp)(t) = Πp(t)((Πpf) ∗ IIIp)(t)

= Πp(t)
∞∑

k=−∞
Πp(t− kp)f(t− kp)

=
∞∑

k=−∞
Πp(t)Πp(t− kp)f(t− kp) = Πp(t)f(t) = f(t)

since

Πp(t)Πp(t− kp) =

{
Πp(t) k = 0
0 k 6= 0

On the other hand, if f = Πp(f ∗ IIIp) then

Πpf = Πp(Πp(f ∗ IIIp)) = Π2
p(f ∗ IIIp) = Πp(f ∗ IIIp) = f .

If we had defined Πp differently at ±p/2 (in other cultures either Πp(±p/2) = 1 or Πp(±p/2) = 1/2 are
typical) then the calculations and results above would hold except for the translates of ±p/2, a discrete
set of points. Such an exceptional set generally poses no problems in applications.

This all seems pretty innocent, but cutting off a distribution by Πp (a discontinuous function) is not part of
the theory. We only defined the product of a distribution and a smooth function. In general we’ll proceed
as though all is well, though careful justifications can take some work (which we won’t do). Be not afraid.

5.2.2 Sampling with III

The flip side of periodizing with III is sampling with III. Here’s what this means. Suppose we multiply III
by a function f . Then as a distribution

f(x)III(x) =
∞∑

k=−∞
f(x)δ(x− k) =

∞∑

k=−∞
f(k)δ(x− k) .

Multiplying III by f “samples” f at the integer points, in the sense that it “records” the values of f at
those points in the sum.

There’s nothing sacred about sampling at the integers of course. Sampling using IIIp means

f(x)IIIp(x) =
∞∑

k=−∞
f(kp)δ(x− kp) ,

so f is sampled at the points kp. Scaled or not, the thing to keep in mind about the shah function is that
it takes evenly spaced samples of a function f .

To summarize:

• Convolving a function with III (with IIIp) produces a periodic function with period 1 (with period p).

• Multiplying a function by III (by IIIp) samples the function at the integer points (at the points pk).
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5.2.3 Scaling identity for IIIp

There’s a simple scaling identity for IIIp that comes up often enough in formulas and derivations to make
it worth pointing out. We’ve defined

IIIp(x) =
∞∑

k=−∞
δ(x− kp) ,

scaling the spacing of the impulses by p, but it’s also natural to consider

III(px) =
∞∑

k=−∞
δ(px− k) .

Now recall the scaling property of δ; for p > 0,

δ(px) =
1
p
δ(x) .

Plugging this into the formula for III(px) gives

III(px) =
∞∑

k=−∞
δ(px− k)

=
∞∑

k=−∞
δ

(
p(x− k

p
)
)

=
∞∑

k=−∞

1
p
δ

(
x− k

p

)
=

1
p
III1/p(x)

To give it its own display:
III(px) =

1
p
III1/p(x)

(It would be a good exercise to derive this in a variable-free environment, using the delay operator τp and
the scaling operator σp.) By the same token,

IIIp(x) =
1
p
III
(

1
p
x

)
.

5.3 The Fourier Transform of III, or, The deepest fact about the inte-

gers is well known to every electrical engineer and spectroscopist

The most interesting thing about III is what happens when we take its Fourier transform. If we start with
the definition

III(x) =
∞∑

k=−∞
δ(x− k) .

and apply what we know about the Fourier transform of δ (it’s 1) plus the shift theorem, we obtain

F III(s) =
∞∑

k=−∞
e−2πiks .
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Since we’re summing over all positive and negative k we can write this as

F III(s) =
∞∑

k=−∞
e2πiks .

which looks more like a Fourier series. We did see this when we introduced the buzz signal. It sounds like
a signal with every harmonic present in equal amounts. It sounds terrible.

The expression
∞∑

k=−∞
e2πiks

actually does make sense as a distribution, as we’ll see, but it’s not yet a helpful expression. Instead, to
find the Fourier transform of III we go back to the definition in terms of tempered distributions. If ϕ is a
Schwartz function then

〈F III, ϕ〉 = 〈III,Fϕ〉 .

On the right hand side,

〈III,Fϕ〉 =
〈 ∞∑

k=−∞
δk,Fϕ

〉
=

∞∑

k=−∞
〈δk,Fϕ〉 =

∞∑

k=−∞
Fϕ(k)

And now we have something absolutely remarkable.

The Poisson summation formula: Let ϕ be a Schwartz function. Then
∞∑

k=−∞
Fϕ(k) =

∞∑

k=−∞
ϕ(k)

This result actually holds for other classes of functions (the Schwartz class was certainly not known to
Poisson!) but that’s not important for us.

The Poisson summation formula is the deepest fact known about the integers. It’s known to every electrical
engineer and every spectroscopist because of what it says about the Fourier transform of F III. We’ll settle
that now and come back to the derivation of the formula afterward.

We pick up our calculation of F III where we left off:

〈F III, ϕ〉 =
∞∑

k=−∞
Fϕ(k)

=
∞∑

k=−∞
ϕ(k) (because of the Poisson summation formula)

=
∞∑

k=−∞
〈δk , ϕ〉 (definition of δk)

=
〈 ∞∑

k=−∞
δk, ϕ

〉

= 〈III, ϕ〉 .



218 Chapter 5 III, Sampling, and Interpolation

Comparing where we started to where we ended up, we conclude that

F III = III .

Outstanding. The III distribution is its own Fourier transform. (See also Section 5.10.)

Proof of the Poisson Summation Formula The proof of the Poisson summation formula is an
excellent example of the power of having two different representations of the same thing, an idea certainly
at the heart of Fourier analysis. Remember the maxim: If you can evaluate an expression in two different
ways it’s likely you’ve done something significant.

Given a test function ϕ(t) we periodize to Φ(t) of period 1:

Φ(t) = (ϕ ∗ III)(t) =
∞∑

k=−∞
ϕ(t− k) .

As a periodic function, Φ has a Fourier series:

Φ(t) =
∞∑

m=−∞
Φ̂(m)e2πimt .

Let’s find the Fourier coefficients of Φ(t).

Φ̂(m) =
∫ 1

0
e−2πimtΦ(t) dt

=
∫ 1

0

∞∑

k=−∞
e−2πimtϕ(t− k) dt =

∞∑

k=−∞

∫ 1

0
e−2πimtϕ(t− k) dt

=
∞∑

k=−∞

∫ −k+1

−k
e−2πim(t+k)ϕ(t) dt

=
∞∑

k=−∞

∫ −k+1

−k

e−2πimte−2πimkϕ(t) dt (using e−2πimk = 1)

=
∫ ∞

−∞
e−2πimtϕ(t) dt

= Fϕ(m) .

Therefore

Φ(t) =
∞∑

m=−∞
Fϕ(m)e2πimt .

(We’ve actually seen this calculation before, in a disguised form; look back to Section 3.5 on the relationship
between the solutions of the heat equation on the line and on the circle.)

Since Φ is a smooth function, the Fourier series converges. Now compute Φ(0) two ways, one way from
plugging into its definition and the other from plugging into its Fourier series:

Φ(0) =
∞∑

k=−∞
ϕ(−k) =

∞∑

k=−∞
ϕ(k)

Φ(0) =
∞∑

k=−∞
Fϕ(k)e2πin0 =

∞∑

k=−∞
Fϕ(k)

Done.
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The Fourier transform of IIIp From F III = III we can easily deduce the formula for F IIIp. Using the
identities

IIIp(x) =
1
p
III
(

1
p
x

)
and III(px) =

1
p
III1/p(x) .

we have

F IIIp(s) =
1
p
F
(

III
(

x

p

))

=
1
p
pF III(ps) (stretch theorem)

= III(ps)

=
1
p
III1/p(s)

5.3.1 Crystal gazing

Let’s return now to the setup for X-ray diffraction for a one-dimensional crystal. We described the electron
density distribution of a single atom by a function ρ(x) and the electron density distribution of the crystal
with spacing p as

ρp(x) =
∞∑

k=−∞
ρ(x− kp) = (ρ ∗ IIIp)(x) .

Then

Fρp(s) = F(ρ ∗ IIIp)(s)

= (Fρ · F IIIp)(s)

= Fρ(s)1
p
III1/p(s)

=
∞∑

k=−∞

1
p
Fρ
(

k

p

)
δ

(
s− k

p

)

Here’s the significance of this. In an X-ray diffraction experiment what you see on the X-ray film is a
bunch of spots, corresponding to Fρp. The intensity of each spot is proportional to the magnitude of the
Fourier transform of the electron density ρ and the spots are spaced a distance 1/p apart, not p apart. If
you were an X-ray crystallographer and didn’t know your Fourier transforms, you might assume that there
is a relation of direct proportion between the spacing of the dots on the film and the atoms in the crystal,
but it’s a reciprocal relation — kiss your Nobel prize goodbye. Every spectroscopist knows this.

We’ll see a similar relation when we consider higher dimensional Fourier transforms and higher dimensional
III-functions. A III-function will be associated with a lattice and the Fourier transform will be a III-function
associated with the reciprocal or dual lattice. This phenomenon has turned out to be important in image
processing; see, for example, Digital Video Processing by A. M. Tekalp.

5.4 Periodic Distributions and Fourier series

I want to collect a few facts about periodic distributions and Fourier series, and show how we can use III
as a convenient tool for “classical” Fourier series.
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Periodicity The notion of periodicity for distributions is invariance under the delay operator τp, i.e., a
distribution (or a function, for that matter) is periodic with period p if

τpS = S .

This is the “variable free” definition, since we’re not supposed to write

S(x− p) = S(x) or S(x+ p) = S(x)

which is the usual way of expressing periodicity. It’s a pleasure to report that IIIp is periodic with period p.
You can see that most easily by doing what we’re not supposed to do:

IIIp(x+ p) =
∞∑

k=−∞
δ(x+ p− kp) =

∞∑

k=−∞
δ(x− (k− 1)p) =

∞∑

k=−∞
δ(x− kp) = IIIp(x).

It’s also easy to give a variable-free demonstration, which amounts to the same thing:

τpIIIp =
∞∑

k=−∞
τpδkp =

∞∑

k=−∞
δkp+p =

∞∑

k=−∞
δp(k+1) =

∞∑

k=−∞
δkp = IIIp .

When we periodize a test function ϕ by forming the convolution,

Φ(x) = (ϕ ∗ IIIp)(x) ,

it’s natural to view the periodicity of Φ as a consequence of the periodicity of IIIp. By this I mean we can
appeal to:

• If S or T is periodic of period p then S ∗ T (when it is defined) is periodic of period p.

Let me show this for functions (something we could have done way back) and I’ll let you establish the
general result. Suppose f is periodic of period p. Consider (f ∗ g)(x+ p). We have

(f ∗ g)(x+ p) =
∫ ∞

−∞
f(x+ p− y)g(y) dy =

∫ ∞

−∞
f(x− y)g(y) dy = (f ∗ g)(x).

The same argument works if instead g is periodic.

So, on the one hand, convolving with IIIp produces a periodic function. On the other hand, suppose Φ is
periodic of period p and we cut out one period of it by forming ΠpΦ. We get Φ back, in toto, by forming
the convolution with IIIp; that is,

Φ = ϕ ∗ IIIp = (ΠpΦ) ∗ IIIp

(Well, this is almost right. The cut-off ΠpΦ is zero at ±p/2 while Φ(±p/2) certainly may not be zero.
These “exceptions” at the end-points won’t affect the discussion here in any substantive way.2)

The upshot of this is that something is periodic if and only if it is a convolution with IIIp. This is a nice
point of view. I’ll take this up further in Section 5.10.

2 We can either: (a) ignore this problem; (b) jigger the definition of Πp to make it really true, which has other problems; or
(c) say that the statement is true as an equality between distributions, and tell ourselves that modifying the functions at a
discrete set of points will not affect that equality.



5.4 Periodic Distributions and Fourier series 221

Fourier series for III Taking the Fourier series of III term by term we arrived at

F III =
∞∑

k=−∞
e2πikt ,

and if we next use F III = III we would then have

III =
∞∑

k=−∞
e2πikt .

The series
∞∑

k=−∞
e2πikt

does define a distribution, for
〈 ∞∑

k=−∞
e2πikt, ϕ

〉
=
∫ ∞

−∞

∞∑

k=−∞
e2πiktϕ(t) dt

exists for any test function ϕ because ϕ is rapidly decreasing. There’s a pretty straightforward development
of Fourier series for tempered distributions, and while we won’t enter into it, suffice it to say we do indeed
have

III =
∞∑

k=−∞
e2πikt .

The right hand side really is the Fourier series for III. But, by the way, you can’t prove this without proving
the Poisson summation formula and that F III = III, so Fourier series isn’t a shortcut to the latter in this
case.

Remember that we saw the finite version of the Fourier series for III back in Fourier series section:

DN (t) =
N∑

n=−N

e2πint =
sin(π(2N + 1)t)

sin πt
.

Here’s the graph for N = 20:
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It’s now really true that
DN → III

as N → ∞, where the convergence is in the sense of distributions.

Fourier transform of a Fourier series When we first started to work with tempered distributions, I
said that we would be able to take the Fourier transform of functions that didn’t have one, i.e., functions
for which the integral defining the (classical) Fourier transform does not exist. We’ve made good on that
promise, including complex exponentials, for which

Fe2πikt/p = δ

(
s− k

p

)
.

With this we can now find the Fourier transform of a Fourier series. If

ϕ(t) =
∞∑

k=−∞
cke

2πikt/p

then

Fϕ(s) =
∞∑

k=−∞
ckFe2πikt/p =

∞∑

k=−∞
ckδ

(
s− k

p

)

It may well be that the series
∑∞

k=−∞ cke
2πikt/p converges to define a tempered distribution — that’s not

asking too much3 — even if it doesn’t converge pointwise to ϕ(t). Then it still makes sense to consider its
Fourier transform and the formula, above, is OK.

Rederiving Fourier series for a periodic function We can turn this around and rederive the formula
for Fourier series as a consequence of our work on Fourier transforms. Suppose Φ is periodic of period p

and write, as we know we can,
Φ = ϕ ∗ IIIp

where ϕ is one period of Φ, say ϕ = ΠpΦ. Take the Fourier transform of both sides and boldly invoke the
convolution theorem:

FΦ = F(ϕ ∗ IIIp) = Fϕ · F IIIp = Fϕ · 1
p
III1/p ,

or, at points,

FΦ(s) = Fϕ(s)

(
1
p

∞∑

k=−∞
δ

(
s− k

p

))
=

1
p

∞∑

k=−∞
Fϕ

(
k

p

)
δ

(
s− k

p

)
.

Now boldly take the inverse Fourier transform:

Φ(t) =
∞∑

k=−∞

1
p
Fϕ

(
k

p

)
e2πikt/p (the Fϕ

(
k

p

)
are constants) .

But

1
p
Fϕ

(
k

p

)
=

1
p

∫ ∞

−∞
e−2πi(k/p)tϕ(t) dt

=
1
p

∫ ∞

−∞
e−2πi(k/p)t Πp(t)Φ(t) dt =

1
p

∫ p/2

−p/2
e−2πi(k/p)t Φ(t) dt ,

3 For example, if ϕ is integrable so that the coefficients ck tend to zero. Or even less than that will do, just as long as the
coefficients don’t grow too rapidly.
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and this is the k-th Fourier coefficient ck of Φ. We’ve rederived

Φ(t) =
∞∑

k=−∞
cke

2πikt/p, where ck =
1
p

∫ p/2

−p/2
e−2πi(k/p)t Φ(t) dt .

5.5 Sampling Signals

In the previous lecture we studied three properties of III that make it so useful in many applications. They
are:

• Periodizing

◦ Convolving with III periodizes a function.

• Sampling

◦ Multiplying by III samples a function.

• The Fourier transform of III is III.

◦ Convolving and multiplying are themselves flip sides of the same coin via the convolution theo-
rem for Fourier transforms.

We are now about to combine all of these ideas in a spectacular way to treat the problem of “sampling
and interpolation”. Let me state the problem this way:

• Given a signal f(t) and a collection of samples of the signal, i.e., values of the signal at a set of points
f(t0), f(t1), f(t2), . . . , to what extent can one interpolate the values f(t) at other points from the
sample values?

This is an old question, and a broad one, and it would appear on the surface to have nothing to do with
III’s or Fourier transforms, or any of that. But we’ve already seen some clues, and the full solution is set
to unfold.

5.5.1 Sampling sines and bandlimited signals

Why should we expect to be able to do interpolation at all? Imagine putting down a bunch of dots — maybe
even infinitely many — and asking someone to pass a curve through them that agrees everywhere exactly
with a predetermined mystery function passing through those dots. Ridiculous. But it’s not ridiculous. If
a relatively simple hypothesis is satisfied then interpolation can be done! Here’s one way of getting some
intuitive sense of the problem and what that hypothesis should be.

Suppose we know a signal is a single sinusoid. A sinusoid repeats, so if we have enough information to pin
it down over one period, or cycle, then we know the whole thing. How many samples — how many values
of the function — within one period do we need to know to know which sinusoid we have? We need three
samples strictly within one cycle. You can think of the graph, or you can think of the equation: A general
sinusoid is of the form A sin(2πνt+ φ). There are three unknowns, the amplitude A, the frequency ν and
the phase φ. We would expect to need three equations to find the unknowns, hence we need values of the
function at three points, three samples.
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What if the signal is a sum of sinusoids, say
N∑

n=1

An sin(2πnνt+ φn) .

Sample points for the sum are “morally” sample points for the individual harmonics, though not explicitly.
We need to take enough samples to get sufficient information to determine all of the unknowns for all of
the harmonics. Now, in the time it takes for the combined signal to go through one cycle, the individual
harmonics will have gone through several cycles, the lowest frequency harmonic through one cycle, the
lower frequency harmonics through a few cycles, say, and the higher frequency harmonics through many.
We have to take enough samples of the combined signal so that as the individual harmonics go rolling
along we’ll be sure to have at least three samples in some cycle of every harmonic.

To simplify and standardize we assume that we take evenly spaced samples (in t). Since we’ve phrased
things in terms of cycles per second, to understand how many samples are enough it’s then also better to
think in terms of “sampling rate”, i.e., samples/sec instead of “number of samples”. If we are to have at
least three samples strictly within a cycle then the sample points must be strictly less than a half-cycle
apart. A sinusoid of frequency ν goes through a half-cycle in 1/2ν seconds so we want

spacing between samples =
number of seconds
number of samples

<
1
2ν

.

The more usual way of putting this is

sampling rate = samples/sec > 2ν .

This is the rate at which we should sample a given sinusoid of frequency ν to guarantee that a single cycle
will contain at least three sample points. Furthermore, if we sample at this rate for a given frequency, we
will certainly have more than three sample points in some cycle of any harmonic at a lower frequency.
Note that the sampling rate has units 1/seconds and that sample points are 1/(sampling rate) seconds
apart.

For the combined signal — a sum of harmonics — the higher frequencies are driving up the sampling
rate; specifically, the highest frequency is driving up the rate. To think of the interpolation problem
geometrically, high frequencies cause more rapid oscillations, i.e., rapid changes in the function over small
intervals, so to hope to interpolate such fluctuations accurately we’ll need a lot of sample points and thus
a high sampling rate. For example, here’s a picture of the sum of two sinusoids one of low frequency and
one of high frequency.
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If we sample at too low rate we might miss the wiggles entirely. We might mistakenly think we had only
the low frequency sinusoid, and, moreover, if all we had to go on were the samples we wouldn’t even know
we’d made a mistake! We’ll come back to just this problem a little later.

If we sample at a rate greater than twice the highest frequency, our sense is that we will be sampling often
enough for all the lower harmonics as well, and we should be able to determine everything. The problem
here is if the spectrum is unbounded. If, as for a square wave, we have a full Fourier series and not just a
finite sum of sinusoids, then we have no hope of sampling frequently enough to determine the combined
signal from the samples. For a square wave, for example, there is no “highest frequency”. That’s trouble.
It’s time to define ourselves out of this trouble.

Bandlimited signals From the point of view of the preceding discussion, the problem for interpolation,
is high frequencies, and the best thing a signal can be is a finite Fourier series. The latter is much too
restrictive for applications, of course, so what’s the “next best” thing a signal can be? It’s one for which
there is a highest frequency. These are the bandlimited signals — signals whose Fourier transforms are
identically zero outside of a finite interval. Such a signal has a bounded spectrum; there is a “highest
frequency”.

More formally:

• A signal f(t) is bandlimited if there is a finite number p such that Ff(s) = 0 for all |s| ≥ p/2. The
smallest number p for which this is true is called the bandwidth of f(t).

There’s a question about having Ff be zero at the endpoints ±p/2 as part of the definition. For the fol-
lowing discussion on sampling and interpolation, it’s easiest to assume this is the case, and treat separately
some special cases when it isn’t. For those who want to know more, read the next paragraph.

Some technical remarks If f(t) is an integrable function then Ff(s) is continuous, so if Ff(s) = 0
for all |s| > p/2 then Ff(±p/2) = 0 as well. On the other hand, it’s also common first to define the
support of a function (integrable or not) as the complement of the largest open set on which the function is
identically zero. (This definition can also be given for distributions.) This makes the support closed, being
the complement of an open set. For example, if Ff(s) is identically zero for |s| > p/2, and on no larger
open set, then the support of Ff is the closed interval [−p/2,+p/2]. Thus, with this definition, even if
Ff(±p/2) = 0 the endpoints ±p/2 are included in the support of Ff .

One then says, as an alternate definition, that f is bandlimited if the support of Ff is closed and bounded.
In mathematical terms, a closed, bounded set (in Rn) is said to be compact, and so the shorthand definition
of bandlimited is that Ff has compact support. A typical compact set is a closed interval, like [−p/2,+p/2],
but we could also take finite unions of closed intervals. This definition is probably the one more often given,
but it’s a little more involved to set up, as you’ve just witnessed. Whichever definition of bandlimited one
adopts there are always questions about what happens at the endpoints anyway, as we’ll see.

5.6 Sampling and Interpolation for Bandlimited Signals

We’re about to solve the interpolation problem for bandlimited signals. We’ll show that interpolation is
possible by finding an explicit formula that does the job. Before going through the solution, however, I
want to make a general observation that’s independent of the interpolation problem but is important to it.

It is unphysical to consider a signal as lasting forever in time. A physical signal f(t) is naturally “time-
limited”, meaning that f(t) is identically zero on |t| ≥ q/2 for some q — there just isn’t any signal beyond
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a point. On the other hand, it is very physical to consider a bandlimited signal, one with no frequencies
beyond a certain point, or at least no frequencies that our instruments can register. Well, we can’t have
both, at least not in the ideal world of mathematics. Here is where mathematical description meets physical
expectation — and they disagree. The fact is:

• A signal cannot be both timelimited and bandlimited.

What this means in practice is that there must be inaccuracies in a mathematical model of a phenomenon
that assumes a signal is both timelimited and bandlimited. Such a model can be at best an approximation,
and one has to be prepared to estimate the errors as they may affect measurements and conclusions.

Here’s one argument why the statement is true; I’ll give a more complete proof of a more general statement
in Appendix 1. Suppose f is bandlimited, say Ff(s) is zero for |s| ≥ p/2. Then

Ff = Πp · Ff .

Take the inverse Fourier transform of both sides to obtain

f(t) = p sinc pt ∗ f(t) .

Now sinc pt “goes on forever”; it decays but it has nonzero values all the way out to ±∞. Hence the
convolution with f also goes on forever; it is not timelimited.

sinc as a “convolution identity” There’s an interesting observation that goes along with the argument
we just gave. We’re familiar with δ acting as an “identity element” for convolution, meaning

f ∗ δ = f .

This important property of δ holds for all signals for which the convolution is defined. We’ve just seen
for the more restricted class of bandlimited functions, with spectrum from −p/2 to +p/2, that the sinc
function also has this property:

p sinc pt ∗ f(t) = f(t) .

The Sampling Theorem Ready to solve the interpolation problem? It uses all the important properties
of III, but it goes so fast that you might miss the fun entirely if you read too quickly.

Suppose f(t) is bandlimited with Ff(s) identically zero for |s| ≥ p/2. We periodize Ff using IIIp and then
cut off to get Ff back again:

Ff = Πp(Ff ∗ IIIp) .

This is the crucial equation.
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Now take the inverse Fourier transform:

f(t) = F−1Ff(t) = F−1(Πp(Ff ∗ IIIp))(t)

= F−1Πp(t) ∗ F−1(Ff ∗ IIIp)(t)

(taking F−1 turns multiplication into convolution)

= F−1Πp(t) ∗ (F−1Ff(t) · F−1IIIp(t))
(ditto, except it’s convolution turning into multiplication)

= p sinc pt ∗ (f(t) · 1
p
III1/p(t))

= sinc pt ∗
∞∑

k=−∞
f

(
k

p

)
δ

(
t − k

p

)
(the sampling property of IIIp)

=
∞∑

k=−∞
f

(
k

p

)
sinc pt ∗ δ

(
t − k

p

)

=
∞∑

k=−∞
f

(
k

p

)
sinc p

(
t− k

p

)
(the sifting property of δ)

We’ve just established the classic “Sampling Theorem”, though it might be better to call it the “interpo-
lation theorem”. Here it is as a single statement:

• If f(t) is a signal with Ff(s) identically zero for |s| ≥ p/2 then

f(t) =
∞∑

k=−∞
f

(
k

p

)
sinc p

(
t− k

p

)
.

Some people write the formula as

f(t) =
∞∑

k=−∞
f

(
k

p

)
sinc(pt− k) ,

but I generally prefer to emphasize the sample points

tk =
k

p

and then to write the formula as

f(t) =
∞∑

k=−∞
f(tk) sinc p(t− tk) .

What does the formula do, once again? It computes any value of f in terms of sample values. Here are a
few general comments to keep in mind:

• The sample points are spaced 1/p apart — the reciprocal of the bandwidth.4

4 That sort of reciprocal phenomenon is present again in higher dimensional versions of the sampling formula. This will be a
later topic for us.
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• The formula involves infinitely many sample points — k/p for k = 0,±1,±2, . . . .

So don’t think you’re getting away too cheaply, and realize that any practical implementation can
only involve a finite number of terms in the sum, so will necessarily be an approximation.

◦ Since a bandlimited signal cannot be timelimited we should expect to have to take samples all
the way out to ±∞. However, sampling a bandlimited periodic signal, i.e., a finite Fourier series,
requires only a finite number of samples. We’ll cover this, below.

Put the outline of the argument for the sampling theorem into your head — it’s important. Starting with
a bandlimited signal, there are three parts:

• Periodize the Fourier transform.

• Cut off this periodic function to get back where you started.

• Take the inverse Fourier transform.

Cutting off in the second step, a multiplication, exactly undoes periodizing in the first step, a convolution,
provided that Ff = Πp(Ff ∗ IIIp). But taking the inverse Fourier transform swaps multiplication with
convolution and this is why something nontrivial happens. It’s almost obscene the way this works.

Sampling rates and the Nyquist frequency The bandwidth determines the minimal sampling rate
we can use to reconstruct the signal from its samples. I’d almost say that the bandwidth is the minimal
sampling rate except for the slight ambiguity about where the spectrum starts being identically zero (the
“endpoint problem”). Here’s the way the situation is usually expressed: If the (nonzero) spectrum runs
from −νmax to νmax then we need

sampling rate > 2νmax

to reconstruct the signal from its samples.

The number 2νmax is often called the Nyquist frequency, after Harry Nyquist, God of Sampling, who was
the first engineer to consider these problems for the purpose of communications. There are other names
associated with this circle of ideas, most notably E. Whittaker, a mathematician, and C. Shannon, an all
around genius and founder of Information Theory. The formula as we’ve given it is often referred to as the
Shannon Sampling Theorem.

The derivation of the formula gives us some one-sided freedom, or rather the opportunity to do more work
than we have to. We cannot take p smaller than the length of the interval where Ff is supported, the
bandwidth, but we can take it larger. That is, if p is the bandwidth and q > p we can periodize Ff to
have period q by convolving with IIIq and we still have the fundamental equation

Ff = Πq(Ff ∗ IIIq) .

(Draw a picture.) The derivation can then proceed exactly as above and we get

f(t) =
∞∑

k=−∞
f(τk) sincq(t − τk)

where the sample points are

τk =
k

q
.

These sample points are spaced closer together than the sample points tk = k/p. The sampling rate is
higher than we need. We’re doing more work than we have to.
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5.7 Interpolation a Little More Generally

Effective approximation and interpolation of signals raises a lot of interesting and general questions. One
approach that provides a good framework for many such questions is to bring in orthogonality. It’s very
much analogous to the way we looked at Fourier series.

Interpolation and orthogonality We begin with still another amazing property of sinc functions
— they form an orthonormal collection. Specifically, the family of sinc functions {sinc(t − n) : n =
0,±1,±2, . . .} is orthonormal with respect to the usual inner product on L2(R). Recall that the inner
product is

(f, g) =
∫ ∞

−∞
f(t)g(t)dt .

The calculation to establish the orthonormality property of the sinc functions uses the general Parseval
identity, ∫ ∞

−∞
f(t)g(t)dt =

∫ ∞

−∞
Ff(s)Fg(s)ds .

We then have
∫ ∞

−∞
sinc(t− n) sinc(t−m) dt =

∫ ∞

−∞
(e−2πisnΠ(s)) (e−2πismΠ(s))ds

=
∫ ∞

−∞
e2πis(m−n)Π(s)Π(s) ds =

∫ 1/2

−1/2
e2πis(m−n) ds

From here direct integration will give you that this is 1 when n = m and 0 when n 6= m.

In case you’re fretting over it, the sinc function is in L2(R) and the product of two sinc functions is
integrable. Parseval’s identity holds for functions in L2(R), though we did not establish this.

Now let’s consider bandlimited signals g(t), and to be definite let’s suppose the spectrum is contained in
−1/2 ≤ s ≤ 1/2. Then the Nyquist sampling rate is 1, i.e., we sample at the integer points, and the
interpolation formula takes the form

g(t) =
∞∑

n=−∞
g(n) sinc(t− n) .

Coupled with the result on orthogonality, this formula suggest that the family of sinc functions forms
an orthonormal basis for the space of bandlimited signals with spectrum in [−1/2, 1/2], and that we’re
expressing g(t) in terms of this basis. To see that this really is the case, we interpret the coefficients (the
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sample values g(n)) as the inner product of g(t) with sinc(t − n). We have, again using Parseval,

(g(t), sinc(t− n)) =
∫ ∞

−∞
g(t) sinc(t− n) dt

=
∫ ∞

−∞
Fg(s)F(sinc(t− n)) ds (by Parseval)

=
∫ ∞

−∞
Fg(s)(e−2πisnΠ(s))ds

=
∫ 1/2

−1/2
Fg(s)e2πins ds

=
∫ ∞

−∞
Fg(s)e2πins ds (because g is bandlimited)

= g(n) (by Fourier inversion)

It’s perfect! The interpolation formula says that g(t) is written in terms of an orthonormal basis, and the
coefficient g(n), the n-th sampled value of g(t), is exactly the projection of g(t) onto the n-th basis element:

g(t) =
∞∑

n=−∞
g(n) sinc(t− n) =

∞∑

n=−∞

(
g(t), sinc(t− n)

)
sinc(t− n) .

Lagrange interpolation Certainly for computational questions, going way back, it is desirable to find
reasonably simple approximations of complicated functions, particularly those arising from solutions to
differential equations.5 The classic way to approximate is to interpolate. That is, to find a simple function
that, at least, assumes the same values as the complicated function at a given finite set of points. Curve
fitting, in other words. The classic way to do this is via polynomials. One method, presented here just for
your general background and know-how, is due to Lagrange.

Suppose we have n points t1, t2, . . . , tn. We want a polynomial of degree n− 1 that assumes given values
at the n sample points. (Why degree n − 1?)

For this, we start with an n-th degree polynomial that vanishes exactly at those points. This is given by

p(t) = (t − t1)(t− t2) · · ·(t − tn) .

Next put

pk(t) =
p(t)
t − tk

.

Then pk(t) is a polynomial of degree n − 1; we divide out the factor (t − tk) and so pk(t) vanishes at the
same points as p(t) except at tk . Next consider the quotient

pk(t)
pk(tk)

.

This is again a polynomial of degree n − 1. The key property is that pk(t)/pk(tk) vanishes at the sample
points tj except at the point tk where the value is 1; i.e.,

pk(tj)
pk(tk)

=

{
1 j = k

0 j 6= k

5 The sinc function may not really qualify as an “easy approximation”. How is it computed, really?
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To interpolate a function by a polynomial (to fit a curve through a given set of points) we just scale and
add. That is, suppose we have a function g(t) and we want a polynomial that has values g(t1), g(t2), . . . ,
g(tn) at the points t1, t2, . . . , tn. We get this by forming the sum

p(t) =
n∑

k=1

g(tk)
pk(t)
pk(tk)

.

This does the trick. It is known as the Lagrange Interpolation Polynomial. Remember, unlike the sampling
formula we’re not reconstructing all the values of g(t) from a set of sample values. We’re approximating
g(t) by a polynomial that has the same values as g(t) at a prescribed set of points.

The sinc function is an analog of the pk(t)/pk(tk) for “Fourier interpolation”, if we can call it that. With

sinc t =
sinπt
πt

.

we recall some properties, analogous to the polynomials we built above:

• sinc t = 1 when t = 0

• sinc t = 0 at nonzero integer points t = ±1,±2, . . . .

Now shift this and consider
sinc(t− k) =

sinπ(t− k)
π(t− k)

.

This has the value 1 at t = k and is zero at the other integers.

Suppose we have our signal g(t) and the sample points . . . , g(−2), g(−1), g(0), g(1), g(2), . . . . So, again,
we’re sampling at evenly spaced points, and we’ve taken the sampling rate to be 1 just to simplify. To
interpolate these values we would then form the sum

∞∑

n=−∞
g(k) sinc(t− k) .

There it is again — the general interpolation formula. In the case that g(t) is bandlimited (bandwidth 1
in this example) we know we recover all values of g(t) from the sample values.

5.8 Finite Sampling for a Bandlimited Periodic Signal

We started this whole discussion of sampling and interpolation by arguing that one ought to be able to
interpolate the values of a finite sum of sinusoids from knowledge of a finite number of samples. Let’s see
how this works out, but rather than starting from scratch let’s use what we’ve learned about sampling for
general bandlimited signals.

As always, it’s best to work with the complex form of a sum of sinusoids, so we consider a real signal given
by

f(t) =
N∑

k=−N

cke
2πikt/q, c−k = ck .

f(t) is periodic of period q. Recall that c−k = ck. Some of the coefficients may be zero, but we assume
that cN 6= 0.

There are 2N + 1 terms in the sum (don’t forget k = 0) and it should take 2N + 1 sampled values over
one period to determine f(t) completely. You might think it would take twice this many sampled values
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because the values of f(t) are real and we have to determine complex coefficients. But remember that
c−k = ck, so if we know ck we know c−k. Think of the 2N + 1 sample values as enough information to
determine the real number c0 and the N complex numbers c1, c2, . . . , cN .

The Fourier transform of f is

Ff(s) =
N∑

k=−N

ckδ

(
s− k

q

)

and the spectrum goes from −N/q to N/q. The sampling formula applies to f(t), and we can write an
equation of the form

f(t) =
∞∑

k=−∞
f(tk) sinc p(t− tk) ,

but it’s a question of what to take for the sampling rate, and hence how to space the sample points.

We want to make use of the known periodicity of f(t). If the sample points tk are a fraction of a period
apart, say q/M for an M to be determined, then the values f(tk) with tk = kq/M , k = 0,±1,±2, . . . will
repeat after M samples. We’ll see how this collapses the interpolation formula.

To find the right sampling rate, p, think about the derivation of the sampling formula, the first step
being: “periodize Ff”. The Fourier transform Ff is a bunch of δ’s spaced 1/q apart (and scaled by the
coefficients ck). The natural periodization of Ff is to keep the spacing 1/q in the periodized version,
essentially making the periodized Ff a scaled version of III1/q. We do this by convolving Ff with IIIp

where p/2 is the midpoint between N/q, the last point in the spectrum of Ff , and the point (N + 1)/q,
which is the next point 1/q away. Here’s a picture.

1

0 1/
q
 p/2
N/q-1/
q
-p/2
-
N
/
q


(N+1)/
q

-(
N
+1)/
q


Thus we find p from
p

2
=

1
2

(
N

q
+
N + 1
q

)
=

(2N + 1)
2q

, or p =
2N + 1

q
.

We periodize Ff by IIIp (draw yourself a picture of this!), cut off by Πp, then take the inverse Fourier
transform. The sampling formula back in the time domain is

f(t) =
∞∑

k=−∞
f(tk) sinc p(t− tk)

with
tk =

k

p
.
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With our particular choice of p let’s now see how the q-periodicity of f(t) comes into play. Write

M = 2N + 1 ,

so that
tk =

k

p
=
kq

M
.

Then, to repeat what we said earlier, the sample points are spaced a fraction of a period apart, q/M , and
after f(t0), f(t1), . . . , f(tM−1) the sample values repeat, e.g., f(tM ) = f(t0), f(tM+1) = f(t1) and so on.
More succinctly,

tk+k′M = tk + k′q ,

and so
f(tk+k′M) = f(tk + k′q) = f(tk) ,

for any k and k′. Using this periodicity of the coefficients in the sampling formula, the single sampling
sum splits into M sums as:

∞∑

k=−∞
f(tk) sinc p(t− tk)

= f(t0)
∞∑

m=−∞
sinc(pt−mM) + f(t1)

∞∑

m=−∞
sinc(pt− (1 +mM)) +

f(t2)
∞∑

m=−∞
sinc(pt− (2 +mM)) + · · ·+ f(tM−1)

∞∑

m=−∞
sinc(pt− (M − 1 +mM))

Those sums of sincs on the right are periodizations of sinc pt and, remarkably, they have a simple closed
form expression. The k-th sum is

∞∑

m=−∞
sinc(pt− k −mM) = sinc(pt− k) ∗ IIIM/p(t) =

sinc(pt− k)
sinc( 1

M (pt− k))
=

sinc(p(t− tk))
sinc(1

q (t− tk))
.

(I’ll give a derivation of this at the end of this section.) Using these identities, we find that the sampling
formula to interpolate

f(t) =
N∑

k=−N

cke
2πikt/q

from 2N + 1 = M sampled values is

f(t) =
2N∑

k=0

f(tk)
sinc(p(t− tk))
sinc(1

q (t− tk))
, where p =

2N + 1
q

, tk =
k

p
=

kq

2N + 1
.

This is the “finite sampling theorem” for periodic functions.

It might also be helpful to write the sampling formula in terms of frequencies. Thus, if the lowest frequency
is νmin = 1/q and the highest frequency is νmax = Nνmin then

f(t) =
2N∑

k=0

f(tk)
sinc((2νmax + νmin)(t− tk))

sinc(νmin(t− tk))
, where tk =

kq

2N + 1
.
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The sampling rate is
sampling rate = 2νmax + νmin .

Compare this to
sampling rate > 2νmax

for a general bandlimited function.

Here’s a simple example of the formula. Take f(t) = cos 2πt. There’s only one frequency, and νmin =
νmax = 1. Then N = 1, the sampling rate is 3 and the sample points are t0 = 0, t1 = 1/3, and t2 = 2/3.
The formula says

cos 2πt =
sinc 3t
sinc t

+ cos
(2π

3

) sinc(3(t− 1
3))

sinc(t− 1
3)

+ cos
(4π

3

) sinc(3(t− 2
3))

sinc(t− 2
3)

.

Does this really work? I’m certainly not going to plow through the trig identities needed to check it!
However, here’s a plot of the right hand side.

Any questions? Ever thought you’d see such a complicated way of writing cos 2πt?

Periodizing sinc Functions In applying the general sampling theorem to the special case of a periodic
signal, we wound up with sums of sinc functions which we recognized (sharp-eyed observers that we are)
to be periodizations. Then, out of nowhere, came a closed form expression for such periodizations as a
ratio of sinc functions. Here’s where this comes from, and here’s a fairly general result that covers it.

Lemma Let p, q > 0 and let N be the largest integer strictly less than pq/2. Then

∞∑

k=−∞
sinc(pt− kpq) = sinc(pt) ∗ IIIq(t) =

1
pq

sin((2N + 1)πt/q)
sin(πt/q)

.

There’s a version of this lemma with N ≤ pq/2, too, but that’s not important for us. In terms of sinc
functions the formula is

sinc(pt) ∗ IIIq(t) =
2N + 1
pq

sinc((2N + 1)t/q)
sinc(t/q)

.



5.8 Finite Sampling for a Bandlimited Periodic Signal 235

It’s then easy to extend the lemma slightly to include periodizing a shifted sinc function, sinc(pt + b),
namely

∞∑

k=−∞
sinc(pt+ b− kpq) = sinc(pt+ b) ∗ IIIq(t) =

2N + 1
pq

sinc
(

2N+1
pq (pt+ b)

)

sinc
(

1
pq (pt+ b)

)

This is what is needed in the last part of the derivation of the finite sampling formula.

Having written this lemma down so grandly I now have to admit that it’s really only a special case of the
general sampling theorem as we’ve already developed it, though I think it’s fair to say that this is only
“obvious” in retrospect. The fact is that the ratio of sine functions on the right hand side of the equation is
a bandlimited signal (we’ve seen it before, see below) and the sum for sinc(pt) ∗ IIIq(t) is just the sampling
formula applied to that function. One usually thinks of the sampling theorem as going from the signal to
the series of sampled values, but it can also go the other way. This admission notwithstanding, I still want
to go through the derivation, from scratch.

One more thing before we do that. If p = q = 1, so that N = 0, the formula in the lemma gives
∞∑

n=−∞
sinc(t− n) = sinc t ∗ III1(t) = 1 .

Striking. Still don’t believe it? Here’s a plot of
100∑

n=−100

sinc(t− n) .

Note the Gibbs-like phenomena at the edges. This means there’s some issue with what kind of convergence
is involved, which is the last thing I want to worry about.

We proceed with the derivation of the formula

sinc(pt) ∗ IIIq(t) =
1
pq

sin((2N + 1)πt/q)
sin(πt/q)

This will look awfully familiar; indeed I’ll really just be repeating the derivation of the general sampling
formula for this special case. Take the Fourier transform of the convolution:

F(sinc(pt) ∗ IIIq(t)) = F(sinc(pt)) · F IIIq(t) =
1
p
Πp(s) ·

1
q
III1/q(s) =

1
pq

N∑

n=−N

δ(s− n

q
)
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See the figure below.

And now take the inverse Fourier transform:

F−1

(
1
pq

N∑

n=−N

δ
(
s− n

q

))
=

1
pq

N∑

n=−N

e2πint/q =
1
pq

sin(π(2N + 1)t/q))
sin(πt/q)

.

There it is. One reason I wanted to go through this is because it is another occurrence of the sum of
exponentials and the identity

N∑

n=−N

e2πint/q =
sin(π(2N + 1)t/q))

sin(πt/q)
,

which we’ve now seen on at least two other occasions. Reading the equalities backwards we have

F
(

sin(π(2N + 1)t/q))
sin(πt/q)

)
= F

( N∑

n=−N

e2πint/q

)
=

N∑

n=−N

δ
(
s− n

q

)
.

This substantiates the earlier claim that the ratio of sines is bandlimited, and hence we could have appealed
to the sampling formula directly instead of going through the argument we just did. But who would have
guessed it?

5.9 Troubles with Sampling

In Section 5.6 we established a remarkable result on sampling and interpolation for bandlimited functions:

• If f(t) is a bandlimited signal whose Fourier transform is identically zero for |s| ≥ p/2 then

f(t) =
∞∑

k=−∞
f(tk) sinc p(t− tk), where tk =

k

p
.

The bandwidth, a property of the signal in the frequency domain, is the minimal sampling rate and is the
reciprocal of the spacing of the sample points, a construction in the time domain.

We have had our day of triumph. Now, we’ll be visited by troubles. Actually we’ll study just one type of
trouble and the havoc it can wreak with our wondrous formula. This is meant to be a brief encounter. Any
one of these examples can be treated in much greater depth depending on the particular area where they
typically arise, e.g., digital audio and computer music, computer graphics, imaging and image compression.

Before we get into things, here’s a picture of the sampling formula in action. The first figure shows a
function and a set of evenly spaced sample points. The second figure is the function together with the sinc
interpolation based on these samples (plotted as a thinner curve).
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Of course, the fit is not exact because we’re only working with a finite set of samples and the sampling
formula asks for the sample values at all the points k/p, k = 0,±1,±2, . . . . But it’s pretty close.

Think about the trade-offs here. If the signal is timelimited, as in the above graph, then it cannot be
bandlimited and so the sampling theorem doesn’t even apply. At least it doesn’t apply perfectly — it
may be that the spectrum decays to a small enough level that the sinc interpolation is extremely accurate.
On the other hand, if a signal is bandlimited then it cannot be timelimited, but any interpolation for
real-world, computational purposes has to be done with a finite set of samples, so that interpolation must
be only an approximation. These problems are absolutely inevitable. The approaches are via filters, first
low pass filters done before sampling to force a signal to be bandlimited, and then other kinds of filters
(smoothing) following whatever reconstruction is made from the samples. Particular kinds of filters are
designed for particular kinds of signals, e.g., sound or images.

5.9.1 The trouble with undersampling — aliasing

What if we work a little less hard than dictated by the bandwidth. What if we “undersample” a bit and
try to apply the interpolation formula with a little lower sampling rate, with the sample points spaced a
little farther apart. Will the interpolation formula produce “almost” a good fit, good enough to hear or to
see? Maybe yes, maybe no. A disaster is a definite possibility.
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Sampling sines, redux Let’s revisit the question of sampling and interpolation for a simple sine function
and let’s work with an explicit example. Take the signal given by

f(t) = cos 9π
2
t .

The frequency of this signal is 9/4 Hz. If we want to apply our formula for finite sampling we should take
a sampling rate of 2 × (9/4) + 9/4 = 27/4 = 6.75 samples/sec. (If we want to apply the general sampling
formula we can take the sampling rate to be anything > 9/2 = 4.5.) Suppose our sampler is stuck in low
and we can take only one sample every second. Then our samples have values

cos 9π
2
n, n = 0, 1, 2, 3, . . . .

There is another, lower frequency signal that has the same samples. To find it, take away from 9π/2 the
largest multiple of 2π that leaves a remainder of less than π in absolute value (so there’s a spread of less
than 2π — one full period — to the left and right). You’ll see what I mean as the example proceeds. Here
we have

9π
2

= 4π + π
2

Then
cos 9π

2
n = cos

((
4π + π

2

)
n
)

= cos π
2
n .

So the signal f(t) has the same samples at 0, 1, 2, and so on, as the signal

g(t) = cos π
2
t

whose frequency is only 1/4. The two functions are not the same everywhere, but their samples at the
integers are equal.

Here are plots of the original signal f(t) and of f(t) and g(t) plotted together, showing how the curves
match up at the sample points. The functions f(t) and g(t) are called aliases of each other. They are
indistinguishable as far as their sample values go.
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Plot of cos((9*pi/2)*x)



5.9 Troubles with Sampling 239
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Plot of cos((9*pi/2)*x) and cos((pi/2)*x) showing samples

You have no doubt seen this phenomenon illustrated with a strobe light flashing on and off on a moving
fan, for example. Explain that illustration to yourself.

Now let’s analyze this example in the frequency domain, essentially repeating the derivation of the sampling
formula for this particular function at the particular sampling rate of 1 Hz. The Fourier transform of
f(t) = cos 9πt/2 is

Ff(s) = 1
2

(
δ
(
s − 9

4

)
+ δ

(
s+ 9

4

))
.

To “sample at p = 1Hz” means, first off, that in the frequency domain we:

• Periodize Ff by III1

• Cut off by Π1

After that we take the inverse Fourier transform and, by definition, this gives the interpolation to f(t)
using the sample points f(0), f(±1), f(±2), . . . . The question is whether this interpolation gives back f(t)
— we know it doesn’t, but what goes wrong?

The Fourier transform of cos 9πt/2 looks like
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For the periodization step we have by direct calculation,

Ff(s) ∗ III1(s) = 1
2

[
δ
(
s − 9

4

)
+ δ

(
s + 9

4

)]
∗
∞∑

k=−∞
δ(s− k)

= 1
2

∞∑

k=−∞

(
δ
(
s− 9

4

)
∗ δ(s− k) + δ

(
s + 9

4

)
∗ δ(s− k)

)

= 1
2

∞∑

k=−∞

(
δ
(
s− 9

4 − k
)

+ δ
(
s+ 9

4 − k
))

(remember the formula δa ∗ δb = δa+b)

Multiplying by Π1 cuts off outside (−1/2,+1/2), and we get δ’s within −1/2 < s < 1/2 if, working
separately with δ

(
s − 9

4 − k
)

and δ
(
s+ 9

4 − k
)
, we have:

−1
2 < −9

4 − k < 1
2 −1

2 <
9
4 − k < 1

2

7
4 < −k < 11

4 −11
4 < k < −7

4

−11
4 < k < −7

4
7
4 < k < 11

4

Thus we get δ’s within −1/2 < s < 1/2 if

k = −2 and the term δ
(
s − 9

4 − (−2)
)

= δ
(
s+ 1

4

)
,

and
k = 2 and the term δ

(
s + 9

4 − 2
)

= δ
(
s− 1

4

)
.

All other δ’s in Ff(s) ∗ III1(s) will be outside the range −1/2 < s < 1/2 and so

Π(s)(Ff(s) ∗ III1(s)) = 1
2

(
δ
(
s+ 1

4

)
+ δ

(
s− 1

4

))

We do not have
Π1(Ff ∗ III1) = Ff .

So if we take the inverse Fourier transform of Π1(Ff ∗ III1) we do not get f back. We can take the inverse
Fourier transform of Π1(Ff ∗ III1) anyway, and this produces

F−1
(

1
2

(
δ
(
s− 1

4

)
+ δ

(
s + 1

4

)))
= 1

2(eπit/2 + e−πit/2) = cos π
2
t

There’s the aliased signal!
g(t) = cos π

2
t

Why is g(t) an “alias” of the original signal f(t)? It’s still quite right to think of F−1(Π1(Ff ∗ III1) as
an interpolation based on sampling f(t) at 1 Hz. That’s exactly what it is, it’s just not a good one. The
sampling formula is

F−1(Π1(Ff ∗ III1))(t) = sinc t ∗ (f(t) · III1(t)) = sinc t ∗
∞∑

k=−∞
f(t) δ(t− k)

= sinc t ∗
∞∑

k=−∞
f(k)δ(t− k) =

∞∑

k=−∞
f(k) sinc(t− k) =

∞∑

k=−∞
cos 9πk

2
sinc(t − k) .

But this sum of sincs provided by the sampling formula isn’t f(t) = cos 9π
2 t. It’s g(t) = cos π

2 t (though
you’d never know that just from the formula). Interpolating the samples of f according to the formula at
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the sampling rate of 1 Hz — too low a sampling rate — has not produced f it has produced g, an alias
of f . Cool.

Before we leave this example let’s look a little more at

Ff(s) ∗ III1(s) = 1
2

∞∑

k=−∞

(
δ
(
s− 9

4 − k
)

+ δ
(
s+ 9

4 − k
))
.

Being a convolution with III1 this is periodic of period 1, but, actually, it has a smaller period. To find it,
write

1
2

∞∑

k=−∞

(
δ
(
s− 9

4 − k
)

+ δ
(
s+ 9

4 − k
))

= 1
2

(
III1
(
s − 9

4

)
+ III1

(
s+ 9

4

))

= 1
2

(
III1
(
s − 2 − 1

4

)
+ III1

(
s + 2 + 1

4

))

= 1
2

(
III1
(
s − 1

4

)
+ III1

(
s+ 1

4

))

(because III1 is periodic of period 1)

This last expression is periodic of period 1/2, for

1
2

(
III1
(
s− 1

4 + 1
2

)
+ III1

(
s + 1

4 + 1
2

))
= 1

2

(
III1
(
s + 1

4

)
+ III1

(
s+ 3

4

))

= 1
2

(
III1
(
s + 1

4

)
+ III1

(
s+ 1 − 1

4

))

= 1
2

(
III1
(
s + 1

4

)
+ III1

(
s− 1

4

))

(using the periodicity of III1)

You can also see the “reduced” periodicity of (1/2)(III(s − 9/4) + III(s + 9/4)) graphically from the way
III1(s − 9/4) and III1(s+ 9/4) line up, but this is a little trickier. Here’s a plot of

1
2

8∑

k=−8

δ
(
s− k − 9

4

)
.

Here’s a plot of

1
2

8∑

k=−8

δ
(
s− k + 9

4

)
.
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Here’s a plot of the sum of the two:

You see the periodicity starting to show up, but it’s only there completely when we take the sum of the
two, full, shifted III’s.

I encourage you to work with cos 9π/2 in the frequency domain using other sampling rates — see what
periodizations look like and what happens when you cut off.

5.9.2 Trouble at the endpoints?

When talking about the technical definition of what it means for a signal to be bandlimited I mentioned
“the endpoint problem”, whether or not the Fourier transform is zero there, and how this sometimes
requires special consideration. Here’s what I had in mind. Take two very simple signals,

f(t) = sin 2πt, and g(t) = cos 2πt ,

each of period 1. The Fourier transforms are

Ff(s) =
1
2i

(δ(s− 1)− δ(s+ 1)) and Fg(s) =
1
2

(δ(s− 1) + δ(s+ 1)) .

The bandwidth is 2 for each signal and the Fourier transforms are not zero at the endpoints ±p/2 = ±1.

If we apply the sampling formula with p = 2 to sin 2πt we get the upsetting news that

sin 2πt =
∞∑

k=−∞
sin 2πk

2
sinc(2t− k) =

∞∑

k=−∞
sinkπ sinc(2t− k) = 0 .

On the other hand, for cos 2πt the formula gives, again with p = 2,

cos 2πt =
∞∑

k=−∞
cos 2πk

2
sinc(2t− k)

=
∞∑

k=−∞
cos kπ sinc(2t− k) =

∞∑

k=−∞
sinc(2t− 2k) −

∞∑

k=−∞
sinc(2t− 2k − 1) ,

which we might like to believe — at least both the series of sinc functions have period 1. Here’s a plot of

50∑

k=−50

coskπ sinc(2t− k)

for some further encouragement.
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It’s easy to see what goes wrong with the sampling formula in the example of sin 2πt. The first step in the
derivation is to periodize the Fourier transform, and for sin 2πt this results in

Ff ∗ III2 =
1
2i

(δ1 − δ−1) ∗
∞∑

k=−∞
δ2k

=
1
2i

∞∑

k=−∞
(δ2k+1 − δ2k−1) = 0

because the series telescopes and the terms cancel. (I’m using the notation δa = δ(t − a) here.)

For cos 2πt we find something different:

Fg ∗ III2 =
1
2
(δ1 + δ−1) ∗

∞∑

k=−∞
δ2k

=
1
2

∞∑

k=−∞
(δ2k+1 + δ2k−1) =

∞∑

k=−∞
δ2k+1

because the series telescopes and the terms add. So far so good, but is it true that Fg = Π2(Fg ∗ III2) as
needed in the second step of the derivation of the sampling formula? We are asking whether

Π2 · III2n+1 = Π2 ·
∞∑

n=−∞
δ2n+1 = 1

2(δ1 + δ−1) ,

This is correct — cutting off a δ “at the edge” by a Π results in half the δ, as in the above. Stated generally,

Π1δ1/2 = 1
2δ1/2 .

This property of cutting off δ’s requires some extra justification and we won’t go into it. But it works.

I chose sin 2πt and cos 2πt as simple examples illustrating the problems with the sampling rate right at the
bandwidth. This is the extreme case. The signal sin 2πt is aliased to zero while cos 2πt is reconstructed
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without a problem.6 I’m hesitant to formulate a general principle here. I think it’s best to say, as I did
earlier, that any particular “endpoint problem” should call for special considerations.

Aliasing in general Aliasing is the “natural phenomenon” associated with the sampling formula. “Alias-
ing” is a somewhat generic term that refers to the following situation. Let f(t) be a given signal. We sample
f(t) at a rate q samples/sec and write down the sampling series based on the sample values f(tk), tk = k/q:

g(t) =
∞∑

k=−∞
f(tk) sincq(t − tk) .

I’m calling this signal g because, while the series produces some signal, if the sampling rate q is too slow
(less than the bandwidth) it will not be the original signal f . However, remember that the sinc function
satisfies

sinc q(tj − tk) =
sin qπ(tj − tk)
qπ(tj − tk)

=
sinπ(j − k)
π(j − k)

(using tj =
j

q
, tk =

k

q
)

=

{
1 j = k

0 j 6= k

and hence g(t) does have the same sample values as f(t):

g(tj) =
∞∑

k=−∞
f(tk) sinc q(tj − tk) = f(tj) .

In this case we say that f and g are aliases. They cannot be distinguished based on their sampled values
at the points tk = k/q.

We saw some examples of how aliasing comes about for a signal of a single frequency. How does it come
about in general? Just as we analyzed the phenomenon in the preceding examples, it’s best to understand
aliasing in general as a breakdown in the derivation of the sampling formula.

Here’s what goes wrong if the sampling rate q is too low. Given a signal f(t) the first step is to periodize
Ff by convolving it with IIIq. To say the sampling rate is too slow is to say that q is less than the
bandwidth, so here’s a picture of the Fourier transform Ff of a generic signal and a superimposed IIIq —
no convolution yet, just Ff and IIIq. The arrows are spaced q apart. The bandwidth is about 4q (about 4
arrows worth).

6 As an exercise, you can show that the result produced for the latter by the interpolation formula works:
∞X

k=−∞

sinc(2t − 2k) −
∞X

k=−∞

sinc(2t − 2k − 1) = cos 2πt, really .

You can apply the sinc periodization lemma from the previous lecture.
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Now

(Ff ∗ IIIq)(s) =
∞∑

k=−∞
Ff(s− kq)

and here’s a plot of Ff(s+ 2q), Ff(s+ q), Ff(s), Ff(s− q), Ff(s− 2q).

Here’s a plot of the sum:

Finally, here’s a plot of the cut-off Πq(Ff ∗ IIIq):
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That’s right, it looks pretty much like Πq itself, because for −q/2 < s < q/2 the convolution Ff ∗ IIIq is
pretty much equal to 1. It sure doesn’t look like the original Ff . We sure don’t have

Ff = Πq(Ff ∗ IIIq) ,

so taking the inverse Fourier transform sure isn’t going to give back f . (It will give something that looks
more like q sinc qt, in fact.)

What went wrong? You saw it in one of the pictures, above. See that little tail of Ff roughly between the
δ’s at ±q and ±2q. Parts of that tail get shifted into the interval between −q/2 and q/2 by convolving Ff
with shifted δ’s, and convolving Ff with IIIq adds up all those shifts. This is how aliasing happens.

Just so you have another picture of when sampling works, here’s Ff with IIIp superimposed where p is the
bandwidth. (Remember, the support of Ff is between −p/2 and +p/2 — that’s ±p over 2 — while the
δ’s in IIIp are spaced p apart:

And here’s the convolution Ff ∗ IIIp:

Cutting this off by Πp will give back Ff . Taking the inverse Fourier transform will give back f in terms
of its sampling series.

5.10 Appendix: How Special is III?

I’d like to elaborate on III as a kind of “fundamental object” in discussing periodicity. To begin with, let’s
show:
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• If S is a periodic, tempered distribution of period 1 with FS = S then S = cIII for a constant c ∈ R.

The argument goes like this. First we observe that S is even, for

FS− = F−1S = S = FS ,

whence
S− = S .

Now expand S in a Fourier series

S =
∞∑

n=−∞
cne

2πint .

This is perfectly legit for periodic tempered distributions. Since S is even the coefficients cn are real, and
moreover c−n = cn. Using FS = S we may write

∞∑

n=−∞
cne

2πint = S = FS =
∞∑

n=−∞
cnδn .

We’ll prove by induction that
cn = c0 for all n ≥ 0 ,

and hence that

S = c0

∞∑

n=−∞
δn = c0III1 .

The assertion is trivial for n = 0. Suppose it has been proved for n ≤ N − 1. Let p = 2N + 1 and consider
the cut-off ΠpFS. Then on the one hand

ΠpFS =
N−1∑

n=−(N−1)

cnδn + (cNδN + c−N δ−N ) = c0

N−1∑

n=−(N−1)

δn + cN(δN + δ−N )

using the induction hypothesis. On the other hand,

ΠpFS = ΠpS =
∞∑

n=−∞
cnΠpe

2πins.

Integrate both sides from −∞ to ∞ (or pair with an appropriate test function — however you’d like to
say it.) This results in

(2N − 1)c0 + 2cN =
∞∑

n=−∞
cn

∫ N+ 1
2

−N− 1
2

e2πins ds = (2N + 1)c0 = (2N − 1)c0 + 2c0 .

Thus
cN = c0 ,

completing the induction.
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Remark The hypothesis that the period is 1 is necessary, since III(2x)+ 1
2 III(x/2) is periodic of period

two and is its own Fourier transform. (In general, if f is even, then f + Ff is its own Fourier transform.)

The preceding result coupled with the existence result F III = III provided by the Poisson summation
formula, and with a normalization tacked on, results in:

Theorem There is exactly one periodic, tempered distribution of period 1 that is equal to
its Fourier transform and has Fourier coefficient c0 = 1 .

This is one of those happy “there is exactly one of these” theorems that indicate what one might take to
be the essential building blocks of a subject. It’s a little late in the day to decide to base all discussion of
periodic functions on III, but there might be some things to do.

5.11 Appendix: Timelimited vs. Bandlimited Signals

Here’s a more careful treatment of the result that a bandlimited signal cannot be timelimited. We’ll
actually prove a more general statement and perhaps I should have said that no interesting signal can be
both timelimited and bandlimited, because here’s what we’ll show precisely:

• Suppose f(t) is a bandlimited signal. If there is some interval a < t < b on which f(t) is identically
zero, then f(t) is identically zero for all t.

This is a tricky argument. f is bandlimited so Ff(s) is zero, say, for |s| ≥ p/2. The Fourier inversion
formula says

f(t) =
∫ ∞

−∞
Ff(s)e2πist ds =

∫ p/2

−p/2
Ff(s)e2πist ds .

(We assume the signal is such that Fourier inversion holds. You can take f to be a Schwartz function, but
some more general signals will do.) Suppose f(t) is zero for a < t < b. Then for t in this range,

∫ p/2

−p/2
Ff(s)e2πist ds = 0 .

Differentiate with respect to t under the integral. If we do this n-times we get

0 =
∫ p/2

−p/2
Ff(s)(2πis)ne2πist ds = (2πi)n

∫ p/2

−p/2
Ff(s)sne2πist ds ,

so that ∫ p/2

−p/2
Ff(s)sne2πist ds = 0 .

Again, this holds for all t with a < t < b; pick one, say t0. Then

∫ p/2

−p/2
Ff(s)sne2πist0 ds = 0 .
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But now for any t (anywhere, not just between a and b) we can write

f(t) =
∫ p/2

−p/2
Ff(s)e2πist ds =

∫ p/2

−p/2
Ff(s)e2πis(t−t0)e2πist0 ds

=
∫ p/2

−p/2

∞∑

n=0

(2πi(t − t0))n

n!
sne2πist0Ff(s) ds

(using the Taylor series expansion for e2πis(t−t0) )

=
∞∑

n=0

(2πi(t − t0))n

n!

∫ p/2

−p/2
sne2πist0Ff(s) ds =

∞∑

n=0

(2πi(t − t0))n

n!
0 = 0 .

Hence f(t) is zero for all t.

The same argument mutatis mutandis will show:

• If f(t) is timelimited and if Ff(s) is identically zero on any interval a < s < b then Ff(s) is identically
zero for all s.

Then f(t) is identically zero, too, by Fourier inversions.

Remark 1, for eager seekers of knowledge This bandlimited vs. timelimited result is often proved by
establishing a relationship between timelimited signals and analytic functions (of a complex variable), and
then appealing to results from the theory of analytic functions. That connection opens up an important
direction for applications of the Fourier transform, but we can’t go there and the direct argument we just
gave makes this approach unnecessary.

Remark 2, for overwrought math students and careful engineers Where in the preceding argu-
ment did we use that p <∞? It’s needed in switching integration and summation, in the line

∫ p/2

−p/2

∞∑

n=0

(2πi(t − t0))n

n!
sne2πist0Ff(s) ds =

∞∑

n=0

(2πi(t − t0))n

n!

∫ p/2

−p/2
sne2πist0Ff(s) ds

The theorems that tell us “the integral of the sum is the sum of the integral” require as an essential
hypothesis that the series converges uniformly. “Uniformly” means, loosely, that if we plug a particular
value into the converging series we can estimate the rate at which the series converges independent of that
particular value.7 In the sum-and-integral expression, above, the variable s ranges over a finite interval,
from −p/2 to +p/2. Over such a finite interval the series for the exponential converges uniformly, essentially
because the terms can only get so big — so they can be estimated uniformly — when s can only get so
big. We can switch integration and summation in this case. If, however, we had to work with

∫ ∞

−∞

∞∑

n=0

(2πi(t − t0))n

n!
sne2πist0Ff(s) ds ,

i.e., if we did not have the assumption of bandlimitedness, then we could not make uniform estimates for
the convergence of the series and switching integration and summation is not justified.

It’s not only unjustified, it’s really wrong. If we could drop the assumption that the signal is bandlimited
we’d be “proving” the statement: If f(t) is identically zero on an interval then it’s identically zero. Think

7 We can make “uniform” estimates, in other words. We saw this sort of thing in the notes on convergence of Fourier series.
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of the implications of such a dramatic statement. In a phone conversation if you paused for a few seconds
to collect your thoughts your signal would be identically zero on that interval of time, and therefore you
would have nothing to say at all, ever again. Be careful.8

8 However, if f(t) is a real analytic signal, that is if it is given by a convergent power series at each point in its domain, then
the implication: “f(t) identically zero on an interval ⇒ f(t) identically zero everywhere” is true.



Chapter 6

Discrete Fourier Transform

The Modern World

According to some, the modern world began in 1965 when J. Cooley and J. Tukey published their account
of an efficient method for numerical computation of the Fourier transform.1 According to some others, the
method was known to Gauss in the mid 1800s; the idea that lies at the heart of the algorithm is clearly
present in an unpublished paper that appeared posthumously in 1866. Take your pick.

Whatever the history, the present and future demands are that we process continuous signals by discrete
methods. Computers and digital processing systems can work with finite sums only. To turn the continuous
into the discrete and finite requires that a signal be both time-limited and band-limited, something we
know cannot be true, and that we take a finite number of samples, something we know cannot suffice. But
it works. At least such approximations work to the extent that a large fraction of the world’s economy
depends upon them, and that’s not a bad measure of success.

Some would argue that one shouldn’t think in terms of “turning the continuous into the discrete”, but
rather that measurements and data in the real world come to us in discrete form, and that’s how we
should understand the world and work with it. Period. For some, “discrete” versus “continuous” rises to
the level of a religious war, and this battle can be fought out in the different approaches to the discrete
Fourier transform. I’m taking sides, at least initially, in favor of “from continuous to discrete” as a way
of motivating the definition. For one thing, we have built up a lot of intuition and understanding for the
Fourier transform, its properties, and its uses, and I hope some of that intuition can transfer as we now
work with the discrete Fourier transform. My choice for now is to make the discrete look as similar to the
continuous as possible.

6.1 From Continuous to Discrete

Start with a signal f(t) and its Fourier transform Ff(s), both functions of a continuous variable. We want
to:

• Find a discrete version of f(t) that’s a reasonable approximation of f(t).

• Find a discrete version of Ff(s) that’s a reasonable approximation of Ff(s).

1 Incidentally, Tukey is also credited with coining the term “bit” as an abbreviation for “binary digit” — how about that for
immortality!
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• Find a way that the discrete version of Ff(s) is related to the discrete version of f(t) that’s a
reasonable approximation to the way Ff(s) is related to f(t).

Good things to try for, but it’s not quite straightforward. Here’s the setup.

We suppose that f(t) is zero outside of 0 ≤ t ≤ L. We also suppose that the Fourier transform Ff(s) is
zero, or effectively zero (beyond our ability to measure, negligible energy, whatever) outside of 0 < s < 2B.
I’m taking the support of Ff to be the interval from 0 to 2B instead of −B to B because it will make the
initial indexing of the sample points easier; this will not be an issue in the end. We’ll also take L and B to
both be integers so we don’t have to round up or down in any of the considerations that follow; you can
think of that as our first concession to the discrete.

Thus we are regarding f(t) as both time-limited and band-limited, with the knowledge that this can only
be approximately true. Remember, however, that we’re ultimately going to come up with a definition of a
discrete Fourier transform that will make sense in and of itself regardless of these shaky initial assumptions.
After the definition is written down we could erase all that came before it, or merely cast a brief glance
backwards from the discrete to the continuous with a few comments on how the former approximates the
latter. Many treatments of the discrete Fourier transform that start with the discrete and stay with the
discrete do just that. We’re trying not to do that.

According to the sampling theorem (misapplied here, but play along), we can reconstruct f(t) perfectly
from its samples if we sample at the rate 2B samples per second. Since f(t) is defined on an interval of
length L and the samples are 1/2B apart, that means that we want a total of

N =
L

1/2B
= 2BL (note that N is therefore even)

evenly spaced samples, at the points

t0 = 0, t1 =
1

2B
, t2 =

2
2B

, . . ., tN−1 =
N − 1
2B

.

To know the values f(tk) is to know f(t), reasonably well. Thus we state:

• The discrete version of f(t) is the list of sampled values f(t0), f(t1), . . . , f(tN−1).

Next, represent the discrete version of f(t) (the list of sampled values) “continuously” with the aid of a
finite impulse train (a finite III-function) at the sample points:

N−1∑

n=0

δ(t− tn)

that is,

fdiscrete(t) = f(t)
N−1∑

n=0

δ(t− tn) =
N−1∑

n=0

f(tn)δ(t− tn) .

This is what we have considered previously as the sampled form of f(t). The Fourier transform of fdiscrete

is

Ffdiscrete(s) =
N−1∑

n=0

f(tn)Fδ(t− tn) =
N−1∑

n=0

f(tn)e−2πistn .
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This is close to what we want — it’s the continuous Fourier transform of the sampled form of f(t).

Now let’s change perspective and look at things in the frequency domain. The function f(t) is limited to
0 ≤ t ≤ L, and this determines a sampling rate for reconstructing Ff(s) from its samples in the frequency
domain. The sampling rate is 1/L. (Not 2/L: think about how you would derive the sampling formula
when the function is nonzero over an interval from 0 to p/2 rather than −p/2 to +p/2.) We sample Ff(s)
over the interval from 0 to 2B in the frequency domain at points spaced 1/L apart. The number of sample
points is

2B
1/L

= 2BL = N

the same number of sample points as for f(t). The sample points for Ff(s) are of the form m/L, and
there are N of them:

s0 = 0, s1 =
1
L
, . . . , sN−1 =

N − 1
L

.

The discrete version of Ff(s) that we take is not Ff(s) evaluated at these sample points sm. Rather, it
is Ffdiscrete(s) evaluated at the sample points. We base the approximation of Ff(s) on the discrete version
of f(t). To ease the notation write F (s) for Ffdiscrete(s). Then:

• The discrete version of Ff(s) is the list of values

F (s0) =
N−1∑

n=0

f(tn)e−2πis0tn , F (s1) =
N−1∑

n=0

f(tn)e−2πis1tn , . . . , F (sN−1) =
N−1∑

n=0

f(tn)e−2πisN−1tn .

By this definition, we now have a way of going from the discrete version of f(t) to the discrete version of
Ff(s), namely,

F (sm) =
N−1∑

n=0

f(tn)e−2πismtn .

These sums, one for each m from m = 0 to m = N − 1, are supposed to be an approximation to the
Fourier transform going from f(t) to Ff(s). In what sense is this a discrete approximation to the Fourier
transform? Here’s one way of looking at it. Since f(t) is timelimited to 0 ≤ t ≤ L, we have

Ff(s) =
∫ L

0
e−2πist f(t) dt .

Thus at the sample points sm,

Ff(sm) =
∫ L

0
e−2πismt f(t) dt .

and to know the values Ff(sm) is to know Ff(s) reasonably well. Now use the sample points tk for f(t)
to write a Riemann sum approximation for the integral. The spacing ∆t of the points is 1/2B, so

Ff(sm) =
∫ L

0

f(t)e−2πisnt dt ≈
N−1∑

n=0

f(tn)e−2πismtn∆t =
1

2B

N−1∑

n=0

f(tn)e−2πismtn =
1

2B
F (sm) .

This is the final point:

• Up to the factor 1/2B, the values F (sm) provide an approximation to the values Ff(sm).
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Writing a Riemann sum as an approximation to the integral defining Ff(sm) essentially discretizes the
integral, and this is an alternate way of getting to the expression for F (sn), up to the factor 2B. We
short-circuited this route by working directly with Ffdiscrete(s).

You may find the “up to the factor 1/2B” unfortunate in this part of the discussion, but it’s in the nature of
the subject. In fact, back in Chapter 2 we encountered a similar kind of “up to the factor . . . ” phenomenon
when we obtained the Fourier transform as a limit of the Fourier coefficients for a Fourier series.

We are almost ready for a definition, but there’s one final comment to clear the way for that. Use the
definition of the sample points

tn =
n

2B
, sm =

m

L
to write

F (sm) =
N−1∑

n=0

f(tn)e−2πismtn =
N−1∑

n=0

f(tn)e−2πinm/2BL =
N−1∑

n=0

f(tn)e−2πinm/N .

This form of the exponential, e−2πinm/N , puts more emphasis on the index of the inputs (n) and outputs
(m) and on the number of points (N) and “hides” the sample points themselves. That’s the last step
toward the discrete.

6.2 The Discrete Fourier Transform (DFT)

This development in the previous section suggests a general definition. Instead of thinking in terms of
sampled values of a continuous signal and sampled value of its Fourier transform, we may think of the
discrete Fourier transform as an operation that accepts as input a list of N numbers and returns as output
a list of N numbers.

There are actually a number of things to say about the inputs and outputs of this operation, and we won’t
try to say them all at once. For the present, suffice it to say that we’ll generally use the vector and “discrete
signal” notation and write N -tuples as

f = (f [0], f [1], . . . , f [N − 1)]) .

I’ll write vectors in boldface. If you want to use another notation, that’s fine, but pick something — for
much of this chapter you really will need a notation to distinguish a vector from a scalar. Note that the
indexing goes from 0 to N − 1 rather than from 1 to N . This is one of the things we’ll comment on later.

Here’s the definition of the discrete Fourier transform.

• Let f = (f [0], f [1], . . . , f [N − 1]) be an N -tuple. The discrete Fourier transform (DFT) of f is the
N -tuple F = (F[0],F[1], . . . ,F[N − 1]) defined by

F[m] =
N−1∑

n=0

f [n]e−2πimn/N , m = 0, 1, . . . , N − 1 .

It’s perfectly legitimate to let the inputs f [n] be complex numbers, though for applications to signals they’ll
typically be real. The computed values F[m] are complex, being sums of complex exponentials.

6.2.1 Notation and conventions 1

I said that I wanted to set things up to look as much like the continuous case as possible. A little notation
can go a long way here.
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First off, I want to take Matlab seriously. Part of Matlab’s usefulness is to formulate operations and
commands in terms of vectors and to operate componentwise on vectors with many of the ordinary rules
of arithmetic. We’ll do the same here. So, for example, if

x = (x[0], x[1], . . . , x[N − 1]) and y = (y[0],y[1], . . . , y[N − 1])

then, by definition,

x y = (x[0]y[0],x[1]y[1], . . . , x[N − 1]y[N − 1])
(componentwise product of the vectors, not to be confused with the dot product)

x
y

= (
x[0]
y[0]

,
x[1]
y[1]

, . . . ,
x[N − 1]
y[N − 1]

) when the individual quotients make sense

xp = (x[0]p, x[1]p, . . . , x[N − 1]p) when the individual powers make sense

and so on. These operations are all standard in Matlab. We even allow a function of one variable (think
sine or cosine, for example) to operate on a vector componentwise via

f
(
(x[0], x[1], . . . , x[N − 1])

)
=
(
f(x[0]), f(x[1]), . . . , f(x[N − 1])

)
.

We also use the Matlab notation [r : s] for the tuple of numbers (r, r + 1, r + 2, . . . , s) —very useful for
indexing. Finally, we’ll also write

0 = (0, 0, . . . , 0)

for the zero vector.

Vector complex exponential The definition of the discrete Fourier transform — like that of the con-
tinuous Fourier transform — involves a complex exponential. We’ll write

ω = e2πi/N

and occasionally we’ll decorate this to
ωN = e2πi/N

when we want to emphasize the N in a particular formula. Note that

Re ωN = cos 2π/N , ImωN = sin 2π/N .

We have seen ωN in various places in our work. It’s an N -th root of unity, meaning

ωN
N = e2πiN/N = e2πi = 1 .

Then for any integer n
ωNn

N = 1

and in general, for any integers n and k
ωNn+k

N = ωk
N .

This comes up often enough that it’s worth pointing out. Also note that when N is even

ω
N/2
N = e2πiN/2N = eiπ = −1 and hence ω

kN/2
N = (−1)k .

Finally, some people write ωN = e−2πin/N (minus instead of plus in the exponential) and W = e2πin/N . Be
aware of that if you peruse the literature.
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For the discrete Fourier transform, where vectors are naturally involved, it’s helpful to introduce a complex
exponential vector. There are N distinct N -th roots of unity, corresponding to the N powers of ωN :

1 = ω0
N , ω

1
N , ω

2
N , . . . , ω

N−1
N .

We let
ω = (1, ω, ω2, . . . , ωN−1)

be the vector in CN consisting of theN distinct powers of ω. (Drop the subscriptN now — it’s understood.)
Be careful to keep the underline notation here (or whatever notation you like).

The vector real and imaginary parts of ω are

Re ω = cos
(2π

N
[0 : N − 1]

)
, Im ω = sin

(2π

N
[0 : N − 1]

)
.

See how that works:

cos
(2π

N
[0 : N − 1]

)
is short for

(
1, cos

2π

N
, cos

4π

N
, . . . , cos

2π(N − 1)
N

)
.

Also important are the powers of ω. We write

ωk = (1, ωk, ω2k, . . . , ω(N−1)k)

for the vector of k-th powers. Then also

ω−k = (1, ω−k, ω−2k, . . . , ω−(N−1)k) .

Note how we write the components:

ωk [m] = ωkm , ω−k [m] = ω−km .

(You can see why it’s important here to use notations that, while similar, can distinguish a vector from a
scalar.)

Taking powers of ω is cyclic of order N , meaning that

ωN = (1N , e2πiN/N , e4πiN/N , . . . , e2πi(N−1)N/N) = (1, 1, 1, . . . , 1)

For shorthand, we’ll write
1 = (1, 1, . . . , 1)

for the vector of all 1’s. Then, compactly,
ωN = 1 .

and
ωnN = 1 and ωnN+k = ωk

for any integers n and k.

Along with making the discrete case look like the continuous case goes making vector calculations look like
scalar calculations.
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The DFT in vector form Introducing the vector complex exponential allows us to write the formula
defining the discrete Fourier transform in a way, and with a notation, that really looks like a discrete
version of the continuous transform. The DFT is given by (defined by)

F f =
N−1∑

k=0

f [k]ω−k .

I’ve underlined the F to show its vector character. We’ll write F N if we need to call attention to the N .

To emphasize once again its nature, the DFT of a vector is another vector. The components of F f are
the values of F f at the points m = 0, 1, . . . , N − 1:

F f [m] =
N−1∑

k=0

f [k]ω−k [m] =
N−1∑

k=0

f [k]ω−km =
N−1∑

k=0

f [k]e−2πikm/N .

We note one special value:

F f [0] =
N−1∑

k=0

f [k]ω−k [0] =
N−1∑

k=0

f [k]

the sum of the components of the input f . For this reason some people define the DFT with a 1/N in
front, so that the zeroth component of the output is the average of the components of the input, like the
zeroth Fourier coefficient of a periodic function is the average of the function over one period. We’re not
doing this.

The DFT in matrix form The DFT takes vectors to vectors, and it does so linearly. To state this
formally as a property:

F (f 1 + f 2) = F f 1 + F f 2 and F (αf ) = αF f .

Showing this is easy, and make sure you see why it’s easy; e.g.,

F (f 1 + f 2) =
N−1∑

k=0

(f 1 + f 2)[k]ω−k =
N−1∑

k=0

(f 1[k] + f 2[k])ω−k

=
N−1∑

k=0

f 1[k]ω−k +
N−1∑

k=0

f 2[k]ω−k = F f 1 + F f 2 .

As a linear transformation from CN to CN , the DFT, F = F f , is exactly the matrix equation



F [0]
F [1]
F [2]

...
F [N−1]




=




1 1 1 · · · 1
1 ω−1·1 ω−1·2 · · · ω−(N−1)

1 ω−2·1 ω−2·2 · · · ω−2(N−1)

...
...

...
. . .

...
1 ω−(N−1)·1 ω−(N−1)·2 · · · ω−(N−1)2







f [0]
f [1]
f [2]

...
f [N−1]



.

That is, the discrete Fourier transform is the big old N ×N matrix

F =




1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(N−1)

1 ω−2 ω−4 · · · ω−2(N−1)

...
...

...
. . .

...
1 ω−(N−1) ω−2(N−1) · · · ω−(N−1)2



.
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Again notice that we take the indices for f and F to go from 0 to N − 1 instead of from 1 to N . This is
a standard convention in the subject, but it clashes with the conventions of matrix terminology, where for
an N × N matrix we usually write the indices from 1 to N . Tough break, but it seems to be etched in
stone — be careful.

Positive and negative frequencies The heading of this section may seem a little odd, since for F = F f
we index the output F = (F[0],F[1], . . . , F[N−1]), and hence the points in the spectrum, from 0 to N −1
— no negative indices in sight. It will seem less odd when we discuss reindexing, but this requires a little
more preparation. For now, and for use in the example to follow, there is something important to point
out about the values of F f that is analogous to Ff(−s) = Ff(s) in the continuous case when f(t) is real.

Suppose that N is even. (This was the case in our derivation of the formula for the DFT, and it’s often
assumed, though it’s not necessary for the ultimate definition of F .) Suppose also that we consider real
inputs f = (f [0], f [1], . . . , f [N − 1]). Something special happens at the midpoint, N/2, of the spectrum.
We find

F f [N/2] =
N−1∑

k=0

f [k]ω−k [N/2] =
N−1∑

k=0

f [k]ω−kN/2

=
N−1∑

k=0

f [k]e−πik =
N−1∑

k=0

(−1)−k f [k] (using ωN/2 = −1)

The value of the transform at N/2 is F f [N/2] and is an alternating sum of the components of the input
vector f . In particular, F f [N/2] is real.

More than F f [N/2] being real, though, is that the spectrum “splits” at N/2. For a start, look at
F f [(N/2) + 1] and F f [(N/2)− 1]:

F f [
N

2
+ 1] =

N−1∑

k=0

f [k]ω−k [
N

2
+ 1] =

N−1∑

k=0

f [k]ω−kω−Nk/2 =
N−1∑

k=0

f [k]ω−k(−1)−k

F f [
N

2
− 1] =

N−1∑

k=0

f [k]ω−k [
N

2
− 1] =

N−1∑

k=0

f [k]ωkω−Nk/2 =
N−1∑

k=0

f [k]ωk(−1)−k

Comparing the two calculations we see that

F f [
N

2
+ 1] = F f [

N

2
− 1] .

Similarly, we get

F f [
N

2
+ 2] =

N−1∑

k=0

f [k]ω−2k(−1)−k , F f [
N

2
− 2] =

N−1∑

k=0

f [k]ω2k(−1)−k

so that

F f [
N

2
+ 2] = F f [

N

2
− 2] .

This pattern persists down to

F f [1] =
N−1∑

k=0

f [k]ω−k

and

F f [N − 1] =
N−1∑

k=0

f [k]ω−k(N−1) =
N−1∑

k=0

f [k]ωkω−kN =
N−1∑

k=0

f [k]ωk
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i.e., to
F f [1] = F f [N − 1] .

Here’s where it stops; recall that F f [0] is the sum of the components of f .

Because of this result (with an alternate explanation later in this chapter), when the spectrum is indexed
from 0 to N − 1 the convention is to say that the frequencies from m = 1 to m = N/2 − 1 are the
positive frequencies and those from N/2 + 1 to N − 1 are the negative frequencies. Whatever adjectives
one uses, the important upshot is that, for a real input f , all the information in the spectrum is in the
first component F f [0] (the “DC” component, the sum of components of the input), the components
F f [1],F f [2], . . . ,F f [N/2− 1], and the special value F f [N/2] (the alternating sum of the components of
the input). The remaining components of F f are just the complex conjugates of those from 1 to N/2− 1.
As we’ll see, this has practical importance.

6.3 Two Grids, Reciprocally Related

Refer back to our understanding that the DFT finds the sampled Fourier transform of a sampled signal.
We have a grid of points in the time domain and a grid of points in the frequency domain where the discrete
version of the signal and the discrete version of its Fourier transform are known. More precisely, shifting to
the discrete point of view, the values of the signal at the points in the time domain are all we know about
the signal and the values we compute according to the DFT formula are all we know about its transform.

In the time domain the signal is limited to an interval of length L. In the frequency domain the transform
is limited to an interval of length 2B. When you plot the discrete signal and its DFT (or rather, e.g., the
magnitude of its DFT since the DFT is complex), you should (probably) plot over these intervals (but
your software might not give you this for the DFT). The grid points in the time domain are spaced 1/2B
apart. The grid points in the frequency domain are spaced 1/L apart, so note (again) that the spacing in
one domain is determined by properties of the function in the other domain. The two grid spacings are
related to the third quantity in the setup, the number of sample points, N . The equation is

N = 2BL

Any two of these quantities — B, L, or N — determine the third via this relationship. The equation is
often written another way, in terms of the grid spacings. If ∆t = 1/2B is the grid spacing in the time
domain and ∆ν = 1/L is the grid spacing in the frequency domain, then

1
N

= ∆t∆ν .

These two (equivalent) equations are referred to as the reciprocity relations. A thing to put into your head
is that for a fixed number of sample points N making ∆t small means making ∆ν large, and vice versa.

Here’s why all this is important. For a given problem you want to solve — for a given signal you want to
analyze by taking the Fourier transform — you typically either know or choose two of:

• How long the signal lasts, i.e., how long you’re willing to sit there taking measurements — that’s L.

• How many measurements you make — that’s N .

• How often you make a measurement — that’s ∆t.

Once two of these are determined everything else is set.
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6.4 Appendix: Gauss’s Problem

Finally, here’s the problem Gauss considered on representing the orbit of an asteroid by a finite Fourier
series. Gauss was interested in astronomy, as he was in everything else, and occupied himself for a period
in calculating orbits of recently discovered asteroids. This led to two great computational techniques. One
was taken up right away (least squares curve fitting) and the other was forgotten (the algorithm for efficient
computation of Fourier coefficients — the fast Fourier transform — as mentioned above).

It was in calculating the orbit of Pallas that Gauss introduced methods that became the FFT algorithm. He
had twelve data points for the orbit, relating the “ascension” θ, measured in degrees, and the “declination”
X , measured in minutes of arc. It appears from the data that X depends periodically on θ, so the problem
is to interpolate a finite Fourier series based on the twelve samples. Gauss considered a sum of the form

X = f(θ) = a0 +
5∑

k=1

[
ak cos

(
2πkθ
360

)
+ bk sin

(
2πkθ
360

)]
+ a6 cos

(
12πθ
360

)
.

Here’s the data:

θ 0 30 60 90 120 150 180 210 240 270 300 330
X 408 89 −66 10 338 807 1238 1511 1583 1462 1183 804

How to determine the 12 unknown coefficients based on the samples Xn = f(θn)? Want to take a whack
at it? It requires solving 12 linear equations in 12 unknowns, something Gauss could have done by hand.
Nevertheless, he was enough taken by the symmetries inherent in using sines and cosines to devise a
scheme that rearranges the algebra in a way to reduce the total number of steps — essentially introducing
a collection of easier subproblems whose solutions are later recombined to give the desired grand solutions.
That rearrangement is what we’ll talk about later, and I won’t attempt to reconstruct Gauss’s solution.

Here are the coefficients, as found by a modern FFT routine:

k 0 1 2 3 4 5 6
ak 780.6 −411.0 43.4 −4.3 −1.1 0.3 0.1
bk − −720.2 −2.2 5.5 −1.0 −0.3 −

More impressive is the graph, shown in the following figure.
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6.5 Getting to Know Your Discrete Fourier Transform

We introduced the discrete Fourier transform (DFT) as a discrete approximation of the usual Fourier
transform. The DFT takes an N -tuple f = (f [0], f [1], . . . , f [N − 1]) (the input) and returns an N -tuple
F = (F[0],F[1], . . . ,F[N − 1]) (the output) via the formula

F = F f =
N−1∑

k=0

f [k]ω−k

where ω is the vector complex exponential,

ω = (1, ω, ω2, . . . , ωN−1) , where ω = e2πi/N .

Evaluating F f at an index m gives the m-th component of the output

F[m] =
N−1∑

k=0

f [k]ω−km =
N−1∑

k=0

f [k]e−2πikm/N

We also write F as the N ×N matrix,

F =




1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(N−1)

1 ω−2 ω−4 · · · ω−2(N−1)

...
...

...
. . .

...
1 ω−(N−1) ω−2(N−1) · · · ω−(N−1)2



.

The (m,n) entry is just ω−mn where the rows and columns are indexed from 0 to N − 1.

We want to develop some general properties of the DFT, much as we did when we first introduced the
continuous Fourier transform. Most properties of the DFT correspond pretty directly to properties of the
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continuous Fourier transform, though there are differences. You should try to make the most of these
correspondences, if only to decide for yourself when they are close and when they are not. Use what you
know!

Derivations using the DFT are often easier than those for the Fourier transform because there are no
worries about convergence, but discrete derivations can have their own complications. The skills you need
are in manipulating sums, particularly sums of complex exponentials, and in manipulating matrices. In
both instances it’s often a good idea to first calculate a few examples, say for DFTs of size three or four,
to see what the patterns are.2 We’ll find formulas that are interesting and that are very important in
applications.

6.6 Periodicity, Indexing, and Reindexing

Let me begin by highlighting a difference between the discrete and continuous cases rather than a similarity.
The definition of the DFT suggests, even compels, some additional structure to the outputs and inputs.
The output values F[m] are defined initially only for m = 0 to m = N − 1, but their definition as

F[m] =
N−1∑

k=0

f [k]ω−km

implies a periodicity property. Since
ω−k(m+N) = ω−km

we have
N−1∑

k=0

f [k]ω−k(m+N) =
N−1∑

k=0

f [k]ω−km = F[m] .

If we consider the left hand side as the DFT formula producing an output, then that output would be
F[m+N ]. More generally, and by the same kind of calculation, we would have

F[m+ nN ] = F[m]

for any integer n. Thus, instead of just working with F as an N -tuple it’s natural to “extend” it to be a
periodic sequence of periodN . For example, if we start off withN = 4 and the values (F[0],F[1],F[2],F[3])
then, by definition, the periodic extension of F has F[4] = F [0], F[5] = F[1], F[6] = F[2], and so on, and
going in the other direction, F[−1] = F[3], F[−2] = F[2], and so on. In general,

F[p] = F[q] if p− q is a multiple of N , positive or negative.

or put another way
F[p] = F[q] if p ≡ q modN .

We then have the formula

F[m] =
N−1∑

k=0

f [k]ω−km

for all integers m.

Because of these observations, and unless instructed otherwise:

2 One thing to be mindful of in deriving formulas in the general case, in particular when working with sums, is what you
call the “index of summation” (analogous to the “variable of integration”) and not to get it confused or in conflict with other
variables that are in use. Derivations might also involve “changing the variable of summation”, analogous to “changing the
variable of integration”, a procedure that seems easier in the case of integrals than in sums, maybe just because of all the
practice we’ve had with integrals.
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• We will always assume that F is a periodic sequence of period N .

Once we define the inverse DFT it will emerge that an input f to the DFT also extends naturally to be a
periodic sequence of period N . We’ll also assume that, starting now.

• We will always assume that f is a periodic sequence of period N .

So, briefly, we assume that all our discrete signals are periodic. To take an important example, if, according
to this dictum, we consider the vector complex exponential not just as a vector but as a periodic discrete
signal then we can define it simply by

ω[n] = ωn, n an integer.

As for how this differs from the continuous case, we certainly can consider periodicity — that’s what the
subject of Fourier series is all about, after all — but when working with the Fourier transform we don’t have
to consider periodicity. In the discrete case we really do. Some things just don’t work (e.g., convolution)
if we don’t work with periodic inputs and outputs.

If we were developing the DFT from a purely mathematical point of view, we would probably incorporate
periodicity as part of the initial definition, and this is sometimes done. It would make some parts of the
mathematical development a little smoother (though no different in substance), but I think on balance it’s
a mistake. It’s extra baggage early on and can make the tie in with physical applications more awkward.

6.6.1 Notation and conventions 2

Having extended the inputs and outputs to be periodic sequences, it’s mostly a matter of taste, or a
preferred point of view, whether one then wants to think of an input to the DFT as a vector in CN that is
to be “extended periodically”, as a discrete signal f : Z → C that is periodic of period N , where Z stands
for the integers. Each of these viewpoints can be helpful. For example, vectors are helpful if one wants to
think of the DFT as a matrix, or when inner products are involved.

When confusion arises — and it does arise — it usually comes from the vector or N -tuple stance, and from
questions and conventions on how vectors are indexed, whether from 0 to N − 1 or from 1 to N , or other
choices. In fact, indexing and reindexing the components of a DFT is something that just seems to come
up — it certainly comes up in varied implementations of the DFT, and it’s something you have to be able
to handle if you use different packages or program any of these formulas.

The definition of the DFT that we’ve given is pretty standard, and it’s the one we’ll use. One sometimes
finds an alternate definition of the DFT, used especially in imaging problems, where N is assumed to be
even and the index set for both the inputs f and the outputs F is taken to be [−(N/2) + 1 : N/2] =
(−(N/2) + 1,−(N/2) + 2, . . . ,−1, 0, 1, . . . , N/2). The definition of the DFT is then:

F f =
N/2∑

k=−N/2+1

f [k]ω−k or in components F[m] =
N/2∑

k=−N/2+1

f [k]ω−km .

We would be led to this indexing of the inputs and outputs if, in the sampling-based derivation we gave of
the DFT in the previous lecture, we sampled on the time interval from −L/2 to L/2 and on the frequency
interval from −B to B. Then, using the index set [−(N/2) + 1 : N/2], the sample points in the time
domain would be of the form

t−N/2+1 = −L
2

+
1

2B
=

−N/2 + 1
2B

, t−N/2+2 =
−N/2 + 2

2B
, . . ., tN/2 =

−N/2 +N

2B
=
N/2
2B

=
L

2
,
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and in the frequency domain of the form

s−N/2+1 = −B +
1
L

=
−N/2 + 1

L
, s−N/2+2 =

−N/2 + 2
L

, . . . , sN/2 =
−N/2 +N

L
=
N/2
L

= B .

(Maybe you can see why I didn’t want to set things up this way for our first encounter.)

The “new” definition, above, of the DFT is completely equivalent to the first definition because of period-
icity. There’s a phrase one sees that’s supposed to alleviate the tension over this and other similar sorts of
things. It goes something like:

“The DFT can be defined over any set of N consecutive indices.”

What this means most often in practice is that we can write

F f =
p+N−1∑

k=p

f [k]ω−k .

We’ll explain this thoroughly in a later section. It’s tedious, but not difficult. If you think of an input
(or output) f as a periodic discrete signal (something your software package can’t really do) then you
don’t have to worry about “how it’s indexed”. It goes on forever, and any block of N consecutive values,
f [p], f [p + 1], . . . , f [p + N − 1], should be as good as any other because the values of f repeat. You still
have to establish the quoted remark, however, to be assured that finding the DFT gives the same result
on any such block you need. This is essentially a discrete form of the statement for continuous periodic
functions that the Fourier coefficients can be calculated by integrating over any period.

Positive and negative frequencies, again Let’s tie up a loose end and see how periodicity makes
honest negative frequencies correspond to negative frequencies “by convention”. Suppose we have a periodic
input f and output F = F f indexed from −(N/2)+1 to N/2. We would certainly say in this case that the
negative frequencies go from −(N/2)+1 to −1, with corresponding outputs F[−(N/2)+1], F[−(N/2)+2],
. . . F[−1]. Where do these frequencies go if we “reindex” from 0 to N − 1? Using periodicity,

F[−N
2

+ 1] = F[−N
2

+ 1 +N ] = F[
N

2
+ 1]

F[−N
2

+ 2] = F[−N
2

+ 2 +N ] = F[
N

2
+ 2]

and so on up to
F[−1] = F[−1 +N ]

The “honest” negative frequencies at −(N/2) + 1, . . . ,−1, are by periodicity the “negative frequencies by
convention” at N/2 + 1, . . . , N − 1.

6.7 Inverting the DFT and Many Other Things Along the Way

By now it should be second nature to you to expect that any (useful) transform ought to have an inverse
transform. The DFT is no exception. The DFT does have an inverse, and the formula for the inverse is
quite simple and is very similar to the formula for the DFT itself, (almost) just like the continuous case.
The key to inversion is the “discrete orthogonality” of the complex exponentials. We’re going to look at
the problem of finding F −1 from both the vector point of view and the matrix point of view, with more
emphasis on the former. You can take your pick which you prefer, but it’s helpful to know both.
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6.7.1 The discrete δ

Good news! No need to go through the theory of distributions to define a δ in the discrete case. We can
do it directly and easily by setting

δ0 = (1, 0, . . . , 0) .

In words, there’s a 1 in the zeroth slot and 0’s in the remaining N − 1 slots. δ0 is really just the first
basis vector of CN under an assumed name (the way we’re indexing vectors from 0 to N − 1), but to make
comparisons to the continuous case we prefer to accord it independent status. We didn’t specify N , and
so, strictly speaking, there’s a δ0 for each N , but since δ0 will always arise in a context where the N is
otherwise specified we’ll set aside that detail. As a periodic signal the definition of δ0 is

δ0[m] =

{
1 m ≡ 0 mod N,
0 otherwise

For the DFT of δ0 we have

F δ0 =
N−1∑

k=0

δ0[k]ω−k = ω0 = 1 .

Great — just like Fδ = 1, and no tempered distributions in sight!

If we think of applying the DFT as matrix multiplication, then F δ0 pulls out the first column, which is 1.
(We may drop the subscript 0 on δ0 if it’s clear from the context.)

The shifted discrete δ is just what you think it is,

δk = (0, . . . , 0, 1, 0, . . . , 0)

with a 1 in the k-th slot and zeros elsewhere. That is, the lowly k-th natural basis vector of CN is now
masquerading as the important δk and we can write for an arbitrary vector f ,

f =
N−1∑

k=0

f [k]δk .

As a periodic discrete signal

δk[m] =

{
1 m ≡ k mod N
0 otherwise .

Note, then, that if f is a periodic discrete signal we can still write

f =
N−1∑

k=0

f [k]δk .

The δk’s can be viewed as a basis for CN and also as a basis for the N -periodic discrete signals.

For the DFT of δk we have

F δk =
N−1∑

n=0

δk[n]ω−n = ω−k

From the matrix point of view, taking the DFT of δk pulls out the k-th column of the DFT matrix, and
that’s ω−k .



266 Chapter 6 Discrete Fourier Transform

These are our first explicit transforms, and if we believe that the discrete case can be made to look like
the continuous case, the results are encouraging. We state them again.

• The DFTs of the discrete δ and shifted δ are:

F δ0 = 1 and F δk = ω−k .

We’ll establish other properties of discrete δk’s (convolution, sampling) later.

To know F on a basis Notice that the linearity of F and the knowledge that F δk = ω−k recovers the
general formula for F . Indeed,

f =
N−1∑

k=0

f [k]δk ⇒ F f =
N−1∑

k=0

f [k]F δk =
N−1∑

k=0

f [k]ω−k .

6.7.2 Orthogonality of the vector complex exponentials

Having introduced the vector complex exponential

ω = (1, ω, ω2, . . . , ωN−1)

and its k-th power
ωk = (1, ωk, ω2k, . . . , ω(N−1)k)

it is easy to formulate a key property:

If k and ` are any integers then

ωk · ω` =

{
0 k 6≡ ` mod N

N k ≡ ` mod N

Thus the powers of the vector complex exponentials are “almost” orthonormal. We could make them
orthonormal by considering instead

1√
N

(1, ωk, ω2k, . . . , ω(N−1)k) ,

but we won’t do this.

In the continuous case the analogous result is that the family of functions (1/
√
T)e2πint/T are orthonormal

with respect to the inner product on L2([0, T ]):

∫ T

0

1√
T
e2πimt/T 1√

T
e−2πint/T dt =

1
T

∫ T

0
e2πi(m−n)t/T dt =

{
1 m = n

0 m 6= n

Orthogonality in the continuous case is actually easier to establish than in the discrete case, because,
sometimes, integration is easier than summation. However, you pretty much established the result in the
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discrete case on your first problem set this quarter: the problem of adding up roots of unity is exactly
what’s involved, which is why I asked you to do that question way back then.

There are two things we’ll need for the derivation. The first is that ωkN = 1 where k is any integer. The
second is the sum of a finite geometric series, something we have used repeatedly:

1 + z + z2 + · · ·+ zN−1 =





1 − zN

1 − z
z 6= 1

N z = 1

We’ll use this formula for z = ω. In that case,

1 + ω + ω2 + . . .+ ωN−1 =
1− ωN

1 − ω
=

0
1 − ω

= 0

which is the exercise you did on the first problem set. More generally, if k is not an integer multiple of N ,
so that ωk 6= 1 while ωkN = 1, then

1 + ωk + ω2k + . . .ω(N−1)k =
1 − ωkN

1− ωk
= 0 ,

while if k is an integer multiple of N then ωk = 1 and

1 + ωk + ω2k + . . .ω(N−1)k = 1 + 1 + . . .+ 1 = N .

Succinctly,

1 + ωk + ω2k + · · ·+ ω(N−1)k =

{
0 k 6≡ 0 mod N
N k ≡ 0 mod N

Let’s compute the inner product ωk · ω`:

ωk · ω` =
N−1∑

n=0

ωk[n]ω`[n]

=
N−1∑

n=0

ωk[n]ω−`[n] (taking Matlab seriously)

=
N−1∑

n=0

ωk−`[n] (ditto)

=
N−1∑

n=0

ω(k−`)n =

{
0 k − ` 6≡ 0 mod N
N k − ` ≡ 0 mod N

=

{
0 k 6≡ ` mod N
N k ≡ ` mod N

Done.

Remark From this result we conclude that the N distinct vectors 1, ω−1, ω−2, . . . , ω−(N−1) are a basis
of CN (and so are 1, ω, ω2, . . . , ωN−1). From the earlier result that F δk = ω−k we then know that F is
invertible. This doesn’t tell us what the inverse is, however. We have to work a little harder for that.

The DFT of the vector complex exponential With the orthogonality of the vector complex expo-
nentials established, a number of other important results are now within easy reach. For example, we can
now find F ωk.
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By definition,

F ωk =
N−1∑

n=0

ωk [n]ω−n

and its `-th component is then

F ωk[`] =
N−1∑

n=0

ωk[n]ω−n[`]

=
N−1∑

n=0

ωknω−n` = ωk ·ω` =

{
0 k 6≡ ` mod N
N k ≡ ` mod N

We recognize this, and we are pleased.

• The discrete Fourier transform of ωk is

F ωk = Nδk

Perhaps, we are almost pleased. There’s a factor of N that comes in that we don’t see, in any way, in the
continuous case. Here it traces back, ultimately, to ||ω||2 = N .

The appearance of a factor N or 1/N in various formulas, always wired somehow to ||ω||2 = N , is one
thing that makes the discrete case appear different from the continuous case, and it’s a pain in the neck
to keep straight. Be careful.

6.7.3 Reversed signals and their DFTs

For a discrete signal, f , defined on the integers, periodic or not, the corresponding reversed signal, f−, is
defined by

f−[m] = f [−m] .

If f is periodic of period N , as we henceforth again assume, and we write it as the vector

f = (f [0], f [1], . . . , f [N − 1]) .

Then
f− = (f [N ], f [N − 1], . . . , f [1]) (using f [N ] = f [0])

which makes the description of f− as “reversed” even more apt (though, as in many irritating instances,
the indexing is a little off). Defined directly in terms of its components this is

f−[n] = f [N − n]

and this formula is good for all integers n. This description of f− is often quite convenient. Note that
reversing a signal satisfies the principle of superposition (is linear as an operation on signals):

(f + g)− = f− + g− and (αf )− = αf− .

It’s even more than that — we have
(f g)− = (f−)(g−) .

Let’s consider two special cases of reversed signals. First, clearly

δ−0 = δ0
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and though we’ll pick up more on evenness and oddness later, this says that δ0 is even. For the shifted δ,

δ−k = δ−k .

I’ll let you verify that. With this result we can write

f− =
(N−1∑

k=0

f [k]δk

)−
=

N−1∑

k=0

f [k]δ−k .

One might say that the δk are a basis for the forward signals and the δ−k are a basis for the reversed
signals.

Next let’s look at ω. First we have,

ω− = (ω[N ],ω[N − 1],ω[N − 2], . . . ,ω[1]) = (1, ωN−1, ωN−1, ωN−2, . . . , ω) .

But now notice (as we could have noticed earlier) that

ωN−1ω = ωN = 1 ⇒ ωN−1 = ω−1 .

Likewise
ωN−2ω2 = ωN = 1 ⇒ ωN−2 = ω−2 .

Continuing in this way we see, very attractively,

ω− = (1, ω−1, ω−2, . . . , ω−(N−1)) = ω−1 .

In the same way we find, equally attractively,

(ωk)− = ω−k .

Of course then also
(ω−k)− = ωk .

This has an important consequence for the DFT — our first discrete “duality result”. (Though we haven’t
yet introduced the inverse DFT, which is how one usually thinks about duality. It’s the inverse DFT
that we’re pointing toward). Let’s consider F f−, the DFT of the reversed signal. To work with the
expression for F f− we’ll need to use periodicity of f and do a little fancy foot work changing the variable
of summation in the definition of the DFT. Here’s how it goes

F f− =
N−1∑

k=0

f−[k]ω−k

=
N−1∑

k=0

f [N − k] ω−k (reversing f )

=
1∑

`=N

f [`] ω`−N (letting ` = N − k)

=
1∑

`=N

f [`] ω` (since ω−N = 1)
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But using f [N ] = f [0] and ωN = ω0 = 1 we can clearly write

1∑

`=N

f [`]ω` =
N−1∑

`=0

f [`]ω`

=
(N−1∑

`=0

f [`]ω−`

)−
= (F f )− .

We have shown F f− = (F f )− Cool. A little drawn out, but cool.

This then tells us that
F ω−k = (F ωk)− = (Nδk)− = Nδ−k .

In turn, from here we get a second duality result. Start with

F f =
N−1∑

k=0

f [k]ω−k

and apply F again. This produces

F F f =
N−1∑

k=0

f [k]F ω−k = N
∑

k=0

f [k]δ−k = N f−

To give the two results their own display:

• Duality relations for the DFT are:

F f− = (F f )− and F F f = N f− .

We’ll do more on reversed signals, evenness and oddness, etc., but we’ve waited long enough for the big
moment.

6.7.4 The inverse DFT

We take our cue for finding F −1 from the duality results in the continuous case that say

F−1f = Ff− = (Ff)− .

The only thing we don’t have in the discrete case is the definition of F −1, and this equation tells us how
we might try defining it. There’s actually a factor of N coming in, and because I know what’s going to
happen I’ll put it in now and define

F −1 f =
1
N

F f−

and so equivalently

F −1 f =
1
N

(F f )− and also F −1 f =
1
N

N−1∑

n=0

f [n]ωn .

Let’s see why this really does give us an inverse of F .
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It’s clear that F −1 as defined this way is linear. We also need to know,

F −1ω−k =
1
N

F (ω−k)− (definition of F −1)

=
1
N

F ωk (using (ω−k)− = ωk)

=
1
N
Nδk = δk .

With this,

F −1F f = F −1

(
N−1∑

k=0

f [k]ω−k

)

=
N−1∑

k=0

f [k]F −1ω−k =
N−1∑

k=0

f [k]δk = f .

A similar calculation shows that
F F −1 f = f .

Good show. We have shown that F −1 really does give an inverse to F .

Most developments introduce the definition

F −1f [n] =
1
N

N−1∑

k=0

f [k]ωkn

directly, as a deus ex machina, and then proceed to discover the discrete orthogonality of the complex
exponentials along the way to showing that this definition does give an inverse to F . There’s nothing
wrong with that — it sure saves time — but we took the longer route to see all those signposts marking
the way that said “The discrete corresponds to the continuous. Use what you know.”

Periodicity of the inputs We can now resolve the issue of the periodicity of the inputs to the DFT,
something we left hanging. Remember that if F = F f then the formula for the DFT pretty much forces
us to extend F to be an N -periodic sequence. But now, since

f = F −1F

it’s clear that we must also consider the inputs f to be periodic. Which we’ve been doing. Enough said.

6.7.5 The inverse DFT in matrix form

It’s possible to develop the properties of the DFT, and to obtain the inverse DFT, from the point of view
of matrices. We won’t do that — once is enough! — but it’s worth pointing out what happens for F −1 as
a matrix.

We need to recall some notions from linear algebra. To give the definitions it’s first necessary to remember
that the transpose of a matrix A, denoted by AT , is obtained by interchanging the rows and columns of A.
If A is an M ×N matrix then AT is an N ×M matrix, and in the case of a square matrix (M = N) taking
the transpose amounts to reflecting the entries across the main diagonal. As a linear transformation, if
A : RN → RM then AT : RM → RN . If, for shorthand, we write A generically in terms of its entries, as
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in A = (aij), then we write AT = (aji); note that the diagonal entries aii, where i = j, are unaffected by
taking the transpose.

Square matrices can have a special property with respect to taking the transpose — they get to be sym-
metric: A square matrix A is symmetric if

AT = A .

In words, interchanging the rows and columns gives back the same matrix — it’s symmetric across the
main diagonal. (The diagonal entries need not be equal to each other!)

A different notion also involving a matrix and its transpose is orthogonality. A square matrix is orthogonal
if

ATA = I ,

where I is the identity matrix. Now, be careful; “symmetric” and “orthogonal” are independent notions
for matrices. A matrix can be one and not the other.

For matrices with complex entries (operating on real or complex vectors) the more appropriate notion
corresponding to simple symmetry in the real case is Hermitian symmetry. For this we form the transpose
and take the complex conjugate of the entries. If A is a complex matrix then we use A∗ to denote the
conjugate transpose. A square matrix A is Hermitian if

A∗ = A .

Finally, a square matrix is unitary if
A∗A = I .

Once again, “Hermitian” and “unitary” are independent notions for complex matrices. A matrix is unitary
if and only if its columns (or rows) are orthonormal with respect to the complex dot product, and hence
form an orthonormal basis.

It’s this last point that is of relevance to the DFT. The DFT as a matrix is

F =




1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(N−1)

1 ω−2 ω−4 · · · ω−2(N−1)

...
...

...
. . .

...
1 ω−(N−1) ω−2(N−1) · · · ω−(N−1)2




and the columns (and rows) are just the vectors ωk for k from 0 to N − 1. But we know that the powers
of the vector complex exponential are orthogonal, and nearly orthonormal up to the factor N . Thus F ,
as a matrix, is “nearly unitary”, meaning that

F ∗F = NI .

This identifies the inverse DFT as (1/N) times the conjugate transpose of the DFT:

F −1 =
1
N

F ∗ .
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As a matrix,

1
N

F ∗ =
1
N




1 1 1 · · · 1
1 ω̄−1 ω̄−2 · · · ω̄−(N−1)

1 ω̄−2 ω̄−4 · · · ω̄−2(N−1)

...
...

...
. . .

...
1 ω̄−(N−1) ω̄−2(N−1) · · · ω̄−(N−1)2




∗

=
1
N




1 1 1 · · · 1
1 ω1 ω2 · · · ω(N−1)

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...
1 ω(N−1) ω2(N−1) · · · ω(N−1)2



.

And if we look at the matrix product

1
N




1 1 1 · · · 1
1 ω1 ω2 · · · ω(N−1)

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...
1 ω(N−1) ω2(N−1) · · · ω(N−1)2







F [0]
F [1]
F [2]

...
F [N − 1]




=




f [0]
f [1]
f [2]

...
f [N − 1]




we get back the earlier formula for the inverse,

f [n] =
1
N

N−1∑

k=0

F[k]ωkn .

6.8 Properties of the DFT

We now want to go through a series of basic properties and formulas for the DFT that are analogous
to those in the continuous case. This will mostly be a listing of results, often without much additional
discussion. Use it as a reference.

Parseval’s Identity There’s a version of Parseval’s identity for the DFT, featuring an extra factor of
N that one has to keep track of:

F f · F g = N(f · g) .

The derivation goes like this, using properties of the complex inner product and the orthogonality of the
vector exponentials.

F f · F g =
(N−1∑

k=0

f [k]ω−k

)
·
(N−1∑

`=0

g[`]ω−`

)

=
N−1∑

k=0

N−1∑

`=0

f [k] g[`](ω−k · ω−`) = N

N−1∑

k=0

f [k]g[k] = N(f · g) .

If f = g then the identity becomes
||F f ||2 = N ||f ||2 .
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Parseval’s identity is still another way of saying that F is almost unitary as a matrix. A unitary matrix A
has the property that

Af ·Ag = f · g ,

that is, it preserves the inner product. F almost does this.

Shifts and the shift theorem In formulating the shift theorem for the DFT it’s helpful to introduce
the delay operator for a discrete signal f . For an integer p we define the signal τpf by

τpf [n] = f [n− p] .

The version of the shift theorem for the DFT looks just like its continuous cousin:

F (τpf ) = ω−pF f .

The verification of this is a homework problem. Note that we need f to be periodic for shifting and the
shift theorem to make sense.

The modulation theorem Modulation also works as in the continuous case. The modulation of a
discrete signal f is, by definition, a signal

ωn f = (1, ωn, ω2n, . . . , ω(N−1)n) (f [0], f [1], f [2], . . . , f [N − 1]) (componentwise product!)

= (f [0], ωnf [1], ω2nf [2], . . . , ω(N−1)nf [N − 1]) .

We can find F (ωn f ) directly from the definition:

F (ωn f ) =
N−1∑

k=0

f [k]ωknω−k

and so the m-th component is

F (ωn f )[m] =
N−1∑

k=0

f [k]ωknω−km =
N−1∑

k=0

f [k]ω−k(m−n) .

But if we shift F f by n we obtain

τn(F f ) = τn

(
N−1∑

k=0

f [k]ω−k

)
=

N−1∑

k=0

f [k] τnω−k ,

and the m-th component of the right hand side is

(N−1∑

k=0

f [k] τnω−k

)
[m] =

N−1∑

k=0

f [k] (τnω−k)[m] =
N−1∑

k=0

f [k]ω−k(m−n) ,

just as we had above. We conclude that

F (ωn f ) = τn(F f ) .

This is the modulation theorem.
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6.8.1 Convolution

Convolution and its use with the DFT is the basis of digital filtering. In considering how things should be
defined, let me ask again the same question we asked in the continuous case: How can we use one signal
to modify another? In the continuous case we discovered convolution in the time domain by looking at
multiplication in the frequency domain, and we’ll do the same thing now.

Given F and G, we can consider their componentwise product F G. The question is:

• If F = F f and G = F g is there an h so that F G = F h?

The technique to analyze this is to “interchange the order of summation”, much as we often interchanged
the order of integration (e.g., dx dy instead of dy dx) in deriving formulas for Fourier integrals. We did
exactly that in the process of coming up with convolution in the continuous setting.

For the DFT and the question we have posed:

(F −1(F G))[m] =
1
N

N−1∑

n=0

F[n] G[n]ωmn

=
1
N

N−1∑

n=0

[N−1∑

k=0

f [k]ω−kn

][N−1∑

`=0

g[`]ω−`n

]
ωmn

(we collect the powers of ω, all of which have an n)

=
N−1∑

k=0

f [k]
N−1∑

`=0

g [`]
[

1
N

N−1∑

n=0

ω−knω−`nωmn

]
=

N−1∑

k=0

f [k]
N−1∑

`=0

g[`]
[

1
N

N−1∑

n=0

ωn(m−k−`)

]

Now look at the final sum in brackets. As in earlier calculations, this is a finite geometric series whose sum
is N when m − k − ` ≡ 0 mod N and is zero if m − k − ` 6≡ 0 mod N . This takes the periodicity of the
inputs and outputs into account, and we really must work modulo N in order to do that because m−k− `
could be less than 0 or bigger than N − 1. Thus the final line above becomes

N−1∑

k=0

f [k] g[m− k] .

Therefore, if

h[m] =
N−1∑

k=0

f [k] g [m− k] , m = 0, . . . , N − 1 ,

then F h = F G. Again notice that the periodicity of g has to be used in defining h, because the index
on g will be negative for m < k. Also notice that h is periodic.

To summarize:

• Convolution of discrete signals Let f and g be periodic discrete signals. Define the convolution
of f and g to be the periodic discrete signal f ∗ g where

(f ∗ g)[m] =
N−1∑

k=0

f [k] g[m− k] .
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Then
F (f ∗ g) = (F f )(F g) .

The product on the right hand side is the componentwise product of the DFT components.

You can verify (if you have the patience) the various algebraic properties of convolution, namely linearity,
commutatively and associativity.

• It’s also true that the DFT turns a product into a convolution:

F (f g) =
1
N

(F f ∗ F g)

(An extra factor of 1/N . Agony.)

This equation can be derived from the first convolution property using duality. Let F = F −1f and
G = uFT−1g. Then f = F F, g = F G and

f g = (F F)(F G) = F (F ∗ G) .

Hence

F (f g) = F F (F ∗ G) = N(F ∗ G)− = N(
1
N

(F f )− ∗ 1
N

(F g)−)− =
1
N

(F f ∗ F g) .

Shifts and convolution We note one general property combining convolution with delays, namely that
the discrete shift works with discrete convolution just as it does in the continuous case:

((τpf ) ∗ g)[n] =
N−1∑

k=0

τpf [n− k]g[k]

=
N−1∑

k=0

f [n− k − p]g[k] = (f ∗ g)[n− p] = τp(f ∗ g)[n] .

Thus, since convolution is commutative,

(τpf ) ∗ g = τp(f ∗ g) = f ∗ (τpg) .

6.8.2 More properties of δ

Two of the most useful properties of the continuous δ — if we can use the term “continuous” in connection
with δ — are what it does when multiplied or convolved with a smooth function. For the discrete δ we
have similar results. For multiplication:

fδ0 = (f [0] · 1, f [1] · 0, . . . , f [N − 1] · 0) = (f [0], 0, . . . , 0) = f [0]δ0 .

For convolution:

(f ∗ δ0)[m] =
N−1∑

n=0

f [m− n]δ0[n] .
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There are analogous properties for the shifted discrete δ.3 For multiplication:

f δk = f [k]δk .

For convolution:
f ∗ δk = f ∗ τkδ0 = τk(f ∗ δ0) = τk f ,

or in components
f ∗ δk[m] = f [m− k] ,

again in agreement with what we would expect from the continuous case.

There’s more. Note that

δpδq =

{
δp p = q

0 p 6= q

and that
δp ∗ δq = δp+q .

The former operation, multiplying δ’s, is against the law in the continuous cases, but not in the discrete
case. A cute observation making use of the convolution theorem is that

ωp ∗ ωq =

{
Nωp p = q,

0 p 6= q

Of course you can also see this directly, but it might not occur to you to look.

6.9 Different Definitions for the DFT

In this section I want to understand what is meant by the statement:

“The DFT can be defined over any set of N consecutive indices.”

For periodic functions f(t) in the continuous setting, say of period 1, the n-th Fourier coefficient is

f̂(n) =
∫ 1

0

e−2πintf(t) dt .

The periodicity of f implies that f̂(n) can be obtained by integrating over any interval of length 1, however,
and, morally, we’re looking for the discrete version of that.

Take a good backward glance at what’s been done, and “start over” now by giving a more general definition
of the DFT:

We consider discrete signals f : Z → C that are periodic of period N . Let P and Q be “index
sets” of N consecutive integers, say

P = [p : p+N − 1], Q = [q : q +N − 1] .

3 Observe, incidentally, that

k = τk0, k[m] = 0[m − k]

so a shifted discrete really does appear as delayed by k.
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The DFT based on P and Q (the (P ,Q)-DFT) is defined by

G f [m] =
∑

k∈P
f [k]ω−km =

p+N−1∑

k=p

f [k]ω−km , m ∈ Q .

I’ve called the transform G to distinguish it from F , which, in the present setup, is determined
by the special choice of index sets P = Q = [0 : N − 1].

The corresponding inverse transform is defined correspondingly — we’ll work just with the
forward transform.

Since f is periodic of period N , knowing f on any set of N consecutive numbers determines it everywhere,
and the same should be true of a transform of f . Thus one wants to establish that the definition of G
is independent of the choice of P and Q. This is a sharper version of the informal statement in the first
quote, above, but we have to say what “independent of the choice of P” means.

For this, as a first step we extend G f to be periodic of period N . Since the exponentials in the definition
of the (P ,Q)-transform are periodic of period N , the extension of G f to be defined at any m ∈ Z is again
given by the formula for G f . To wit: Let m ∈ Z and write m = n+ kN . Then

p+N−1∑

`=p

f [`]ω−m` =
p+N−1∑

`=p

f [`]ω−(n+kN)`

=
p+N−1∑

`=p

f [`]ω−n` = G f [n] = G f [n+ kN ] = G f [m]

The penultimate equality holds because we’ve extended G f to be periodic. Reading from bottom right to
top left then shows that

G f [m] =
p+N−1∑

`=p

f [`]ω−m` .

for all m ∈ Z. (All m ∈ Z. Same formula. That’s the point.) And now we want to show that

G f [m] = F f [m]

for all m ∈ Z. (Observe that F f [m] on the right-hand-side is defined for any m ∈ Z, as we’ve just seen for
a general transform.) In other words, any DFT is the DFT, the one given by F defined using the index
set [0 : N − 1]. This, finally, is the precise meaning of the phrase “The DFT can be defined over any set
of N consecutive indices.” The point was to get to this statement — the claim that G f [m] = F f [m] itself
is pretty easy to establish.

Looking back on the development to this point, we haven’t yet made any use of the assumption that f
is periodic. That comes in now, in the final part of the argument. Write p = rN + s, where r and s are
integers and s ∈ [0 : N − 1]. Then for any m ∈ Z,

G f [m] =
p+N−1∑

k=p

f [k]ω−km

=
N−1∑

k=0

f [k + p]ω−(k+p)m =
N−1∑

k=0

f [k+ s]ω−(k+s)m (using p = rN + s and periodicity)

=
N−1∑

k=s

f [k]ω−km +
N−1+s∑

k=N

f [k]ω−km =
N−1∑

k=s

f [k]ω−km +
s−1∑

k=0

f [k]ω−km (periodicity again)

= F f [m]
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Sorry for all of this, but it had to be said.

Of course, so too “the inverse DFT can be defined over any set of N consecutive indices.” No argument
there, from me or anyone else.

6.10 The FFT Algorithm

Before we look at further properties and applications of the DFT, I want to consider the practical problem
of how it’s computed. Then we’ll go through the famous Cooley-Tukey Fast Fourier Transform algorithm.

You can’t beat the matrix form

(F )mn = ω−mn , m, n = 0, 1, . . . , N − 1

as a compact way of writing the DFT. It contains all you need to know. But you can beat it for minimizing
the actual number of multiplications necessary to compute a given DFT. You can beat it by a lot, and
that’s the point of the fast Fourier transform. The FFT is an algorithm for computing the DFT with
fewer than N2 multiplications, the number of multiplications that seems required to find F = F N f by
multiplying f by the N ×N matrix. Here’s how it works — from Gauss to Cooley and Tukey.

Reducing calculations: merge and sort To set the stage for a discussion of the FFT algorithm, I
thought it first might be useful to see an example of a somewhat simpler but related idea, a way of reducing
the total number of steps in a multistep calculation by a clever arranging and rearranging of the individual
steps.

Consider the classic (and extremely important) problem of sorting N numbers from smallest to largest.
Say the numbers are

5 2 3 1 6 4 8 7

From this list we want to create a new list with the numbers ordered from 1 to 8. The direct assault on
this problem is to search the entire list for the smallest number, remove that number from the list and put
it in the first slot of the new list, then search the remaining original list for the smallest number, remove
that number and put it in the second slot of the new list, and so on:

Zeroth step 5 2 3 1 6 4 8 7
First step 5 2 3 6 4 8 7 1
Second step 5 3 6 4 8 7 1 2
Third step 5 6 4 8 7 1 2 3
Fourth step 5 6 8 7 1 2 3 4

The successive steps each produce two lists, one that is unsorted and one that is sorted. The sorted list is
created one number at a time and the final sorted list emerges in step 8.

In general, how many operations does such an algorithm require to do a complete sort? If we have N
numbers then each step requires roughly N comparisons — true, the size of the list is shrinking, but the
number of comparisons is of the order N — and we have to repeat this procedure N times. (There are
N steps, not counting the zeroth step which just inputs the initial list.) Thus the number of operations
used to sort N numbers by this procedure is of the order N2, or, as it’s usually written O(N2) ( read “Big
Oh”).
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The problem with this simple procedure is that the (n+1)-st step doesn’t take into account the comparisons
done in the n-th step. All that work is wasted, and it’s wasted over and over. An alternate approach, one
that makes use of intermediate comparisons, is to sort sublists of the original list, merge the results and
sort again. Here’s how it goes — we’ll assess the efficiency after we see how the method works.

Start by going straight through the list and breaking it up into sublists that have just two elements; say
that’s step zero.

5 2 3 1 6 4 8 7

Step one is to sort each of these (four) 2-lists, producing two sets of 2-lists, called “top” lists and “bottom”
lists just to keep then straight (and we’ll also use top and bottom in later work on the FFT):

top





2 5

1 3

bottom





4 6

7 8

(This step requires four comparisons.)

Step two merges these 2-lists into two sorted 4-lists (again called top and bottom). Here’s the algorithm,
applied separately to the top and bottom 2-lists. The numbers in the first slots of each 2-list are the smaller
of those two numbers. Compare these two numbers and promote the smaller of the two to the first slot of
the top (respectively, bottom) 4-list. That leaves a 1-list and a 2-list. Compare the single element of the
1-list to the first element of the 2-list and promote the smaller to the second slot of the top (resp. bottom)
4-list. We’re down to two numbers — compare them and put them in the three and four slots of the top
(resp. bottom) 4-list. For the example we’re working with this results in the two 4-lists:

top 1 2 3 5

bottom 4 6 7 8

(With this example this step requires five comparisons.)

Following this same sort procedure, step three is to merge the top and bottom sorted 4-lists into a single
sorted 8-list:

1 2 3 4 5 6 7 8

(With this example this step requires five comparisons.)

In this process we haven’t cut down (much) the number of comparisons we have to make at each step,
but we have cut down the number of steps from 8 to 3.4 In general how many operations are involved in
getting to the final list of sorted numbers? It’s not hard to see that the number of comparisons involved
in merging two sublists is of the order of the total length of the sublists. Thus with N numbers total (at
the start) the number of comparisons in any merge-sort is O(N):

number of comparisons in a merge-sort = O(N) .

How many merge-sort steps are there? At each stage we halve the number of sublists, or, working the
other way, from the final sorted list each step “up” doubles the number of sublists. Thus if there are n

4 It wasn’t an accident that I took eight numbers here. The procedure is most natural when we have a power of 2 numbers
to sort, something we’ll see again when we look at the FFT.
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doublings (n steps) then 2n = N , or

number of merge-sort steps = log2N .

We conclude that
number of steps to sort N numbers = O(N logN) .

(We can take the log in any base since this only changes the log by a constant factor, and that’s thrown
into the “big Oh”.) If N is large this is a huge savings in steps from the O(N2) estimate for the simple
sort that we did first. For example, if N is one million then O(N2) is a million million or 1012 steps while
N log10N = 106 × 6, a mere six million operations.

That’s a correct accounting of the number of operations involved, but why is there a savings in using
merge-sort rather than a straight comparison? By virtue of the sorting of sublists we only need to compare
first elements of the sublists in the merge part of the algorithm. In this way the (n + 1)-st step takes
advantage of the comparisons made in the n-th step, the thing that is not done in the straight comparison
method.

A sample calculation of the DFT As we consider how we might calculate the DFT more efficiently
than by straight matrix multiplication, let’s do a sample calculation with N = 4 so we have on record what
the answer is and what we’re supposed to come up with by other means. The DFT matrix is

F 4 =




1 1 1 1
1 ω−1

4 ω−2
4 ω−3

4

1 ω−2
4 ω−4

4 ω−6
4

1 ω−3
4 ω−6

4 ω−9
4


 .

We want to reduce this as much as possible, “reduction” being somewhat open to interpretation.

Using ω4 = e2πi/4 and ω−4
4 = 1 we have

ω−6
4 = ω−4

4 ω−2
4 = ω−2

4 and ω−9
4 = ω−8

4 ω−1
4 = ω−1

4 .

In general, to simplify ω4 to a power we take the remainder of the exponent on dividing by 4, that is, we
“reduce modulo 4”. With these reductions F 4 becomes




1 1 1 1
1 ω−1

4 ω−2
4 ω−3

4

1 ω−2
4 ω−4

4 ω−6
4

1 ω−3
4 ω−6

4 ω−9
4


 =




1 1 1 1
1 ω−1

4 ω−2
4 ω−3

4

1 ω−2
4 1 ω−2

4

1 ω−3
4 ω−2

4 ω−1
4


 .

But we don’t stop there. Note that

ω−2
4 = (e2πi/4)−2 = e−πi = −1 ,

also a worthy simplification. (We have called attention to this N/2-th power of ωN before.) So, finally,

F 4 =




1 1 1 1
1 ω−1

4 ω−2
4 ω−3

4

1 ω−2
4 ω−4

4 ω−6
4

1 ω−3
4 ω−6

4 ω−9
4


 =




1 1 1 1
1 ω−1

4 −1 −ω−1
4

1 −1 1 −1
1 −ω−1

4 −1 ω−1
4


 .

Therefore we find

F 4f =




1 1 1 1
1 ω−1

4 −1 −ω−1
4

1 −1 1 −1
1 −ω−1

4 −1 ω−1
4







f [0]
f [1]
f [2]
f [3]


 =




f [0] + f [1] + f [2] + f [3]
f [0] + f [1]ω−1

4 − f [2]− f [3]ω−1
4

f [0]− f [1] + f [2]− f [3]
f [0]− f [1]ω−1

4 − f [2] + f [3]ω−1
4


 .
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The matrix looks simpler, true, but it still took 16 multiplications to get the final answer. You can see
those two special components that we called attention to earlier, the sum of the inputs in the zero slot and
the alternating sum of the inputs in the N/2 = 2 slot.

This is about as far as we can go without being smart. Fortunately, there have been some smart people
on the case.

6.10.1 Half the work is twice the fun: the Fast Fourier Transform

We agree that the DFT has a lot of structure. The trick to a faster computation of a DFT of order N is
to use that structure to rearrange the products to bring in DFT’s of order N/2. Here’s where we use that
N is even; in fact, to make the algorithm most efficient in being applied repeatedly we’ll eventually want
to assume that N is a power of 2.

We need a few elementary algebraic preliminaries on the ωN , all of which we’ve used before. We also need
to introduce some temporary(!) notation or we’ll sink in a sea of subscripts and superscripts. Let’s write
powers of ω with two arguments:

ω[p, q] = ωq
p .

I think this will help. It can’t hurt. For our uses p will be N , N/2, etc.

First notice that
ω[N/2,−1] = e−2πi/(N/2) = e−4πi/N = ω[N,−2] .

Therefore powers of ω[N/2,−1] are even powers of ω[N,−1] = ω−1
N :

ω[N/2,−n] = ω[N,−2n]

and in general,
ω[N,−2nm] = ω[N/2,−nm] .

What about odd powers of ω−1
N = ω[N,−1]? An odd power is of the form ω[N,−(2n+ 1)] and so

ω[N,−(2n+ 1)] = ω[N,−1]ω[N,−2n] = ω[N,−1]ω[N/2,−n] .

Thus also
ω[N,−(2n+ 1)m] = ω[N,−m]ω[N/2,−nm]

Finally, recall that
ω[N,−N/2] = e(−2πi/N)(N/2) = e−πi = −1 .

Splitting the sums Here’s how we’ll use this. For each m we want to split the single sum defining F[m]
into two sums, one over the even indices and one over the odd indices:

F[m] =
N−1∑

n=0

f [n]ω[N,−nm]

=
N/2−1∑

n=0

f [2n]ω[N,−(2n)m] +
N/2−1∑

n=0

f [2n+ 1]ω[N,−(2n+ 1)m] .

Everything is accounted for here, all the terms are there — make sure you see that. Also, although
both sums go from 0 to N/2 − 1, notice that for the first sum the first and last terms are f [0] and
f [N − 2]ω[N,−(N − 2)m], and for the second they are f [1]ω[N,−m] and f [N − 1]ω[N,−(N − 1)m].
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Next, according to our observations on powers of ω we can also write F[m] as

F[m] =
N/2−1∑

n=0

f [2n]ω[N/2,−nm] +
N/2−1∑

n=0

f [2n+ 1]ω[N/2,−nm]ω[N,−m]

=
N/2−1∑

n=0

f [2n]ω[N/2,−nm] + ω[N,−m]
N/2−1∑

n=0

f [2n+ 1]ω[N/2,−nm] .

Let’s study these sums more closely. There are N/2 even indices and N/2 odd indices and we appear, in
each sum, almost to be taking a DFT of order N/2 of the N/2-tuples f [even] and f [odd]. Why “almost”?
The DFT of order N/2 accepts as input an N/2-tuple and returns an N/2-tuple. But the sums above give
all N entries of the N -tuple F as m goes from 0 to N − 1. We’re going to do two things to bring in F N/2.

• First, if we take m to go from 0 to N/2 − 1 then we get the first N/2 outputs F[m], and we write,
informally,

F[m] = (F N/2 f even)[m] + ω[N,−m] (F N/2 f odd)[m] , m = 0, 1, . . . , N/2− 1 .

That makes sense; N/2-tuples go in and N/2-tuples comes out.

• Second, what is the story for an index m in the second half of the range, from N/2 to N−1? Instead
of letting m go from N/2 to N − 1 we can write these indices in the form m +N/2, where m goes
from 0 to N/2− 1 and we ask what forms the sums take for F[m+N/2].

Look at the powers of ωN/2. In both the sums, over even and over odd indices, we have the powers
ω[N/2,−mn], and with m+N/2 instead of m these are

ω[N/2,−(m+N/2)n] = ω[N/2,−mn]ω[N/2,−n(N/2)] = ω[N/2,−mn] ,

since ω[N/2,−N/2] = 1. So nothing’s changed in that part of the sums from what we first wrote. However,
for the sum over the odd indices there’s also the factor ω[N,−m] out front, and this becomes

ω[N,−(m+N/2)] = ω[N,−m]ω[N,−N/2] = −ω[N,−m] .

Putting these observations together, the second half of the outputs F[m], from F[N/2] to F[N − 1], are
given by

F[m+N/2] =
N/2−1∑

n=0

f [2n]ω[N/2,−nm] − ω[N,−m]
N/2−1∑

n=0

f [2n+ 1]ω[N/2,−nm]

for m = 0 to m = N/2− 1, and just as we did for the first half of the outputs we write this as

F[m+N/2] = (F N/2 f even)[m]− ω[N,−m] (F N/2 f odd)[m] , m = 0, 1, . . . , N/2− 1 .

The description of the FFT algorithm It’s really very significant what we’ve done here. Let’s
summarize:

• We started with an input N -tuple f and want to compute its N -tuple output F = F N f .



284 Chapter 6 Discrete Fourier Transform

• The steps we took served to compute the component outputs F[m] for m = 0, 1, . . . , N − 1 by
computing a DFT on two sequences, each of half the length, and arranging properly. That is:

1. Separate f [n] into two sequences, the even and odd indices (0 is even), each of length N/2.
2. Compute F N/2 f even and F N/2 f odd.
3. The outputs F[m] are obtained by arranging the results of this computation according to

F[m] = (F N/2 f even)[m] + ω[N,−m] (F N/2 f odd)[m]

F[m+N/2] = (F N/2 f even)[m]− ω[N,−m] (F N/2 fodd)[m]

for m = 0, 1, . . . , N/2.

Another look at F 4 Let’s do the case N = 4 as an example, comparing it to our earlier calculation.
The first step is to rearrange the inputs to group the even and odd indices. This is done by a permutation
matrix

M =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




whose effect is 


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1







f [0]
f [1]
f [2]
f [3]


 =




f [0]
f [2]
f [1]
f [3]


 .

M is defined by what it does to the natural basis e0, e1, e2 and e3 of R4, namely Me0 = e0, Me1 = e2,
Me2 = e1 and Me3 = e3.

Next, the even and odd indices are fed respectively to two DFT’s of order 4/2 = 2. This is the crucial
reduction in the FFT algorithm.




1 1 0 0
1 ω−1

2 0 0
0 0 1 1
0 0 1 ω−1

2







f [0]
f [2]
f [1]
f [3]


 =




f [0] + f [2]
f [0] + f [2]ω−1

2

f [1] + f [3]
f [1] + f [3]ω−1

2




On the left we have a “block diagonal” matrix. It’s a 4 × 4 matrix with the 2 × 2 F 2 matrices down the
diagonal and zeros everywhere else. We saw this step, but we didn’t see the intermediate result written
just above on the right because our formulas passed right away to the reassembly of the F[m]’s. That
reassembly is the final step.

So far we have

F 2 f even =
(

f0 + f [2]
f0 + f [2]ω−1

2

)
, F 2 f odd =

(
f [1] + f [3]

f [1] + f [3]ω−1
2

)

and in each case the indexing is m = 0 for the first entry and m = 1 for the second entry. The last stage,
to get the F[m]’s, is to recombine these half-size DFT’s in accordance with the even and odd sums we
wrote down earlier. In putting the pieces together we want to leave the even indices alone, put a +ω−m

4

in front of the m-th component of the first half of the F 2 of the odds and a −ω−m
4 in front of the m-th

component of the the F 2 of the second half of the odds. This is done by the matrix

B4 =




1 0 1 0
0 1 0 ω−1

4

1 0 −1 0
0 1 0 −ω−1

4


 .
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It works like this:



1 0 1 0
0 1 0 ω−1

4

1 0 −1 0
0 1 0 −ω−1

4







f [0] + f [2]
f [0] + f [2]ω−1

2

f [1] + f [3]
f [1] + f [3]ω−1

2


 =




f [0] + f [2] + f [1] + f [3]
f [0] + f [2]ω−1

2 + f [1]ω−1
4 + f [3]ω−1

4 ω−1
2

f [0] + f [2]− f [1]− f [3]
f [0] + f [2]ω−1

2 − f [1]ω−1
4 − f [3]ω−1

4 ω−1
2




=




f [0] + f [1] + f [2] + f [3]
f [0] + f [1]ω−1

4 − f [2]− f [3]ω−1
4

f [0]− f [1] + f [2]− f [3]
f [0]− f [1]ω−1

4 − f [2] + f [3]ω−1
4


 ,

where we (finally) used ω−1
2 = e−2πi/2 = −1. This checks with what we got before.

One way to view this procedure is as a factorization of F 4 into simpler matrices. It looks like



1 1 1 1
1 ω−1

4 ω−2
4 ω−3

4

1 ω−2
4 ω−4

4 ω−6
4

1 ω−3
4 ω−6

4 ω−9
4


 =




1 1 1 1
1 ω−1

4 −1 −ω−1
4

1 −1 1 −1
1 −ω−1

4 −1 ω−1
4




=




1 0 1 0
0 1 0 ω−1

4

1 0 −1 0
0 1 0 −ω−1

4







1 1 0 0
1 ω−1

2 0 0
0 0 1 1
0 0 1 ω−1

2







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




=




1 0 1 0
0 1 0 ω−1

4

1 0 −1 0
0 1 0 −ω−1

4







1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

Look at all the zeros! There are 48 entries total in the three matrices that multiply together to give F 4,
but only 20 entries are nonzero.

In the same way, the general shape of the factorization to get DFTN via DFTN/2 is

F N =
(
IN/2 ΩN/2

IN/2 −ΩN/2

)(
F N/2 0

0 F N/2

)(
Sort the even

and odd indices

)

IN/2 is the N/2 ×N/2 identity matrix. 0 is the zero matrix (of size N/2 ×N/2 in this case). ΩN/2 is the

diagonal matrix with entries 1, ω−1
N , ω−2

N , . . .ω−(N/2−1)
N down the diagonal.5 F N/2 is the DFT of half the

order, and the permutation matrix puts the N/2 even indices first and the N/2 odd indices second.

Thus the way this factorization works is:

• The inputs are f [0], f [1], . . . , f [N − 1].

• The matrix on the right is a permutation matrix that puts the even indices in the first N/2 slots and
the odd indices in the second N/2 slots.

5 The notation ΩN/2 isn’t the greatest — it’s written with N/2 because of the dimensions of the matrix, though the entries
are powers of ωN . Still, it will prove useful to us later on, and it appears in the literature.
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◦ Alternatively, think of the operation as first starting with f [0] and taking every other f [n] —
this collects f [0], f [2], f [4], and so on — and then starting back with f [1] and taking every other
f [n] — this collects f [1], f [3], f [5], and so on. As we iterate the process, this will be a more
natural way of thinking about the way the first matrix chooses how to send the inputs on to
the second matrix.

• The outputs of the first matrix operation are a pair of N/2-vectors. The matrix in the middle accepts
these as inputs. It computes half-size DFT’s on these half-size inputs and outputs two N/2-vectors,
which are then passed along as inputs to the third matrix.

• The third matrix, on the left, reassembles the outputs from the half-size DFT’s and outputs the F[0],
F[1], . . . F[N − 1].

◦ This is similar in spirit to a step in the “merge-sort” algorithm for sorting numbers. Operations
(comparisons in that case, DFT’s in this case) are performed on smaller lists which are then
merged to longer lists.

• The important feature, as far as counting the multiplications go, is that suddenly there are a lot of
zeros in the matrices.

As to this last point, we can already assess some savings in the number of operations when the even/odd
splitting is used versus the straight evaluation of the DFT from its original definition. If we compute
F = F N f just as a matrix product there are N2 multiplications and N2 additions for a total of 2N2

operations. On the other hand, with the splitting the computations in the inner block matrix of two
DFT’s of order N/2 require 2(N/2)2 = N2/2 multiplications and 2(N/2)2 = N2/2 additions. The sorting
and recombining by the third matrix require another N/2 multiplications and N additions — and this is
linear in N . Thus the splitting method needs on the order of N2 operations while the straight DFT needs
2N2. We’ve cut the work in half, pretty much, though it’s still of the same order. We’ll get back to this
analysis later.

Divide and conquer At this point it’s clear what we’d like to do — repeat the algorithm, each time
halving the size of the DFT. The factorization from N to N/2 is the top level:

F N =
(
IN/2 ΩN/2

IN/2 −ΩN/2

)(
F N/2 0

0 F N/2

)(
Sort the even

and odd indices

)

At the next level “down” we don’t do anything to the matrices on the ends, but we factor each of the two
F N/2’s the same way, into a permutation matrix on the right, a block matrix of F N/4’s in the middle and
a reassembly matrix on the left. (I’ll come back to the sorting — it’s the most interesting part.). That is,

F N/2 =
(
IN/4 ΩN/4

IN/4 −ΩN/4

)(
F N/4 0

0 F N/4

)(
Sort N/2-lists to

two N/4-lists

)

and putting this into the top level picture the operations become “nested” (or recursive):

F N =
(

IN/2 ΩN/2

IN/2 −ΩN/2

)
·




(
IN/4 ΩN/4

IN/4 −ΩN/4

) (
F N/4 0

0 F N/4

) (
N/2 to

N/4 sort

)
0

0
(

IN/4 ΩN/4

IN/4 −ΩN/4

) (
F N/4 0

0 F N/4

) (
N/2 to

N/4 sort

)


 ·

(
Sort the N/2-even

and N/2-odd indices

)
.
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To be able to repeat this, to keep halving the size of the DFT, we now see that we need to take N to be a
power of 2. The construction then continues, “going down” levels till we get from F N to F 1. Note that
the DFT of order 1 takes a single input and returns it unchanged, i.e., it is the identity transform.

When the halving is all over here’s what happens. The work is in the initial sorting and in the reassembling,
since the final DFT in the factorization is F 1 which leaves alone whatever it gets. Thus, reading from
right to left, the initial inputs (f [0], f [1], . . . , f [N − 1]) are first sorted and then passed back up through a
number of reassembly matrices, ultimately winding up as the outputs (F[0],F[1], . . . ,F[N − 1]).

It’s clear, with the abundance of zeros in the matrices, that there should be a savings in the total number
of operations, though it’s not clear how much. The entire trip, from f ’s to F’s is called the Fast Fourier
Transform (FFT). It’s fast because of the reduction in the number of operations. Remember, the FFT is
not a new transform, it is just computing the DFT of the initial inputs.

6.10.2 Factoring the DFT matrix

Rather than trying now to describe the general process in more detail, let’s look at an example more
thoroughly, and from the matrix point of view. One comment about this approach, a matrix factorization
description versus other sorts of descriptions of the algorithm. Since the initial ideas of Cooley and Tukey
there have been many other styles of FFT algorithms proposed and implemented, similar in some respects
to Cooley & Tukey’s formulation and different in others. It became a mess. In a 1992 book, Computational
Frameworks for the Fast Fourier Transform, Charles Van Loan showed how many of the ideas could be
unified via a study of different matrix factorizations of the DFT. This is not the only way to organize the
material, but it has been very influential.

Let’s take the case N = 16, just to live it up. Once again, the initial input is a 16-tuple (or vector) f and
the final output is another 16-tuple, F = F 16f . At the top level, we can write this as

F = F 16f =
(
I8 Ω8

I8 −Ω8

)(
F 8 0
0 F 8

)(
f even

f odd

)
=
(
I8 Ω8

I8 −Ω8

)(
G
H

)

where G and H are the results of computing F 8 on f even and f odd, respectively. Write this as

F = B16

(
G
H

)
, B16 =

(
I8 Ω8

I8 −Ω8

)

where B is supposed to stand for “butterfly” — more on this, later.

But how, in the nesting of operations, did we get to G and H? The next level down (or in) has

G = F 8f even =
(
I4 Ω4

I4 −Ω4

)(
G′

H′

)
= B8

(
G′

H′

)

where G ′ and H′ are the result of computing F 4’s on the even and odd subsets of f even. Got it? Likewise
we write

H = F 8f odd =
(
I4 Ω4

I4 −Ω4

)(
G′′

H′′

)
= B8

(
G ′′

H′′

)

where G′′ and H′′ are the result of computing F 4’s on the even and odd subsets of f odd.
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Combining this with what we did first, we have

F = F 16f = B16

(
B8 0
0 B8

)



G′

H′

G′′

H′′




Continue this for two more steps — it remains to find DFT’s of order 4 and 2. The result then looks like

F = F 16f

= B16

(
B8 0
0 B8

)



B4 0 0 0
0 B4 0 0
0 0 B4 0
0 0 0 B4







B2 0 0 0 0 0 0 0
0 B2 0 0 0 0 0 0
0 0 B2 0 0 0 0 0
0 0 0 B2 0 0 0 0
0 0 0 0 B2 0 0 0
0 0 0 0 0 B2 0 0
0 0 0 0 0 0 B2 0
0 0 0 0 0 0 0 B2







16× 16 permutation
matrix that sorts

the inputs


 f .

Note that

B2 =
(

1 1
1 −1

)
.

Each B2 receives a pair of inputs coming from a pair of DFT1’s, and since the DFT1’s don’t do anything,
each B2 receives a pair of the original inputs f [m], but shuffled from the ordering f [0], f [1], . . . , f15. We’ll
get back to the question of sorting the indices, but first let’s be sure that it’s worth it.

And the point of this is, again? There are lots of zeros in the factorization of the DFT. After the
initial sorting of the indices (also lots of zeros in that matrix) there are 4 reassembly stages. In general, for
N = 2n there are n = log2N reassembly stages after the initial sorting. The count log2N for the number
of reassembly stages follows in the same way as the count for the number of merge-sort steps in the sorting
algorithm, but I want to be a little more precise this time.

We now consider the “computational complexity” of the FFT algorithm in general. Let C(N) denote
the number of elementary operations involved in finding the DFT via the FFT algorithm; these include
additions and multiplications. We reassemble F N from twoF N/2’s by another set of elementary operations.
From our earlier considerations. or from the factorization, that number of operations can easily be shown
to be proportional to N . Thus the basic recursion relationship is

C(N) = 2C(N/2) +KN .

We can solve this recurrence equation as follows. Let

n = log2N

and let
T (n) =

C(N)
N

so that
C(N) = NT (n) .

Then n− 1 = log2(N/2) and thus

T (n− 1) =
C(N/2)
N/2

= 2
C(N/2)
N

, or NT (n− 1) = 2C(N/2) .



6.10 The FFT Algorithm 289

Substituting into the recurrence relationship for C then gives

NT (n) = NT (n− 1) +KN

or simply
T (n) = T (n− 1) +K .

This already implies that T (n) is linear. But C(1) is obviously 0, because there aren’t any operations
needed to compute the DFT of a single point. Hence T (0) = C(1) = 0, T (1) = K and in general

T (n) = Kn .

In terms of C this says
C(N) = KN log2N .

Various implementations of the FFT try to make the constant K as small as possible. The best one around
now, I think, brings the number of multiplications down to N log2N and the number of additions down
to 3 log2N . Remember that this is for complex inputs. Restricting to real inputs cuts the number of
operations in half.

As we pointed out when talking about the problem of sorting, when N is large the reduction in computation
from N2 to N log2N is an enormous savings. For example, take N = 1024 = 210. Then N2 = 220 is about
a million while 210 log2 210, about ten thousand, or even cut down to five thousand for real signals. That’s
a substantial reduction, and for larger N it’s even more dramatic.

6.10.3 Sorting the indices

If we think of recursively factoring the inner DFT matrix, then in implementing the whole FFT the first
thing that’s done is to sort and shuffle the inputs.6 It’s common to display a flow diagram for the FFT,
and much of the pictorial splendor in many treatments of the FFT is in showing how the f [m]’s are shuffled
and passed on from stage to stage. The flow chart of the complete FFT algorithm is called a butterfly
diagram — hence the naming of the matrices B. You can find butterfly diagrams in any of the standard
works.

The principle of sorting the inputs is as stated earlier. Start with the first input, f [0], and take every other
one. Then start with the second input, f [1], (which was skipped over in the first pass) and take every
other one. This produces f even and f odd. The next sorting repeats the process for the subsequences f even

and f odd, and so on.

For N = 8 (I don’t have the stamina for N = 16 again) this looks like

6 Shuffling is actually an apt description: See, D. Knuth, The Art of Computer Programming, Vol. 3, p. 237.
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f [0] f [0] f [0] f [0]

f [1] f [2] f [4] f [4]

f [2] f [4] f [2] f [2]

f [3] f [6] f [6] f [6]

f [4] f [1] f [1] f [1]

f [5] f [3] f [5] f [5]

f [6] f [5] f [3] f [3]

f [7] f [7] f [7] f [7]

Though there’s no more shuffling from the third to the fourth column we’ve written the last column to
indicate that the inputs go in, one at a time, in that order to the waiting B’s.

The FFT algorithm with N = 8 is thus

F = B8

(
B4 0
0 B4

)



B2 0 0 0
0 B2 0 0
0 0 B2 0
0 0 0 B2







f [0]
f [4]
f [2]
f [6]
f [1]
f [5]
f [3]
f [7]




.

The sorting can be described in a neat way via binary numbers. Each sort puts a collection of inputs into
a “top” bin or a “bottom” bin. Let’s write 0 for top and 1 for bottom (as in 0 for even and 1 for odd).
Assigning digits from right to left, the least significant bit is the first sort, the next most significant bit is
the second sort and the most significant bit (for the three sorts needed when N = 8) is the final sort. We
thus augment the table, above, to (read the top/bottom descriptions right to left):

f [0] f [0] 0 top f [0] 00 top-top f [0] 000 top-top-top
f [1] f [2] 0 top f [4] 00 top-top f [4] 100 bottom-top-top
f [2] f [4] 0 top f [2] 10 bottom-top f [2] 010 top-bottom-top
f [3] f [6] 0 top f [6] 10 bottom-top f [6] 110 bottom-bottom-top
f [4] f [1] 1 bottom f [1] 01 top-bottom f [1] 001 top-top-bottom
f [5] f [3] 1 bottom f [5] 01 top-bottom f [5] 101 bottom-top-bottom
f [6] f [5] 1 bottom f [3] 11 bottom-bottom f [3] 011 top-bottom-bottom
f [7] f [7] 1 bottom f [7] 11 bottom-bottom f [7] 111 bottom-bottom-bottom

The numbers in the final column are exactly the binary representations for 0, 4, 2, 6, 1, 5, 3, 7.

Now notice that we get from the initial natural ordering
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f [0] 000
f [1] 001
f [2] 010
f [3] 011
f [4] 100
f [5] 101
f [6] 110
f [7] 111

to the ordering that we feed in,

f [0] 000
f [4] 100
f [2] 010
f [6] 110
f [1] 001
f [5] 101
f [3] 011
f [7] 111

by reversing the binary representation of the numbers in the first table.

What happens to f [6] in the sort, for example? 6 in binary is 110. That’s bottom-bottom-top: the first
sort puts f [6] in the top 4-list, the second sort generates 4 “2-lists”, two top “2-lists” and two bottom
“2-lists”, and puts f [6] (along with f [2]) in the bottom of the two top 2-lists. The final sort puts f [6] just
below f [2]. The slot for f [6] in the final sort, corresponding to “bottom-bottom-top”, is the fourth one
down — that’s 110, the reverse of binary 011 (the fourth slot in the original ordering).

This same procedure for sorting works for all N . That is:

1. Write the numbers 0 to N − 1 in binary. (With leading 0’s so all numbers have the same length.)
That enumerates the slots from 0 to N − 1.

2. Reverse the binary digits of each slot number. For a binary number m call this reversed number
←
m

3. The input f←
m

goes in slot m.

This step in the FFT algorithm is called bit reversal, for obvious reasons. In fact, people spend plenty of
time coming up with efficient bit reversal algorithms7. In running an FFT routine, like in Matlab, you
don’t do the sorting, of course. The program takes care of that. If, in the likely case, you don’t happen
to have 2n samples in whatever data you’ve collected, then a common dodge is to add zeros to get up to
the closest power of 2. This is referred to as “zero padding”, and some FFT routines will automatically do
it for you. But, like anything else, it can be dangerous if used improperly. We discuss zero padding later,
and you’ve had a homework problem on it.

Bit reversal via permutation matrices To write down the permutation matrix that does this sorting
you perform the “every other one” algorithm to the rows (or columns) of the N × N identity matrix,

7 See P. Rosel, “Timing of some bit reversal algorithms”, Signal Processing, 18 (1989) 425–433 for a survey of 12 (!) different
bit-reversal algorithms.
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reorder the rows according to that, then repeat. Thus for N = 8 there are two steps



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




sort and rearrange the rows −→




1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1




sort and rearrange top and bottom halves −→




1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1




And sure enough 


1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1







f [0]
f [1]
f [2]
f [3]
f [4]
f [5]
f [6]
f [7]




=




f [0]
f [4]
f [2]
f [6]
f [1]
f [5]
f [3]
f [7]




.

6.11 Zero Padding

As we have seen, the FFT algorithm for computing the DFT is set up to work with an input length that is
a power of 2. While not all implementations of the FFT require input to be of that length, many programs
only accept inputs of certain lengths, and when this is not met it’s common to add enough zeros to the
end of the signal to bring the input up to the length required. This procedure is called zero padding and
many programs will do it automatically (if needed) when you call an FFT.

Let f = (f [0], f [1], . . . , f [N − 1]) be the original input. For an integer M > N , define

g[n] =

{
f [n] 0 ≤ n ≤ N − 1
0 N ≤ n ≤M − 1

Then

G[m] = F M g[m] =
M−1∑

n=0

ω−mn
M g[n] =

N−1∑

n=0

ω−mn
M f [n]

Work a little bit with ω−mn
M :

ω−mn
M = e−2πimn/M = e−2πimnN/MN = e−2πin(mN/M)/N = ω

n(mN/M)
N .
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Thus whenever mN/M is an integer we have

G[m] =
N−1∑

n=0

ω
−n(mN/M)
N f [n] = F[mN/M ] .

We could also write this equation for F in terms of the G as

F[m] = G[mM/N ]

whenever mM/N is an integer. This is what we’re more interested in: the program computes the zero
padded transform G = F M g and we’d like to know what the outputs F[m] of our original signal are in
terms of the G’s. The answer is the m-th component of F is the mM/N -th component of G whenever
mM/N is an integer.

Let’s pursue this a little, starting with getting rid of the stupid proviso that mM/N is an integer. We can
choose M so let’s choose

M = kN

for some integer k; so M is twice as large as N , or 3 times as large as N , or whatever. Then mM/N = km,
always an integer, and

F[m] = G[km]

which is much easier to say in words:

• If f is zero padded to a signal g of length M , where M = kN , then the m-th component of F = F f
is the km-th component of G = F g.

Zero padding the inputs has an important consequence for the spacing of the grid points in the frequency
domain. Suppose that the discrete signal f = (f [0], f [1], . . . , f [N − 1]) comes from sampling a continuous
signal at points tn, so that f [n] = f(tn). Suppose also that the N sample points in the time domain of f(t)
are spaced ∆t apart. Then the length of the interval on which f(t) is defined is N∆t and the spectrum
Ff(s) is spread out over an interval of length 1/∆t. Remember, knowing N and ∆t determines everything.
Going from N inputs to M = kN inputs by padding with zeros lengthens the interval in the time domain
to M∆t but it doesn’t change the spacing of the sample points, i.e., it doesn’t change the sampling rate
in the time domain. What is the effect in the frequency domain? For the sample points associated with
the discrete signals f and F = F N f we have

∆t∆νunpadded =
1
N

by the reciprocity relations (see Section 6.3), and for g and G = F M g we have

∆t∆νpadded =
1
M

=
1
kN

.

The ∆t in both equations is the same, so

∆νpadded

∆νunpadded

=
1
k

or ∆νpadded =
1
k

∆νunpadded ,

that is, the spacing of the sample points in the frequency domain for the padded sequence has decreased
by the factor 1/k. At the same time, the total extent of the grid in the frequency domain has not changed
because it is 1/∆t and ∆t has not changed. What this means is:
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• Zero padding in the time domain refines the grid in the frequency domain.

There’s a warning that goes along with this. Using zero padding to refine the grid in the frequency domain
is only a valid thing to do if the original continuous signal f is already known to be zero outside of the
original interval. If not then you’re killing off real data by filling f out with zeros.



Chapter 7

Linear Time-Invariant Systems

7.1 Linear Systems

A former Dean of Stanford’s School of Engineering used to joke that we didn’t really have departments of
Electrical Engineering, Mechanical Engineering, Chemical Engineering, and so on, we had departments of
large systems, small systems, mechanical systems, chemical systems, and so on. If “system” is a catch-all
phrase describing the process of going from inputs to outputs then that’s probably as good a description
of our organization as any, maybe especially as a way of contrasting engineering with fields that seem to
be stuck on “input”.

For us, a system is a mapping from input signals to output signals, and we’ll typically write this as

w(t) = L(v(t))

or, without the variable, as
w = L(v) .

We often think of the signals as functions of time or of a spatial variable. The system operates on that
signal in some way to produce another signal. This is the “continuous case”, where input and outputs
are function of a continuous variable. The discrete case will often arise for us by sampling continuous
functions.

To be precise we would have to define the domain of L, i.e., the space of signals that we can feed into the
system as inputs. For example, maybe it’s only appropriate to consider L as operating on finite energy
signals (a natural restriction), or on band-limited signals, whatever. We might also have to spell out what
kind of continuity properties L has. These are genuine issues, but they aren’t so important for us in setting
up the basic properties, and the mathematical difficulties can detract from the key ideas — it keeps us
stuck at the inputs.1

With such an extreme degree of generality, one shouldn’t expect to be able to say anything terribly
interesting — a system is some kind of operation that relates an incoming signal to an outgoing signal.
Someway. Somehow. Great. Imposing more structure can make system a more interesting notion, and the
simplest nontrivial extra assumption is that the system is linear.

1 Generally speaking, the problems come from working with infinite dimensional spaces of signals and settling on appropriate
definitions of continuity etc.. However, just as we did for the infrastructure that supports the theory of distributions, we’re
setting this aside for our work here. The area of mathematics that comes into play is called functional analysis.
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The system is linear if L is linear. This means exactly that for all signals v, v1, v2 and all scalars α

L(v1(t) + v2(t)) = L(v1(t)) + L(v2(t)) (L is additive)
L(αv(t)) = αL(v(t)) (L is homogeneous)

Note that to define this notion we have to be able to add and scale inputs and outputs. Not all systems
can be linear because, depending on the application, it just might not make sense to add inputs or to scale
them. Ditto for the outputs. A system where you can add and scale inputs and outputs but where one or
both of the properties, above, do not hold is generically referred to as nonlinear. By the way, a common
notational convention when dealing with linear operators is to drop the parentheses when L is acting on a
single signal, that is, we write Lv(t) instead of L(v(t)). This convention comes from the analogy of general
linear systems to those given by multiplication by a matrix — more on that connection later.

One immediate comment. If the zero signal is the input to a linear system, then the output is also the zero
signal, since

L(0) = L(0 · 0) = 0 · L(0) = 0 .

If a system is nonlinear, it may not be that L(0) = 0; take, for example L(v(t)) = v(t) + 1.2

An expression of the form α1v1(t) +α2v2(t) is called a linear combination or a superposition of v1 and v2.
Thus a linear systems is often said to satisfy the principle of superposition — adding the inputs results
in adding the outputs and scaling the input scales the output by the same amount. One can extend these
properties directly to finite sums and, with proper assumptions of continuity of L and convergence of the
sums, to infinite sums. That is,

L

( N∑

n=0

vn(t)
)

=
N∑

n=0

Lvn(t) and L

( ∞∑

n=0

vn(t)
)

=
∞∑

n=0

Lvn(t).

We won’t make an issue of convergence and continuity for the kinds of things we want to do. However,
don’t minimize the importance of these properties; if a signal can be written as a sum of its components
(think Fourier series) and if we know the action of L on the components (think complex exponentials) then
we can find the action of L on the composite signal.

7.2 Examples

Working with and thinking in terms of systems — and linear systems in particular — is as much an adopted
attitude as it is an application of a collection of results. I don’t want to go so far as saying that any problem
should be viewed through the lens of linear systems from start to finish, but it often provides, at the very
least, a powerful organizing principle. As we develop some general properties of linear systems it will be
helpful to have in mind some examples that led to those general properties, so you too can develop an
attitude.

I’ll divide the examples into broad categories, but they really aren’t so neatly separated. There will be a
fair amount of “this example has aspects of that example”; this is an important aspect of the subject and
something you should look for.

2 This may be the quickest mental checkoff to see if a system is not linear. Does the zero signal go to the zero signal? If not
then the system cannot be linear.
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7.2.1 Multiplying in the time domain

The most basic example of a linear system is the relationship of “A is directly proportional to B”. Suitably
interpreted (a slippery phrase), you see this in some form or function in almost all linear constructions.

Usually one thinks of “direct proportion” in terms of a “constant of proportionality”, as in “the voltage
is proportional to the current, V = RI”, or “the acceleration is proportional to the force, a = (1/m)F”.
The conclusions are of the type, “doubling the current corresponds to doubling the voltage”. But the
“constant” can be a function, and the key property of linearity is still present: Fix a function h(t) and
define

Lv(t) = h(t)v(t) .

Then, to be formal about it, L is linear because

L(av1(t) + bv2(t)) = h(t)(av1(t) + bv2(t)) = ah(t)v1(t) + bh(t)v2(t) = aLv1(t) + bLv2(t) .

This is such a common construction that it’s already come up many times, though not in the context of
“linearity” per se. Here are two examples.

Switching on and off is a linear system Suppose we have a system consisting of a “switch”. When
the switch is closed a signal goes through unchanged and when the switch is open the signal doesn’t go
through at all (so by convention what comes out the other end is the zero signal). Suppose that the switch
is closed for −1

2 ≤ x ≤ 1
2 . Is this a linear system? Sure; it’s described precisely by

Lv(t) = Π(t)v(t) ,

i.e., multiplication by Π.

We could modify this any number of ways:

• Switching on and off at various time intervals.

◦ This is modeled by multiplication by a sum of shifted and scaled Π’s.

• Switching on and staying on, or switching off and staying off.

◦ This is modeled by multiplication by the unit step H(t) or by 1 −H(t).

All of these are linear systems, and you can come up with many other systems built on the same principle.

Sampling is a linear system Sampling is multiplication by III. To sample a signal v(t) with sample
points spaced p apart is to form

Lv(t) = v(t)IIIp(t) =
∞∑

k=−∞
v(kp)δ(t− kp) .

It doesn’t hurt to say in words what the consequences of linearity are, namely: “Sampling the sum of two
signals is the sum of the sampled signals.” It’s better if you say that fast.

7.2.2 Matrices and integrals

Similar to simple direct proportion, but one level up in sophistication, are linear systems defined by matrix
multiplication and by integration.
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Matrix multiplication The most basic example of a discrete linear system is multiplication by a matrix,
i.e.,

w = Av ,

where v ∈ Rn, w ∈ Rm, and A is an m× n matrix. Written out,

w[i] =
n∑

j=1

aijv[j] , i = 1, . . . , m .

The inputs are n-vectors and the outputs are m-vectors. The linear system might have special properties
according to whether A has special properties — symmetric, Hermitian, unitary. The DFT, for example,
can thus be thought of as a linear system.

Linear dynamical systems Speaking of matrix multiplication, to mix the continuous and discrete, and
for those taking EE 263, the linear system

Lv(t) = eAtv

where A is an n× n matrix and v ∈ Rn, is the linear system associated with the initial value problem

ẋ(t) = Ax , x(0) = v .

Here the matrix eAt varies in time, and the system describes how the initial value v evolves over time.

Linear systems via integrals The case of a linear system defined via matrix multiplication is a model
for more complicated situations. The continuous, infinite-dimensional version of matrix multiplication is
the linear system given by an operation of the form

w(x) = Lv(x) =
∫ b

a
k(x, y)v(y) dy .

Here, k(x, y) is called the kernel and one speaks of “integrating v(y) against a kernel”. This is certainly a
linear system, since

L(α1v1(x) + α2v2(x)) =
∫ b

a
k(x, y)(α1v1(y) + α2v2(y)) dy

= α1

∫ b

a
k(x, y)v1(y) dy+ α2

∫ b

a
k(x, y)v2(y) dy

= α1Lv1(x) + α2Lv2(x).

To imagine how this generalizes the (finite) matrix linear systems, think, if you dare, of the values of v as
being listed in an infinite column, k(x, y) as an infinite (square) matrix, k(x, y)v(y) as the product of the
(x, y)-entry of k with the y-th entry of v, and the integral

w(x) =
∫ b

a
k(x, y)v(y) dy

as summing the products k(x, y) across the x-th row of k with the entries of the column v, resulting in
the x-th value of the output, w(x). You really won’t be misleading yourself thinking this way, though, of
course, there are questions of convergence in pursuing the analogy.
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The system may have special properties according to whether the kernel k(x, y) has special properties;
symmetric (k(x, y) = k(y, x)) or Hermitian (k(x, y) = k(y, x)). To push the analogy further, the adjoint
(or transpose) of L is usually defined to be LT v(y) =

∫ b
a k(x, y)v(x) dx; note that we’re integrating with

respect to the first variable in k(x, y) here. Thus if k(x, y) = k(y, x) then LT = L. Nice.

To take one quick example, as a linear system the Fourier transform is of this form:

Ff(s) =
∫ ∞

−∞
e−2πistf(t) dt =

∫ ∞

−∞
k(s, t)f(t) dt

In this case the kernel is k(s, t) = e−2πist.

7.2.3 Convolution: continuous and discrete

One example of a linear system defined by integrating against a kernel is convolution, but convolution is so
important in applications that it rises above “special case” status in the list of examples. In the continuous
realm, fix a signal g(x) and define

w(x) = Lv(x) = (g ∗ v)(x) .

In the category “linear systems via integration” this is, explicitly,

w(x) = (g ∗ v)(x) =
∫ ∞

−∞
g(x− y)v(y) dy =

∫ ∞

−∞
k(x, y)v(y) dy, where k(x, y) = g(x− y) .

The discrete case Convolution in the finite discrete case naturally involves periodic discrete signals.
Fix a periodic sequence, say h, and define w = Lv by convolution with h:

w[m] = (h ∗ v)[m] =
N−1∑

n=0

h[m− n]v[n] ,

Just as continuous convolution fits into the framework of linear systems via integration, discrete convolution
is an example of linear systems via matrix multiplication. Since the operation w = h ∗v from the input v
to the output w is a linear transformation of CN to itself, it must be given by multiplication by some
N ×N matrix:

w = h ∗ v = Lv .

What is the matrix L?

First, to be precise, it’s not really “the” matrix, because the matrix form of a linear transformation depends
on the choice of bases for the inputs and outputs. But if we use the natural basis for Cn we quickly get an
answer. Borrowing from our work with the DFT, we write the basis as the discrete δ’s, namely δ0, δ1, . . . ,
δN−1. The n-th column of the matrix L is the vector Lδn (indexed from n = 0 to n = N − 1). We know
what happens when we convolve with δ’s, we shift the index — the m-th entry in the n-th column of L is

Lδn[m] = (h ∗ δn)[m] = h[m− n] ,

written simply as
(L)mn = h[m− n] .

The matrix L is constant along the diagonals and is filled out, column by column, by the shifted versions
of h. Note again the crucial role played by periodicity.
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To take an example, if
h = (h[0],h[1], h[2],h[3]) = (1, 2, 3, 4)

then the matrix L for which
w = h ∗ v = Lv

has columns



h[0]
h[1]
h[2]
h[3]


 ,




h[−1]
h[0]
h[1]
h[2]


 =




h[3]
h[0]
h[1]
h[2]


 ,




h[−2]
h[−1]
h[0]
h[1]


 =




h[2]
h[3]
h[0]
h[1]


 ,




h[−3]
h[−2]
h[−1]
h[0]


 =




h[1]
h[2]
h[3]
h[0]




which is

L =




1 4 3 2
2 1 4 3
3 2 1 4
4 3 2 1


 .

In general, square matrices that are constant along the diagonals (different constants for different diagonals
allowed) are called Toeplitz matrices, after the mathematician Otto Toeplitz who singled them out for
special study. They have all sorts of interesting properties. There’s even more structure to the Toeplitz
matrices that correspond to convolution because of the (assumed) periodicity of the columns. This special
class of Toeplitz matrices are called circulant matrices. We won’t pursue their features any farther, but
see Chapter 4.7 of the book Matrix Computation by G. Golub and C. van Loan, and the references there.

7.2.4 Translation or shifting

Signals, whether functions of a continuous or discrete variable, can be delayed or advanced to produce new
signals. The operation is this:

Lv(t) = v(t− τ)

This is very familiar to us, to say the least.

Think of t as time “now”, where now starts at t = 0, and τ as “time ago”. Think of t − τ as a delay in
time by an amount τ — “delay” if τ > 0, “advance” if τ < 0. To delay a signal 24 hours from current time
(“now”) is to consider the difference between current time and time 24 hours ago, i.e., t− 24. The signal
v delayed 24 hours is v(t− 24) because it’s not until t = 24 that the signal “starts”.

Convolving with δ We could show directly that translation in time (or in space, if that’s the physical
variable) is a linear system. But we can also observe that translation in time is nothing other than
convolving with a translated δ. That is,

v(t− τ) = (δτ ∗ v)(t) ,

and the same for a discrete signal:
v[m− n] = (δn ∗ v)[m] .

Periodizing is a linear system By the same token, we see that periodizing a signal is a linear system,
since this amounts to convolution with a IIIp. Thus

w(t) = Lv(t) = (IIIp ∗ v)(t)

is a linear system. In words, “the periodization of the sum of two signals is the sum of the periodizations”,
with a similar statement for scaling by a constant.



7.3 Cascading Linear Systems 301

7.3 Cascading Linear Systems

An important operation is to compose or cascade two (or more) linear systems. That is, if L and M are
linear systems, then — as long as the operations make sense — ML is also a linear system:

(ML)(α1v1 + α2v2) = M(L(α1v1 + α2v2))
= M(α1Lv1 + α2Lv2) = α1MLv1 + α2MLv2

In general we do not have ML = LM .

The phrase “as long as the operations make sense” means that we do have to pay attention to the domains
and ranges of the individual systems. For example, if we start out with an integrable function f(t) then
Ff makes sense but FFf may not.3

Cascading linear systems defined by matrix multiplication amounts to multiplying the matrices. There’s
a version of this in the important case of cascading two linear systems when one is given as an integral. If
L is the linear system given by

Lv(x) =
∫ b

a
k(x, y)v(y) dy ,

and M is another linear system (not necessarily given by an integral), then the composition ML is the
linear system

MLv(x) =
∫ b

a
M(k(x, y))v(y) dy .

What does this mean, and when is it true? First, k(x, y) has to be a signal upon which M can operate,
and in writing M(k(x, y)) (and then integrating with respect to y) we intend that its operation on k(x, y)
is in its x-dependence. To bring M inside the integral requires some continuity assumptions, but I won’t
spell all this out. The restrictions are mild, and we can be safe in assuming that we can perform such
operations for the applications we’re interested in.

To take an example, what does this look like if M is also given by integration against a kernel? Say

Mv(x) =
∫ b

a
`(x, y)v(y) dy .

Then

MLv(y) =
∫ b

a
`(x, y)Lv(y) dy

=
∫ b

a
`(x, y)

(∫ b

a
k(y, z)v(z) dz

)
dy

(we introduced a new variable of integration)

=
∫ b

a

∫ b

a
`(x, y)k(y, z)v(z)dz dy .

Now if all the necessary hypotheses are satisfied, which is always the tasteful assumption, we can further
write ∫ b

a

∫ b

a
`(x, y)k(y, z)v(z)dz dy =

∫ b

a

(∫ b

a
`(x, y)k(y, z)dy

)
v(z) dz .

3 If f(t) is a Schwartz function, however, then we can keep applying F . Duality results imply, however, that FFFF =
identity, so cascading F doesn’t go on producing new signals forever.
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Thus the cascaded system MLv is also given by integration against a kernel:

MLv(x) =
∫ b

a
K(x, z)v(z) dz ,

where

K(x, z) =
∫ b

a
`(x, y)k(y, z) dy .

The formula for the kernel K(x, z) should call to mind an analogy to a matrix product.

7.4 The Impulse Response, or, The deepest fact in the theory of dis-

tributions is well known to all electrical engineers

It’s not just that defining a (continuous) linear system by an integral is a nice example and a nice thing to
do. It’s the only thing to do. Under very minimal assumptions, all linear systems are of this form. Here’s
what I mean, and here’s how to think about such a statement.

We’re used to recovering the values of a signal by convolving with δ. That is,

v(x) = (δ ∗ v)(x) =
∫ ∞

−∞
δ(x− y)v(y) dy .

Now suppose that L is a linear system. Applying L to v(x) then gives

w(x) = Lv(x) =
∫ ∞

−∞
Lδ(x− y)v(y) dy .

In the integrand only δ(x− y) depends on x, so that’s what L operates on.

What we need to know is what L does to δ, or, as it’s usually put, how the system responds to the impulse
δ(x− y). We’re ready for an important definition.

• Let L be a linear system. The impulse response is

h(x, y) = Lδ(x− y) .

What this means in practice is that we see how the system responds to a very short, very peaked signal.
The limit of such responses is the impulse response. You will note the usual mathematical modus operandi
— we answer the question of how a system responds to an impulse via a definition. I think credit for
introducing the impulse response belongs to engineers, however.

Putting this into the earlier integral, we have what is sometimes called the

Superposition Theorem If L is a linear system with impulse response h(x, y), then

w(x) = Lv(x) =
∫ ∞

−∞
h(x, y)v(y) dy .
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In this way we have realized the linear system L as integrating the input signal against a kernel. The
kernel is the impulse response.

Can this be made more precise? What does it mean for L to operate on δ(x − y)? Is that a function
or a distribution? And so on. The answer is yes, all of this can be made precise and it has a natural
home in the context of distributions. The superposition theorem of electrical engineering is known as the
Schwartz kernel theorem in mathematics, and the impulse response (which is a distribution) is known as
the Schwartz kernel. Moreover, there is a uniqueness statement. It says, in the present context, that for
each linear system L there is a unique kernel h(x, y) such that

Lv(x) =
∫ ∞

−∞
h(x, y)v(y) dy .

The uniqueness is good to know — if you’ve somehow expressed a linear system as an integral with a
kernel then you have found the impulse response. Thus, for example, the impulse response of the Fourier
transform is h(s, t) = e−2πist since

Ff(s) =
∫ ∞

−∞
e−2πistf(t) dt =

∫ ∞

−∞
h(s, t)f(t) dt .

We conclude from this that
Fδ(t− s) = e−2πist ,

which checks with what we know from earlier work.4

The Schwartz kernel theorem is considered probably the hardest result in the theory of distributions. So,
by popular demand, we won’t take this any farther. We can, however, push the analogy with matrices a
little more, and this might be helpful to you.

If you know how an m×n matrix A acts on a basis for Cn (meaning you know the products of the matrix
with the basis vectors), then you can figure out what it does to any vector by expressing that vector in
terms of the basis and using linearity. To review this: Suppose v1, . . . vn is a basis of Cn and A is a linear
transformation. And suppose you know w1 = Av1, . . . , wn = Avn. Every vector v can be written as a
linear combination

v =
n∑

k=1

αkvk

and therefore, by linearity,

Av = A

( n∑

k=1

αkvk

)
=

n∑

k=1

αkAvk =
n∑

k=1

αkwk .

The continuous case is analogous. Think of

v(x) = (δ ∗ v)(x) =
∫ ∞

−∞
δ(x− y)v(y) dy

4 This isn’t circular reasoning, but neither is it a good way to find the Fourier transform of a shifted δ-function; it’s hard to
prove the Schwartz kernel theorem, but it’s easy (with distributions) to find the Fourier transform of δ.
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as a continuous version of expressing the signal v as a “sum” (integral in this case) of its “components”
(its values at all points y) times “basis signals” (the shifted delta functions δ(x − y)). That is, the fact
that we can write v(x) in this way is some way of saying that the δ(x− y) are a “basis”; they’re analogous
to the natural basis of Cn, which, as we’ve seen, are exactly the shifted discrete δ’s.

Applying a linear system L to v(x) as expressed above then gives

w(x) = Lv(x) =
∫ ∞

−∞
Lδ(x− y)v(y) dy =

∫ ∞

−∞
h(x, y)v(y) dy ,

where h(x, y) is the impulse response. Thus h(x, y) is the “matrix representation” for the linear system L
in terms of the basis signals δ(x− y).

The discrete case The discrete case is the same, but easier: no integrals, no distributions. A linear
system in the discrete case is exactly matrix multiplication, and we did part of the analysis of this case
just above. Here’s how to finish it. Suppose the linear system is

w = Av ,

where the linear transformation A is written as a matrix using the natural basis. This means that the
columns of A are exactly the products of A and the basis δ0, δ1, . . . , δN−1. In this basis the matrix A is
the impulse response.

7.5 Linear Time-Invariant (LTI) Systems

If I run a program tomorrow I expect to get the same answers as I do when I run it today. Except I’ll
get them tomorrow. The circuits that carry the currents and compute the 0’s and 1’s will behave (ideally)
today just as they did yesterday and into the past, and just as they should tomorrow and into the future.
We know that’s not true indefinitely, of course — components fail — but as an approximation this kind of
time invariance is a natural assumption for many systems. When it holds it has important consequences
for the mathematical (and engineering) analysis of the system.

The time-invariance property is that a shift in time of the inputs should result in an identical shift in
time of the outputs. Notice that this kind of time invariance is spoken in terms of “shifts in time”, or
“differences in time”, as in “it’s the same tomorrow as it is today”, implying that we’re looking at whether
behavior changes over a time interval, or between two instants of time. “Absolute time” doesn’t make
sense, but differences between two times does.

What is the mathematical expression of this? If w(t) = Lv(t) is the output of the system at current time
then to say that the system is time invariant, or is an LTI system, is to say that a delay of the input signal
by an amount τ produces a delay of the output signal by the same amount, but no other changes. As a
formula, this is

Lv(t− τ) = w(t− τ) .

Delaying the input signal by 24 hours produces a delay in the output by 24 hours, but that’s the only thing
that happens. (Sometimes LTI is translated to read “Linear Translation Invariant” system, recognizing
that the variable isn’t always time, but the operation is always translation. You also see LSI in use,
meaning Linear Shift Invariant.)

What about the impulse response for an LTI system? For a general linear system the impulse response
h(t, τ) = Lδ(t−τ) depends independently on t and τ , i.e. the response can have different forms for impulses
at different times. But this isn’t the case for an LTI system. Let’s say that

Lδ(t) = h(t) ,
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so this is the impulse response at τ = 0. Then by the time invariance

Lδ(t− τ) = h(t− τ) .

That is, the impulse response does not depend independently on t and τ but rather only on their difference,
t − τ . The character of the impulse response means that the superposition integral assumes the form of a
convolution:

w(t) = Lv(t) =
∫ ∞

−∞
h(t− τ)v(τ) dτ = (h ∗ v)(t) .

Conversely, let’s show that a linear system given by a convolution integral is time invariant. Suppose

w(t) = Lv(t) = (g ∗ v)(t) =
∫ ∞

−∞
g(t− τ)v(τ) dτ

Then

L(v(t− t0)) =
∫ ∞

−∞
g(t− τ)v(τ − t0) dτ

(make sure you understand how we substituted the shifted v

=
∫ ∞

−∞
g(t− t0 − s)v(s) ds (substituting s = τ − t0)

= (g ∗ v)(t− t0) = w(t− t0) .

Thus L is time invariant, as we wanted to show. Furthermore, we see that when L is defined this way,
by a convolution, g(t− τ) must be the impulse response, because for a time invariant system the impulse
response is determined by

Lδ(t) = (g ∗ δ)(t) = g(t) ,

that is,
Lδ(t− τ) = g(t− τ) .

This is a very satisfactory state of affairs. Let’s summarize what we have learned:

If L is a linear system, then

Lv(x) =
∫ ∞

−∞
h(x, y)v(y) dy ,

where h(x, y) is the impulse response

h(x, y) = Lδ(x− y) .

The system is time invariant if and only if it is a convolution. The impulse response is a
function of the difference x− y, and the convolution is with the impulse response,

Lv(x) =
∫ ∞

−∞
h(x− y)v(y) dy = (h ∗ v)(x) .

This last result is another indication of how fundamental, and natural, the operation of convolution is.
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How to spot a discrete LTI system A discrete system given by a convolution

w = h ∗ v

is time invariant, as you can check, and if a system is given to you in this form there’s not much to spot.
But a general discrete linear system is given in terms of matrix multiplication, say,

w = Lv ,

Can you spot when this is time invariant?

We observed that the matrix L associated to the system w = h ∗ v is a circulant matrix, filled out column
by column by the shifted versions of h (periodicity!). As an exercise you can show: If L is a circulant
matrix then w = Lv is an LTI system. In terms of convolution it is given by w = h ∗ v where h is the
first column of L.

How to get a raise, if handled politely Finally, we had a list of examples of linear systems, starting
with the most basic example of direct proportion. How do those examples fare with regard to time
invariance? Does “direct proportion” pass the test? Afraid not, except in the simplest case.

Suppose that
Lv(t) = h(t)v(t) (multiplication, not convolution)

is time invariant. Then for any τ , on the one hand,

L(v(t− τ)) = h(t)v(t− τ) ,

and on the other hand
L(v(t− τ)) = (Lv)(t− τ) = h(t− τ)v(t− τ) .

Thus,
h(t − τ)v(t− τ) = h(t)v(t− τ) .

This is to hold for every input v and every τ , and that can only happen if h(t) is constant. Hence the
relationship of direct proportion will only define a time-invariant linear system when the proportionality
factor is constant (“genuine” direct proportion).

So, if your boss comes to you and says: “I want to build a set of switches and I want you to model that for
me by convolution, because although I don’t know what convolution means I know it’s an important idea.”
you will have to say: “That cannot be done because while switches can be modeled as a linear system, the
simple (even for you, boss) relation of direct proportion that we would use does not define a time-invariant
system, as convolution must.” You win.

Later, however, your boss comes back and says; “OK, no convolution, but find the impulse response of my
switch system and find it fast.” This you can do. To be definite, take the case of a single switch system
modeled by

Lv(t) = Π(t)v(t) .

Then
h(t, τ) = Lδ(t− τ) = Π(t)δ(t− τ) = Π(τ)δ(t− τ) .

Sure enough, the impulse response is not a function of t− τ only.
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For extra credit, you also offer your boss the superposition integral, and you show him that it works:

Lv(t) =
∫ ∞

−∞
h(t, τ)v(τ) dτ

=
∫ ∞

−∞
Π(τ)δ(t− τ)v(τ) dτ (this is the superposition integral)

= Π(t)v(t).

It works. You take the rest of the day off.

7.6 Appendix: The Linear Millennium

It’s been quite a 1000 years, and I feel some obligation to contribute to the millennial reminiscences before
we get too far into the new century. I propose linearity as one of the most important themes of mathematics
and its applications in times past and times present.

Why has linearity been so successful? I offer three overall reasons.

1. On a small scale, smooth functions are approximately linear.

This is the basis of calculus, of course, but it’s a very general idea. Whenever one quantity changes
smoothly (differentiably) with another, small changes in one quantity produce, approximately, di-
rectly proportional changes in the other.

2. There’s a highly developed, highly successful assortment of existence and uniqueness results for linear
problems, and existence and uniqueness are related for linear problems.

When does an equation have a solution? If it has one, does it have more than one? These are fun-
damental questions. Think of solving systems of linear equations as the model here. Understanding
the structure of the space of solutions to linear systems in the finite dimensional, discrete case (i.e.,
matrices) is important in itself, and it has served as the model of what to look for in the infinite
dimensional case, discrete and continuous alike.

When people studied the “classical differential equations of mathematical physics” like the heat
equation, the wave equation, and Laplace’s equation, they all knew that they satisfied the “principle
of superposition” and they all knew that this was important. The change in point of view was to
take this “linear structure” of the space of solutions as the starting point; one could add solutions
and get another solution because the differential equations themselves defined linear systems.

3. There’s generally some group structure associated with linear problems.

This mixes the analysis with algebra and geometry and contributes to all of those perspectives. It
brings out symmetries in the problem and symmetries in the solutions. This has turned out to be
very important in sorting out many phenomena in Fourier analysis.

Finally, I’m willing to bet (but not large sums) that “linearity” won’t hold sway too far into the new
millennium, and that nonlinear phenomena will become increasingly more central. Nonlinear problems
have always been important, but it’s the computational power now available that is making them more
accessible to analysis.
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7.7 Appendix: Translating in Time and Plugging into L

From my own bitter experience, I can report that knowing when and how to plug the time shifts into a
formula is not always easy. So I’d like to return briefly to the definition of time invariance and offer a
streamlined, mathematical way of writing this, and also a way to think of it in terms of cascading systems
(and block diagrams). For me, at least, because I’m used to thinking in these terms, this helps to settle
the issue of what gets “plugged in” to L.

The first approach is to write the act of shifting by an amount b as an operation on a signal.5 That is,
bring back the “translate by b” operator and define

(τbv)(x) = v(x− b) .

(Now I must write my variables as x and y instead of t and τ — it’s always something.) If w(x) = Lv(x)
then

w(x− b) = (τbw)(x) ,

and the time invariance property then says that

L(τbv) = τb(Lv), without writing the variable x,

or
L(τbv)(x) = τb(Lv)(x) = (Lv)(x− b), writing the variable x.

It’s the placement of parentheses here that means everything — it says that translating by x and then
applying L (the left hand side) has the same effect as applying L and then translating by τ (the right hand
side). One says that an LTI system L “commutes” with translation. Most succinctly

L τb = τb L .

In fact, “commuting” is just the way to look at time invariance from a second point of view. We already
observed that “translation by b” is itself a linear system. Then the combination of τb and L, in that order,
produces the output L(v(x−b)). To say that L is an LTI system is to say that the system τb followed by L
produces the same result as the system L followed by τb.

Now go back to that plugging in we did earlier in the convolution:

Lv(x) = (g ∗ v)(x) =
∫ ∞

−∞
g(x− y)v(y) dy

Then
L(v(x− x0)) =

∫ ∞

−∞
g(x− y)v(y − x0) dy .

We can show this carefully by writing

L(τx0v)(x) =
∫ ∞

−∞
g(x− y)τx0v(y) dy

(it’s the translated signal τx0v that’s getting convolved)

=
∫ ∞

−∞
g(x− y)v(y − x0)dy

=
∫ ∞

−∞
g(x− x0 − s)v(s) ds (substituting s = y − x0)

= (g ∗ v)(x− x0) = τx0(g ∗ v)(x) = τx0(Lv)(x) .

5 We did this when we talked about the shift theorem for distributions — we really had to in that case.
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7.8 The Fourier Transform and LTI Systems

The fact that LTI systems are identical with linear systems defined by convolution should trip the Fourier
transform switch in your head. Given the LTI system

w(t) = (h ∗ v)(t)

we take Fourier transforms and write
W (s) = H(s)V (s) ,

turning convolution in the time domain to multiplication in the frequency domain. Recall that H(s) is
called the transfer function of the system. We introduced the transfer function earlier, in Chapter 3, and
I refer you there for a quick review. The extra terminology is that the system w = h ∗ v is called a filter
(or an LTI filter) and sometimes the impulse response h is called the filter function.

One catch phrase used to describe LTI filters is that they “add no new frequencies”. Rather than say what
that means, here’s an example of a system that does add new frequencies. Consider

Lv(t) = v(t)2 .

This is nonlinear. If for example we feed in v(t) = cos 2πt we get out

w(t) = Lv(t) = cos2 2πt = 1
2 + 1

2 cos 4πt .

Although the input has a single frequency at 1 Hz, the output has a DC component of 1/2 and a frequency
component at 2 Hz.

7.8.1 Complex exponentials are eigenfunctions

We want to pursue further properties of the transfer function. Consider an LTI system’s response to a
complex exponential of frequency ν, called the frequency response of the system. To find L(e2πiνt) we work
in the frequency domain.

W (s) = H(s)F(e2πiνt)

= H(s)δ(s− ν) (using the Fourier transform pairing δ(s− ν) 
 e2πiνt)
= H(ν)δ(s− ν) (using the property of a function times δ)

Now take the inverse transform. Because H(ν) is a constant we find that

L(e2πiνt) = H(ν)e2πiνt .

This is quite an important discovery. We already know that L is a linear operator. This equation says that

• The exponentials e2πiνt are eigenfunctions of L; that is, the output is a scalar mulitple of these inputs.

• The corresponding eigenvalues are the values of the transfer function H(ν).

This is the reason that complex exponentials are fundamental for studying LTI systems.

Contrast this fact to what happens to a sine or cosine signal under an LTI system L with a real-valued
impulse response. For example, feed in a cosine signal cos(2πνt). What is the response? We have

v(t) = cos(2πνt) = 1
2e

2πiνt + 1
2e
−2πiνt .
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Hence

Lv(t) = 1
2H(ν)e2πiνt + 1

2H(−ν)e−2πiνt

= 1
2H(ν)e2πiνt + 1

2H(ν)e−2πiνt (H(−ν) = H(ν) because h(t) is real-valued)

= 1
2(H(ν)e2πiνt +H(ν)e2πiνt)

= ReH(ν)e2πiνt

= |H(ν)| cos(2πνt+ φH(ν)),

where
H(ν) = |H(ν)|eiφH(ν) .

The response is a cosine of the same frequency, but with a changed amplitude and phase. We would find
a similar result for the response to a sine signal.

This shows that neither the cosine nor the sine are themselves eigenfunctions of L. It is only the complex
exponential that is an eigenfunction. We are (sort of) back to where we started in the course — with
complex exponentials as a basis for decomposing a signal, and now for decomposing an operator.

Let’s take this one step further. Suppose again that L has a real-valued impulse response h(t). Suppose
also that we input a real periodic signal, which we represent as a Fourier series

v(t) =
∞∑

n=−∞
cne

2πint .

Recall that because v(t) is real the Fourier coefficients cn = v̂(n) satisfy

c−n = cn .

If we apply L to v(t) we find

Lv(t) =
∞∑

n=−∞
cnLe

2πint =
∞∑

n=−∞
cnH(n)e2πint .

But the fact that h(t) is real valued implies that

H(−n) = H(n) ,

the same symmetry as the Fourier coefficients. That is, if

Cn = cnH(n)

then C−n = Cn and the output w(t) is also a real, periodic function with Fourier series

w(t) =
∞∑

n=−∞
Cne

2πint .
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The discrete case The situation for discrete LTI filters is entirely analogous. Suppose the system is
given by

w = Lv = h ∗ v .

Take v = ωk as input and take the discrete Fourier transform of both sides of w = h ∗ ωk:

F w[m] = F h[m]F ωk[m]
= F h[m]Nδ[m− k] (remember the extra factor N)
= H[m]Nδ[m− k]
= H[k]Nδ[m− k]

Now take the inverse DFT of both sides (remembering that F δk = (1/N)ωk):

w = H[k] ωk .

Hence
Lωk = H[k] ωk

and we see that ωk is an eigenvector of L for k = 0, 1, . . . , N − 1 with eigenvalue H[k].

Remark We already know that 1, ω, ω2, . . . , ωN−1 are an orthogonal basis for CN . This is the
orthogonality of the vector complex exponentials — the basis for much of the theory of the DFT. This
new result says that if L is a discrete LTI system then the complex exponentials are an orthogonal basis
for CN consisting of eigenvectors of L. They “diagonalize” L, meaning that if the matrix of L is expressed
in this basis it is a diagonal with diagonal entries H[k].

7.9 Matched Filters

LTI systems are used extensively in the study of communications systems, where a fundamental concern
is to distinguish the signal from noise and to design a filter that will do the job. That is, the filter should
“respond strongly” to one particular signal and only to that signal. This is not a question of recovering
or extracting a particular signal from the noise, it’s a question of detecting whether the signal is present
— think radar. If the filtered signal rises above a certain threshold an alarm goes off, so to speak, and we
believe that the signal we want is there.

Here’s a highly condensed discussion of this central problem, but even a condensed version fits naturally
with what we’re doing. With w(t) = (h ∗ v)(t), and W (s) = H(s)V (s), we’ll try to design the transfer
function H(s) so that the system responds strongly (a term still to be defined) to a particular signal v0(t).

Let’s begin with some general observations. Suppose an incoming signal is of the form v(t) + p(t) where
p(t) is “noise”. Then the output is h(t) ∗ (v(t) + p(t)) = w(t) + q(t), where q(t), the contribution of the
noise to the output, has total energy ∫ ∞

−∞
|q(t)|2 dt ,

which, using Parseval’s theorem and the transfer function, we can write as
∫ ∞

−∞
|q(t)|2 dt =

∫ ∞

−∞
|Q(s)|2 ds =

∫ ∞

−∞
|H(s)|2|P (s)|2 ds .

Now we make an assumption about the nature of the noise. Take the special case of “white noise”. A
reasonable definition of that term — one that translates into a workable condition — is that p(t) should
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have equal power in all frequencies.6 This means simply that |P (s)| is constant, say |P (s)| = C, and so the
output energy of the noise is

Enoise = C2

∫ ∞

−∞
|H(s)|2ds .

We can compare the energy of the noise output to the strength of the output signal w(t) = (h ∗ v)(t).
Using Fourier inversion we write

w(t) =
∫ ∞

−∞
W (s)e2πist ds =

∫ ∞

−∞
H(s)V (s)e2πist ds .

Long dormant since our discussion of Fourier series, used briefly in a problem on autocorrelation, just wait-
ing for this moment, the Cauchy-Schwarz inequality now makes its triumphant reappearance.7 According
to Cauchy-Schwarz,

|w(t)|2 =
∣∣∣∣
∫ ∞

−∞
H(s)V (s)e2πist ds

∣∣∣∣
2

≤
∫ ∞

−∞
|H(s)|2 ds

∫ ∞

−∞
|V (s)|2 ds (we also used |e2πist| = 1)

That is,
|w(t)|2

Enoise
≤ 1
C2

∫ ∞

−∞
|V (s)|2 ds .

By definition, the fraction |w(t)|2/Enoise is the signal-to-noise ratio, abbreviated SNR. The biggest the
SNR can be is when there is equality in the Cauchy-Schwarz inequality. Thus the filter that gives the
strongest response, meaning largest SNR, when a given signal v0(t) is part of a combined noisy signal
v0(t) + p(t) is the one with transfer function proportional to V0(s)e2πist, where V0(s) = Fv(t).

This result is sometimes referred to as the matched filter theorem:

• To design a filter that has the strongest response to a particular signal v0(t), in the sense of having
the largest signal-to-noise ratio, design it so the transfer function H(s) “has the same shape” as
V0(s).

To recapitulate, when the filter is designed this way, then

|w0(t)|2 =
∣∣∣∣
∫ ∞

−∞
H(s)V0(s)e2πist ds

∣∣∣∣
2

=
1
C2

Enoise

∫ ∞

−∞
|V0(s)|2 ds =

1
C2
Enoise

∫ ∞

−∞
|v0(t)|2 dt (by Parseval)

Thus the SNR is
|w0(t)|2

Enoise
=

1
C2

∫ ∞

−∞
|v0(t)|2 dt =

1
C2

(Energy of v(t)) .

6 There are other ways to get to this definition, e.g., the autocorrelation of p(t) should be zero.
7 It says, in the form we’re going to use it, |

R
fg dt| ≤ (

R
|f |2 dt)1/2(

R
|g|2 dt)1/2. With equality if and only if f is a constant

multiple of g
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7.10 Causality

In the words of our own Ron Bracewell: “It is well known that effects never precede their causes.” This
commonsense sentiment, put into action for systems, and for inputs and outputs, is referred to as causality.
In words, we might describe causality as saying that the past determines the present but not vice versa.
More precisely, if L is a system and Lv(t) = w(t) then the value of w(t) for t = t0 depends only on the
values of v(t) for t < t0. More precisely still:

If v1(t) = v2(t) for t < t0 then Lv1(t) = Lv2(t) for t < t0, and this holds for all t0.

At first glance you may be puzzled by the statement, or wonder if there’s any statement at all: If two
signals are the same then mustn’t their outputs be the same? But the signals v1(t) and v2(t) are assumed
to exist for all time, and the system L might produce outputs based not only on the values of the inputs
up to a certain time, t0, but on times “into the future” as well. Thus it is a nontrivial requirement that
a system be causal — that the values of the output depend only on the values of the input “up to the
present”.

The definition given above is the general definition for a system L to be causal.8 One often sees other
versions of the definition, depending on additional assumptions on the system, and it’s worthwhile sorting
these out.

For example, we can formulate the causality condition a little more compactly, and a little more conve-
niently, when L is linear (which, if you notice, I didn’t assume above). First, if L is linear and causal then
v(t) = 0 for t < t0 implies that w(t) = 0 for t < t0. Why? Watch the logic here. Let u(t) ≡ 0 be the
zero signal. Then Lu(t) = 0 because L is linear. Causality means that v(t) = 0 = u(t) for t < t0 implies
w(t) = Lv(t) = Lu(t) = 0 for t < 0.

Conversely, suppose that L is linear and that v(t) = 0 for t < t0 implies w(t) = 0 for t < t0, where w(t) =
Lv(t), as usual. We claim that L is causal. For this, if v1(t) = v2(t) for t < t0 then v(t) = v1(t)− v2(t) = 0
for t < t0, so, by the hypothesis on L, if t < t0 then 0 = Lv(t) = L(v1(t) − v2(t)) = Lv1(t) − Lv2(t), i.e.
Lv1(t) = Lv2(t) for t < t0. These arguments together show that:

• A linear system is causal if and only if v(t) = 0 for t < t0 implies w(t) = 0 for t < t0.

Finally, for an LTI system one t0 is as good as the next, so to speak, and we can simplify the definition
of causality even further. If L is linear and causal then v(t) = 0 for t < 0 implies w(t) = 0 for t < 0.
(Note: t < 0 here, not t < t0.) Conversely, suppose L is an LTI system such that v(t) = 0 for t < 0 implies
Lv(t) = 0 for t < 0. We claim that L is causal. For this, suppose that v(t) is zero for t < t0 and let
w(t) = Lv(t). The signal u(t) = v(t + t0) is zero for t < 0 and hence Lu(t) = 0 for t < 0. But by time
invariance Lu(t) = Lv(t + t0) = w(t + t0). Thus w(t + t0) = 0 for t < 0, i.e. w(t) = 0 for t < t0. The
conclusion is:

• An LTI system is causal if and only if v(t) = 0 for t < 0 implies w(t) = 0 for t < 0.

In many treatments of causal systems it is only this last definition that is presented, with the assumptions,
sometimes taken tacitly, that linearity and time invariance are in force. In fact, one often runs directly
into the following two definitions, usually given without the preceding motivation:

8 One also sees the definition stated with “<“ replaced by “≤”, i.e., to include “the present”. I gave the definition with “<”
because it’s more standard, especially in connection with the characterization of causality via the impulse response, which
we’ll soon see.
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• A function v(t) is causal if it is zero for t < 0.

• An LTI system is causal if causal inputs go to causal outputs.

That’s a fine definition, but it seems a little stark.

Still another definition of causality for LTI systems can be given in terms of the impulse response. Since
δ(t) = 0 for t < 0 the impulse response h(t) = Lδ(t) of a causal LTI system satisfies h(t) = 0 for t < 0.
Conversely, if the impulse response for an LTI system satisfies this condition, and if v(t) is a signal with
v(t) = 0 for t < 0 then the output w(t) = (v ∗ h)(t) is zero for t < 0, too. Thus L is causal. This is the
definition one finds in Bracewell’s book, to cite one example:

• An LTI system is causal if and only if its impulse response h(t) is zero for t < 0.

Many systems are causal and many aren’t, and as an exercise you should look over the examples we’ve
already had and decide which is which. Causality is sometimes called the condition of “physical realizabil-
ity” because of its “past determines the present” interpretation. Many systems governed by differential
equations are causal (current in RC circuits, for example). Indeed, the idea that a differential equation
plus initial conditions determines the solution uniquely is another way causality is often put to use.9

If causality seems naturally to apply to a system where “time is running” and “past” and “present” make
sense, it’s important to realize that causality may not apply where “everything is there already”. For
example, optical systems may not be causal. The variable is typically not time but rather may represent
some kind of spatial relation. The input may be an object and the output an image. There is no past and
present, all the information that there is and ever will be is present. Or to take an example when time is
still the relevant variable, one may want to design a noncausal system to filter prerecorded music. In the
case of prerecorded music the full signal is known, and one may want to take into account past, present
and future values of the input to decide on what the output should sound like.

7.11 The Hilbert Transform

Let’s now consider a causal LTI system given to us as a convolution

w(t) = (h ∗ v)(t) .

Taking the Fourier transform,
W (s) = H(s)V (s) .

Owing to the fact that h(t) is causal, the transfer function H(s) has some special properties that are
important in many applications.

To analyze H(s) it is convenient to use the unit step function

u(t) =

{
0 t < 0
1 t ≥ 0

We’ve modified this slightly from how we first defined it. For one thing we are calling it u instead of H ,
since we’re using H for the transfer function, and for another it’s more natural to have u(t) = 0 for t < 0
instead of for t ≤ 0 for use in connection with causality as we’ve defined it. No big deal.

9 I’m not even going to touch what happens to causality in quantum mechanics.
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Recall that the Fourier transform of u(t) is

U(s) = 1
2

(
δ(s) +

1
πis

)
.

Since h(t) = 0 for t < 0, we can write
h(t) = u(t)h(t) .

Therefore

H(s) = U(s) ∗H(s)

= 1
2

(
δ(s) +

1
πis

)
∗H(s)

= 1
2(δ ∗H)(s) +

1
2πis

∗H(s) = 1
2H(s) +

1
2πis

∗H(s) .

Thus we have the weird looking result

1
2H(s) =

1
2πis

∗H(s) or H(s) =
1
πis

∗H(s) .

Let’s work with this a little more.

Split H(s) into its real and imaginary parts, writing, for the time being,

H(s) = R(s) + iI(s) ,

where
R(s) = ReH(s) , I(s) = ImH(s) .

Then

R(s) + iI(s) =
1

πis
∗
(
R(s) + iI(s)

)

=
1

πis
∗R(s) +

1
πs

∗ I(s) =
1
πs

∗ I(s) − i
1
πs

∗R(s) (using 1/i = −i).

Now equate real and imaginary parts on the two sides of the equation. We see that

ReH(s) =
1
πs

∗ ImH(s)

ImH(s) = − 1
πs

∗ ReH(s)

The real and imaginary parts of the transfer function H(s) are “paired” with each other; we get one
from the other via a convolution with 1/πs. Ordinarily, the real and imaginary parts of a complex-valued
function have nothing to do with each other, but in this case they are very strongly related — if we know
one then we know the other. It’s as if we get all of H(s) by knowing only half of it. This merits some
additional discussion.

The Hilbert transform as an operator Way back in Chaper 4 I threatened to look at a convolution
with 1/x. The time has come. The Hilbert transform10 of a function v(x) is defined by

Hv(x) = − 1
πx

∗ v(x) = − 1
π

∫ ∞

−∞

v(y)
x− y

dy =
1
π

∫ ∞

−∞

v(y)
y − x

dy .

10 Named after David Hilbert, (1862–1943). Hilbert made fundamental contributions to a great many areas of mathematics,
including number theory, geometry, logic, and differential and integral equations. The Hilbert transform comes up in several
areas of harmonic analysis, but I think it may well be true that more engineers know more about its properties than many
mathematicians.
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A few comments. The integral is improper since the denominator in the integrand is zero when y = x.11

As we discussed in Chapter 4 (and we’ll do no more now), for functions v(x) that we typically work with,
the integral exists as a Cauchy principal value. That is, it exists, and is defined, via taking a symmetric
limit:

Hv(x) =
1
π
pr.v.

∫ ∞

−∞

v(y)
y − x

dy =
1
π

lim
ε→0

(∫ x−ε

−∞

v(y)
y − x

dy +
∫ ∞

x+ε

v(y)
y − x

dy

)

Having said this once I won’t say it again, and I won’t write “pr.v.” in front of the integral anymore.

In Chapter 4 we found the Fourier transform of 1/x to be

F
(1

x

)
= −πi sgn s ,

where

sgn (x) =

{
+1 x > 0
−1 x < 0

Thus
F
(
− 1

πx

)
= i sgn s ,

and
F(Hv)(s) = F(− 1

πx
∗ v(x)) = i sgn sV (s) .

For right now we want to draw just one conclusion from the calculation of the Fourier transform. If we
apply H twice to a function then, on taking the Fourier transform,

F(H(Hv))(s) = F
(
(− 1

πx
) ∗ (− 1

πx
) ∗ v(x)

)
= (i sgns)(i sgns)V (s) = −sgn 2s V (s) = −V (s) .

Taking the inverse Fourier transform we see that

H(Hv(x)) = −v(x) .

Hence the Hilbert transform is invertible and its inverse is just its negative:

H−1v(x) = −Hv(x) =
1

πx
∗ v(x) ,

a result that’s far from obvious.

Let’s now use the Hilbert transform and its inverse to recast the results on the real and imaginary parts
of the transfer function for a causal LTI system:

If L is a causal LTI system with transfer function H(s), then

ImH(s) = H(ReH(s))

ReH(s) = H−1(ImH(s))

Sorry if I can’t make this statement more thrilling at this point, but it turns out to be quite significant.
The Hilbert transform comes up in many applications, especially in communications. We’ll examine a few
more of its properties.

11 It’s also improper because it has limits ±∞, but that’s the kind of improper integral we’re used to working with.
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The Hilbert transform as an LTI system Since it’s a convolution, we can view the Hilbert transform
as an LTI system:

w(t) = (Hv)(t) = − 1
πt

∗ v(t) .

However, though H is naturally associated with causal systems, w = Hv is not a causal system since its
impulse response is −1/πt.

As a filter, this convolution is a rather strange operation. We can write it in terms of Fourier transforms
as

W (s) = i sgns V (s) ,

or, in terms of amplitude and phase,

|W (s)|eiφW (s) = eiπ/2 sgn s |V (s)| eiφV (s) .

The amplitudes of the spectrum are unchanged but the phases are rotated. The phases corresponding to
positive frequencies are rotated by +π/2, since sgn s = 1 for s > 0. The phases corresponding to negative
frequencies are rotated by −π/2, since sgn s = −1 for s < 0, and

−1 · eiπ/2 = e−iπeiπ/2 = e−iπ/2 .

In summary

W (s) =

{
|V (s)|ei(φV (s)+π/2) s > 0

|V (s)|ei(φV (s)−π/2) s < 0

For this reason Hv(t) is referred to as the quadrature function of v(t) in some literature. Among the various
definitions, the term “quadrature” means the process of making something square, and in astronomy it
refers to “any configuration in which the angular separation of two celestial bodies, as measured from a
third, is 90◦.”

Suppose we pass a cosine through the Hilbert LTI filter. Take v(t) = cos 2πat, a > 0, for example. Then
V (s) = (1/2)(δ(s− a) + δ(s+ a)) and the Fourier transform of the output w(t) is

W (s) =
i

2
sgn s(δ(s− a) + δ(s+ a))

=
i

2
(sgna δ(s− a) + sgn (−a)δ(s+ a))

=
i

2
(δ(s− a) − δ(s+ a)) = − 1

2i
(δ(s− a)− δ(s+ a))

We recognize this last expression as the Fourier transform of − sin 2πat. Thus

H cos 2πat = − sin 2πat .

Using H−1 = −H we then also see that

H sin 2πat = cos 2πat .

Personally, I can’t think of a more complicated way to turn a sine into a cosine than convolving with 1/πt,
but there you are.

For another example, direct integration gives the Hilbert transform of the rectangle function:

HΠ(x) =
1
π

∫ ∞

−∞

Π(y)
y − x

dy =
1
π

∫ 1/2

−1/2

1
y − x

dy =
1
π

ln

∣∣∣∣∣
x− 1

2

x+ 1
2

∣∣∣∣∣

And in case you’re wondering, in the Section 7.13 I’ll give the calculations that show

H sinc t = −πt
2

sinc2 t

2
.

The graph is:
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The Hilbert transform and analytic signals Those of you who have had courses in circuits are well
aware of how much using “phasors” (also known as complex exponentials) can simplify the analysis. In this
course we have likewise seen many examples of the benefits of using complex exponentials to represent real
signals, but the one drawback of introducing complex exponentials is that they seem inevitably to require
that we consider negative and positive frequencies in representing real signals. This manifests itself in the
spectrum of a real signal having two sidebands due to the relationship Ff(−s) = Ff(s). However, the use
of the Hilbert transform allows one to complete a real signal to an “analytic signal” — a complex-valued
form of the signal that involves only positive frequencies. This representation can simplify results and
methods in some cases, especially in applications to communications systems. In the present notes we’ll
just go through the basic construction — take a course, any course, on communications to see this in daily
use.

To take an example, the real signal cos 2πat can be written directly, as usual, as

cos 2πat = 1
2(e2πiat + e−2πiat) .

The right hand side includes both the frequencies a and −a. But it’s also natural to recover the real signal
as the real part of the complex or “analytic signal”

cos 2πat = Re(cos 2πat+ i sin 2πat) = Re e2πiat ,

which involves only positive frequencies. In this example the real and imaginary parts are a Hilbert
transform pair, sin 2πat = −H cos 2πat. The pairing of real and imaginary parts via the Hilbert transform
is what’s done in general. Here’s how.

Take a real-valued signal v(t) and denote its Fourier transform by V (s), as usual. Since v(t) is real valued,
V (s) has the symmetry property

V (−s) = V (s) ,

so, in particular, v has positive and negative frequencies in its spectrum. Cut off the negative frequencies
by multiplying V (s) by the unit step function u(s) (not the Fourier transform of u, just u). Actually, as
we’ll see, it’s best to consider 2u(s)V (s).

Now form
Z(t) = F−1(2u(s)V (s)) .
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By construction Z(t) has no negative frequencies in its spectrum. Watch how it’s related to the original
signal v(t). We can write 2u(s) = 1 + sgn s, hence

F−1(2u(s)V (s)) = F−1((1 + sgn s)V (s))

= F−1(V (s) + sgn sV (s))

= F−1(V (s)) + F−1(sgn sV (s)) = v(t)− i(Hv)(t)

Z(t) is called the analytic signal associated with v(t).

To summarize, let v(t) be a real-valued signal with Fourier transform V (s). Let Z(t) = F−1(2u(s)V (s)).
Then

1. Z(t) = v(t)− i(Hv)(t), so that v(t) = ReZ(t).

2. Z(t) has no negative frequencies in its spectrum.

3. Briefly, to get the spectrum of Z(t) cut off the negative frequencies of v(t) and double the amplitudes
of the positive frequencies.

Two examples of this where we’ve already computed the Hilbert transform are:

v(t) = cos 2πat ⇒ Z(t) = cos 2πat+ i sin2πat

v(t) = sinc t ⇒ Z(t) = sinc t+
iπt

2
sinc2 t

2

An example: Narrowband signals Let’s look at just one application of the analytic signal, to the
representation of narrowband signals. Without giving a precise definition, a narrowband signal might look
something like this:

And its spectrum might look something like this:
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The idea is that the spectrum is concentrated in two islands, roughly centered about some frequencies ±s0,
and that the spread about ±s0 is much less than s0. Often such a signal is of the form

v(t) = A(t) cos(2πs0t + φ(t)) ,

where the amplitude A(t) and the phase φ(t) are slowly varying. Write v(t) as

v(t) = 1
2A(t)

(
e2πis0t+iφ(t) + e−(2πis0t+iφ(t))

)
= 1

2A(t)eiφ(t)e2πis0t + 1
2A(t)e−iφ(t)e−2πis0t .

Remember that we get the analytic signal corresponding to v(t) by cutting off the negative frequencies and
doubling the amplitudes of the positive frequencies. So to the extent that the spectral islands of v(t) are
really separated, and the amplitude and phase are slowly varying functions, we are justified in saying that,
approximately,

Z(t) = A(t)eiφ(t)e2πis0t .

In terms of Z(t) the envelope of the signal v(t) is

A(t) = |Z(t)|

and the phase is
ψ(t) = argZ(t) = 2πs0t + φ(t) .

In this context it is common to introduce the instantaneous frequency

sinst =
1
2π
dψ

dt
= s0 +

1
2π
dφ

dt
.

7.12 Appendix: The Hilbert Transform of sinc

To find the Hilbert transform of the sinc function, we start in the frequency domain. That is,

F(H sinc)(s) = i sgn sF sinc(s) = i sgnsΠ(s) .

The graph of sgn sΠ(s) looks like this:
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How do we find the inverse Fourier transform of something like that? Here’s one way to do it. Remember
the triangle function, defined by

Λ(x) =

{
1 − |x| |x| ≤ 1
0 otherwise

The graph is

Its Fourier transform is
FΛ(s) = sinc2s .

If we scale this to 1
2Λ(2x), which has the following graph,

then it’s clear that
sgnxΠ(x) = − d

dx

1
2
Λ(2x) .

Thus
F−1(i sgn sΠ(s)) = F−1(−i d

ds

1
2
Λ(2s))

and we can find the right hand side using the derivative theorem (and the stretch theorem). This gives

F−1(−i d

ds

1
2
Λ(2s)) = −i(−2πit)

1
4
sinc2 t

2
= −πt

2
sinc2 t

2

and the final result
H sinc t = −πt

2
sinc2 t

2
.

7.13 Filters Finis

We now want to live and work in the discrete world and discuss some typical digital filters and their uses.
There are entire books and courses on digital filters (e.g., EE 264 and EE 265), so we’ll touch on only a
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few aspects, enough, I hope to give you a sense of how digital filters work and to encourage you to find out
more.

The set up is a discrete LTI system, given by

w = h ∗ v ,

where v, h, w are N -vectors, periodized, and h is the impulse response. Taking the DFT we write

W = H V .

7.13.1 Averaging in the time domain

A common use of filters is to “smooth” data. The procedure starts out as a least squares fit, which turns
into a running average, which is then realized to be a digital filter, which is finally refined by analysis in
the frequency domain. We’ve spoken many times of convolution as a smoothing operation, and here it is
quite explicitly.

Suppose we have a list of data, typically arising as samples of some function f(x), say (x0, f(x0)),
(x1, f(x1)), . . . , (xn, f(xn)). We suppose that we’ve sampled at evenly spaced points. We plot the data
and join successive points to make a continuous curve. It’s continuous but it looks too jagged, perhaps,
and we suspect too much noise in the measurements, whatever. We set out to smooth the data.

Averaging and least squares Let g(x) be the smoothed version of f(x). A first attempt to define g(x)
is this:

• Instead of taking the points two at a time and joining successively to make a graph, start by taking
the first three data points (x0, f(x0)), (x1, f(x1)), (x2, f(x2)) and find the line that best fits these
three points according to the method of least squares.

• As the first new data point, take the midpoint of the least squares fit. Since the x’s are evenly spaced
the midpoint has x-coordinate x1, and g(x1) is then defined to be the corresponding y-coordinate on
the line, i.e., the midpoint of the least squares fit is (x1, g(x1)).

• Repeat this procedure using the triple of original data points (x1, f(x1)), (x2, f(x2)), (x3, f(x3)).
This gives the second new data point (x2, g(x2)).

• Then work with (x2, f(x2)), (x3, f(x3)), (x4, f(x4)) to get the third new data point, (x3, g(x3)) and
so on through the list up to the triple (xn−2, f(xn−2), (xn−1, f(xn−1), (xn, f(xn)) producing the final
new data point xn−1, g(xn−1)).

Note that this procedure “drops” the original left endpoint and the right endpoint, i.e., the new data points
run from (x1, g(x1)) up to (xn−1, g(xn−1)).

Let’s find a formula for g(xi), and let’s switch to writing things in terms of discrete signals. Say we have
taken N data points, which we write as a vector f . For reasons of symmetry, especially later when we
switch to the frequency domain, it’s a little more convenient to write

f = (f [−N

2
+ 1], . . . , f [0], . . . , f [

N

2
]) ,

letting the index range from m = −N/2 + 1 to m = N/2. We consider the samples f [m] to be tagged by
the index m and the data points to be (m, f [m]) (rather than (xm, f(xm))) and we want to find the new
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points (m, g[m]) determined by the least squares method just described. The formula for least squares
(which I won’t derive here — see EE 263) gives a very simple answer to this:

g [m] = 1
3(f [m− 1] + f [m] + f [m+ 1])

In words, the new value g[m] is the average of the old value f [m] with its adjacent values on either side,
f [m− 1] and f [m+ 1].

The formula for g is often called a running average because the point f [m] is replaced by the average of
itself and its neighbors, and the neighboring points overlap. Note, however, that it’s always the original
data that’s getting averaged, not a combination of old and new data12.

Using δ’s it’s very easy to express g as a convolution,

g = 1
3(δ1 + δ0 + δ−1) ∗ f ,

for we have

g[m] = 1
3((δ1 ∗ f )[m] + (δ0 ∗ f )[m] + (δ−1 ∗ f )[m])

= 1
3(f [m− 1] + f [m] + f [m+ 1]) ,

just as advertised. This is an appealing and useful way to think of the operation, and very suitable to
computation, but convolution comes at a cost — there are a few consequences of the formula that we must
sort out.

Modified averaging If we let m run from −N/2 + 2 to N/2− 1, dropping the left and right endpoints,
then we have described algebraically what we originally described geometrically, no more, no less. But if
we let convolution be convolution, then it’s natural (essential if the DFT comes into the picture) that the
inputs be periodic, and with m running from −N/2 − 1 to N/2 the endpoints do come in and something
funny happens there.

At the left endpoint m = −N/2 + 1 we have, using periodicity,

g[−N

2
+ 1] = 1

3

(
f [−N

2
] + f [−N

2
+ 1] + f [−N

2
+ 2]

)

= 1
3

(
f [

N

2
] + f [−N

2
+ 1] + f [−N

2
+ 2]

)

(the left index changed from −N

2
to −N

2
+N =

N

2
) .

And at the right endpoint m = N/2, again using periodicity, we have,

g [
N

2
] = 1

3

(
f [

N

2
− 1] + f [

N

2
] + f [

N

2
+ 1]

)

= 1
3

(
f [

N

2
− 1] + f [

N

2
] + f [−N

2
+ 1]

)

(the right index changed from
N

2
+ 1 to

N

2
+ 1 −N = −N

2
+ 1) .

We see that in computing the value of the new left endpoint the operation of convolution has averaged in
the old value at the right endpoint, a value at the opposite end of the original data! The corresponding
thing happens in computing the new right endpoint. This is certainly not what was called for in the original
description of smoothing as the least squares line fit of three adjacent points, or put differently, it doesn’t
seem much like “smoothing” to average together data from opposite ends of the sampled values.

There are several things we could do.

12 This is the difference between a nonrecursive filter, such as we have here, and a recursive filter, when the new values involve
the old values together with previously computed new values.



324 Chapter 7 Linear Time-Invariant Systems

• As mentioned first, we could run the convolution as is, and then just drop the computed values at
the left and right endpoints. That would be in keeping with the original description as a moving
least squares fit of three adjacent data points.

• Or before convolving we could replace both the original left endpoint and original right endpoint
values by the average of the two, that is, the first and last values of the input f are modified to be

A = 1
2

(
f [−N

2
+ 1] + f [

N

2
]
)
.

This sort of thing is done quite often in DFT calculations, and although we won’t pursue it here the
more you work with the DFT the more you will run into the dictum: replace the values at a jump
by the average. The idea derives from the phenomenon that the Fourier series of a discontinuous
function converges to the average value of the endpoints at a jump discontinuity.

What’s most often done is to modify the filter function h rather than the data, and it’s done for more than
one reason. In the original running average filter the coefficients of the filter function all have weight 1/3.
Rather then doing that, we take the neighbors, f [m − 1] and f [m + 1], to have half the weight of the
midpoint f [m]. This “modified running average filter” (or modified least squares filter) is thus defined by

g =
(

1
4δ1 + 1

2δ0 + 1
4δ−1

)
∗ f ,

or
g [m] = 1

4 f [m− 1] + 1
2 f [m] + 1

4 f [m+ 1] .

We’ll analyze the effects of this filter in the frequency domain, but first a confession. We did the three-
point running average because it was easy to describe and easy to write out. It’s more common to take a
five-point running average. The least squares interpretation is as before: take the least squares fit to five
consecutive data points and take the new data point to be the midpoint of this fit. With that description,
the filter is

g = 1
5

(
δ2 + δ1 + δ0 + δ−1 + δ−2

)
∗ f ,

or
g[m] = 1

5(f [m− 2] + f [m− 1] + f [m] + f [m+ 1] + f [m+ 2]) .

Once again, to address the endpoint problem, this is usually modified so that the two end values are given
half the weight of the interior values. This results in the modified 5-point running average filter:

g =
(

1
8δ2 + 1

4δ1 + 1
4δ0 + 1

4δ−1 + 1
8δ−2

)
∗ f = h ∗ f

or
g[m] = 1

8 f [m− 2] + 1
4 f [m− 1] + 1

4 f [m] + 1
4 f [m+ 1] + 1

8 f [m+ 2] .

Here’s an example of the five-point filter in action. The old data, f , is a list of 24 samples of the sum of
three sinusoids. The picture is this:
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The new data, the output g, is also sequence of 24 data points, and here’s a picture of that.

It’s clear that the old data has been smoothed, and it appears as though the higher frequencies have been
eliminated. Whether this smoothing has lost something essential in the data is up to you and your scientific
conscience to sort out.

7.13.2 Analysis in the frequency domain

How have the higher frequencies been eliminated? That’s where the picture in the frequency domain comes
in.

Take the DFT, of order 24, of g = h ∗ f and write it as

G = H F .

Here’s the plot of F showing spikes at the three frequencies (positive and negative) in the signal.

Here’s the plot of the transfer function H.

Taking the product, H F, of these two sequences to produce G has the effect of diminishing the higher
frequencies in the original signal f while leaving the magnitude of the lower frequency components largely
unchanged. Here’s a plot of G, showing exactly this phenomenon.
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The pictures of the transfer functions in the frequency domain shed more light on the difference between
the straight running average, where all values are weighted equally, and the modified running average,
where the end values are given half the weight of the interior values. Here’s a plot of the transfer function
for running average filters of 3 points, 5 points, 7 points, and 9 points. (The transfer functions are even,
so only the plots for positive frequencies are shown. These plots come from the book Digital Filters by
R. Hamming.) Remember, the effect of the filter is to modify the input by multiplying its spectrum by the
transfer function.

For each plot there are two features to note. In each case the transfer function has a “center lobe” from its
maximum down to its first minimum (the plot for the 3 point filter doesn’t go out far enough to show this),
and then there are “sidelobes” where the transfer function oscillates. The frequencies close to the center
are passed through pretty much unchanged, and the ones that are in the side lobe regions are decreased.
The sidelobes die out, so the farther out we go the more the frequencies in those regions are eliminated,
but it’s a question of how fast the sidelobes are dying out.

Now here’s a plot of the transfer functions for the modified running average.

The center lobes are wider here than they are for the unmodified running average, so more frequencies in the
center are passed through, but more important is that for the modified running average the sidelobes damp
down much more quickly. Thus frequencies outside the center lobe are decreased much more dramatically.
The result is “smoother” data (fewer high frequencies) back in the time domain.
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One word of caution. Although the modified running average as we’ve defined it is in widespread use, it’s
not the only way to smooth data. I hope one consequence of the discussion so far is that you can imagine
designing and analyzing your own filters.

It’s faster in frequency It’s worth pausing to remember the gains in computational efficiency provided
by the FFT algorithm for calculating the DFT, and realizing what this means for filtering, as above.
Calculating the convolution of two (periodic) sequences of length N requires on the order of N2 operations.
On the other hand, using the FFT on the inputs (O(N log2N operations), multiplying componentwise the
results (N operations), and then inverting (anotherO(N log2N) operations) requires a total ofO(N log2N)
operations. Filtering by passing to the frequency domain gives a considerable savings.

7.13.3 Find that filter

Let’s finish our very brief discussion of digital filters with the discrete form of lowpass and bandpass filters.
You can get highpass and notch filters directly from these.

Lowpass filters The example of finding a running average had us convolving in the time domain and
multiplying in the frequency domain, and the effect was to eliminate, or at least attenuate, the higher
frequencies. If we start in the frequency domain instead, and just cut off higher frequencies, we wind up
with a lowpass filter. We discussed this in Chapter 3, strictly in the continuous case, and it might help to
review that briefly here.
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An ideal low-pass filter sets all frequencies above a certain amount νc to zero and lets all frequencies
below νc pass through unchanged. If we write, as usual,

w(t) = (h ∗ v)(t), W (s) = H(s)V (s) ,

then we want the transfer function

H(s) = Π2νc(s) =

{
1 |s| ≤ νc

0 |s| > νc

That is, the transfer function is just a scaled rect function. In the time domain the impulse response is

h(t) = 2νc sinc(2νct) .

In the discrete case with N -points, going, say, from −N/2 + 1 to N/2, the transfer function is defined to
be

H[m] =





1 |m| < mc

1
2 |m| = mc

0 mc < |m| ≤ N
2

Here mc is the index associated with the frequency where we want to cut off. We take the value to be 1/2
at the endpoints. This choice comes from the “take the average at a jump discontinuity” principle.

In Section 7.15 I’ll derive the explicit formula for the (discrete) impulse response:

h[m] =
cos(πm/N) sin(2πmmc/N)

sin(πm/N)

Here are plots of H[m] and h[m] with N = 64 and mc = 32:
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Notice again the sidelobes in the time domain, i.e. the many, small oscillations. These are less pronounced
for this definition of h, i.e., with H defined to be 1/2 at the endpoints, than they would be if H jumped
straight from 0 to 1, but even so, using this filter with a signal that itself has “edges” can cause some
unwanted effects, called ringing. To counteract such effects one sometimes brings the transfer function
down to zero more gradually. One example of how to do this is

H[m] =





1 |m| ≤ mc −m0

sin
(

π(mc−m)
2m0

)
mc −m0 < |m| ≤ mc

0 mc < |m|

where, again, mc is where you want the frequencies cut off, and m0 is where you start bringing the transfer
function down.

Here is the picture in frequency — the transfer function, H:

And here is the picture in time — the impulse response, h:

The sidelobes are definitely less pronounced.

Bandpass filters We also looked earlier at bandpass filters, filters that pass a particular band of fre-
quencies through unchanged and eliminate all others. The transfer function B(s) for a bandpass filter can
be constructed by shifting and combining the transfer function H(s) for the lowpass filter.

We center our bandpass filter at ±ν0 and cut off frequencies more than νc above and below ν0. That is,
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we define

B(s) =

{
1 ν0 − νc ≤ |s| ≤ ν0 + νc

0 |s| < ν0 − νc or |s| > ν0 + νc

= H(s− ν0) +H(s+ ν0) .

From the representation of B(s) in terms of H(s) it’s easy to find the impulse response, b(t):

b(t) = h(t)e2πiν0t + h(t)e−2πiν0t (using the shift theorem)
= 2h(t) cos(2πν0t).

Here’s a picture of the discrete version of a bandpass filter in the frequency and time domains. Once again
you notice the sidelobes. As before, it’s possible to mollify this.

7.14 Appendix: Geometric Series of the Vector Complex Exponentials

There are times when explicit, closed form expressions for discrete filters are helpful, say if one wants to
do a careful analysis of “endpoint effects” and related phenomena, or try out modifications in particular
situations. The formulas also work out nicely, by and large, and further advance the notion that the
discrete case can be made to look like the continuous case (and thus allow us to use what we know from
the latter).



7.14 Appendix: Geometric Series of the Vector Complex Exponentials 331

Such undertakings always seem to depend on calculations with the vector complex exponentials. One
particular calculation that comes up a lot is a formula for a geometric sum of the ω, a sum of the form

1 + ω + ω2 + · · ·+ ωq−1 ,

or more generally
1 + ωp + ω2p + · · ·+ ω(q−1)p .

We take 1 ≤ q ≤ N , and for the second sum the case that will be of interest is when pq = N . It’s easy
enough to work out these sums componentwise, but it’s also interesting to proceed as in the scalar case.
Thus if we write

S = 1 + ω + ω2 + · · ·+ ωq−1

then
ω S = ω + ω2 + ω3 + · · ·+ ωq ,

and
(1− ω)S = 1− ωq .

On the left hand side, 1−ω has a 0 in the slot 0 and nowhere else. On the right hand side, 1−ωq is also
zero in the slot 0, and possibly in other slots. We thus have to determine the zeroth slot of S directly, and
it’s just the sum of q 1’s. We can write

S = qδ0 + T ,

where T is 0 in the zeroth slot. The remaining components of T are the components from 1 to N − 1 in
(1 − ωq)/(1 − ω) understood as the componentwise quotient. All of the quotients are defined, and some
of them may be zero. If q = N then 1 − ωN is identically zero. A rather precise way of writing the final
answer is

1 + ω + ω2 + · · ·+ ωq−1 = S = qδ0 + (1− δ0)
1− ωq

1− ω
,

but I’m tempted to write the formula for the sum as

1 + ω + ω2 + · · ·+ ωq−1 =
1− ωq

1 − ω

with an understanding, between grown-ups, that the indeterminate form 0/0 in the zero slot calls for
special evaluation. See that — it looks just like the scalar case. (Suggestions of how better to express these
understandings are welcome.)

The situation for
S = 1 + ωp + ω2p + · · ·+ ω(q−1)p

is a little different. As above we find
(1− ωp)S = 1 − ωpq .

Suppose that pq = N . Then the right hand side is the zero vector. Now,

ωp = (1, ωp, ω2p, . . . , ω(N−1)p) = (1, ωN/q, ω2N/q, . . . , ω(N−1)N/q) ,

and so 1 − ωp will have zeros in the slots 0, q, 2q, . . . , (p− 1)q and nowhere else. Therefore S must have
zeros other than in these slots, and we see that the value of S is q in each of the slots 0, q, 2q, . . . , (p−1)q.
This shows that

1 + ωp + ω2p + · · ·+ ω(q−1)p = qδ0 + qδq + qδ2q + . . .+ qδ(p−1)q ,

or more compactly
q−1∑

k=0

ωkp = q

p−1∑

k=0

δkq , where pq = N .
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Note that this includes the special case when p = 1 and q = N .

We’ll only use the first geometric sum formula and not the one just above. The second comes up in defining
and working with a discrete III function.13

7.15 Appendix: The Discrete Rect and its DFT

We defined the discrete rect function to be indexed from −N/2 + 1 to N/2, so we assume here that N is
even. Suppose p is also even where 0 < p < N/2. For any real number α, define

Πα
p = α(δp/2 + δ−p/2) +

p/2−1∑

k=−p/2+1

δk .

Why the extra parameter α in setting the value at the endpoints ±p/2? In the continuous case one also
encounters different normalizations of the rect function at the points of discontinuity, but it hardly makes
a difference in any formulas and calculations; most of the time there’s an integral involved and changing
the value of a function at a few points has no effect on the value of the integral. Not so in the discrete case,
where sums instead of integrals are the operators that one encounters. So with an eye toward flexibility in
applications, we’re allowing an α.

For work on digital filters, Πα
p is typically (part of) a transfer function and we want to know the impulse

response, i.e., the inverse DFT. By duality it suffices to work with the forward transform, so we’ll find
F Πα

p .

Just as Πα
p comes in two parts, so too does its Fourier transform:. The first part is easy:

F (α(δp/2 + δ−p/2)) = α(ωp/2 + ω−p/2) = 2αRe{ωp/2} = 2α cos
(

πp

N
[−N

2
+ 1 :

N

2
]
)
.

The second part takes more work:

F

(
p/2−1∑

k=−p/2+1

δk

)
=

p/2−1∑

k=−p/2+1

ωk =
p/2−1∑

k=0

(
ωk + ω−k

)
− 1 = 2 Re




p/2−1∑

k=0

ωk


− 1

Take the zero slot first. We find directly that

F Πα
p [0] = 2α+ p− 1 .

For the nonzero slots we use the formula for the geometric series,

p/2−1∑

k=0

ωk =
p

2
δ0 +

1 − ωp/2

1 − ω
.

Now, with the understanding that we’re omitting the zero slot,

1
1− ω

=
1
2
1 +

1
2

1 + ω

1 − ω
=

1
2
1− i

2
cos( π

N [−N
2 + 1 : N

2 ])
sin( π

N [−N
2 + 1 : N

2 ])
.

13 For those interested, I have extra notes on this, together with a discussion of a discrete sampling formula that we’re
developing for applications to medical imaging problems. Current stuff.
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Thus

2 Re




p/2−1∑

k=0

ωk


− 1 = 2 Re

((
1
2
1− i

2
cos( π

N [−N
2 + 1 : N

2 ])
sin( π

N [−N
2 + 1 : N
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Combining this with the first part of the calculation gives

F Πα
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Not to put too fine a point on it, but slot 0 of

sin(π(p−1)
N [−N

2 + 1 : N
2 ])

sin( π
N [−N

2 + 1 : N
2 ])

does make sense as a limit and its value is p− 1. I wouldn’t object to writing the formula for F Πα
p simply

as

F Πα
p = 2α cos(

πp

N
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2
+ 1 :

N

2
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At a point m ∈ Z,

F Πα
p [m] = 2α cos(

πpm

N
) +

sin(π(p−1)m
N )

sin(πm
N )

.

Since p is even, and p − 1 is odd, we observe that F Πα
p is periodic of period N , which it had better be.

(Because p − 1 is odd both the numerator and the denominator of the second term change sign if m is
replaced by m+N , while, because p is even, the cosine term is unchanged.)

The most common choices of α are 0, 1, and 1/2. The corresponding Fourier transforms are

F Π0
p =

sin( (p−1)π
N [−N

2 + 1 : N
2 ])

sin( π
N [−N

2 + 1 : N
2 ])

, F Π0
p[0] = p− 1

F Π1
p =

sin( (p+1)π
N [−N

2 + 1 : N
2 ])

sin( π
N [−N

2 + 1 : N
2 ])

, F Π1
p[0] = p+ 1

(use the addition formula for sines to write
2 cos(πpm/N) sin(πm/N) + sin π(p− 1)m/N) = sin(π(p+ 1)m/N))

F Π1/2
p = 1

2(F Π1
p + F Π0
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=
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2 ]) sin(πp
N [−N

2 + 1 : N
2 ])

sin( π
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, F Π1/2
p [0] = p

This last formula is the one we had earlier in the notes for the impulse response of the discrete lowpass
filter. In the notation there, p/2 = mc and

h[m] =
cos(πm/N) sin(2πmmc/N)

sin(πm/N)
.
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Chapter 8

n-dimensional Fourier Transform

8.1 Space, the Final Frontier

To quote Ron Bracewell from p. 119 of his book Two-Dimensional Imaging, “In two dimensions phenomena
are richer than in one dimension.” True enough, working in two dimensions offers many new and rich
possibilities. Contemporary applications of the Fourier transform are just as likely to come from problems in
two, three, and even higher dimensions as they are in one — imaging is one obvious and important example.
To capitalize on the work we’ve already done, however, as well as to highlight differences between the one-
dimensional case and higher dimensions, we want to mimic the one-dimensional setting and arguments
as much as possible. It is a measure of the naturalness of the fundamental concepts that the extension
to higher dimensions of the basic ideas and the mathematical definitions that we’ve used so far proceeds
almost automatically. However much we’ll be able to do in class and in these notes, you should be able to
read more on your own with some assurance that you won’t be reading anything too much different from
what you’ve already read.

Notation The higher dimensional case looks most like the one-dimensional case when we use vector
notation. For the sheer thrill of it, I’ll give many of the definitions in n dimensions, but to raise the comfort
level we’ll usually look at the special case of two dimensions in more detail; two and three dimensions are
where most of our examples will come from.

We’ll write a point in Rn as an n-tuple, say

x = (x1, x2, . . . , xn) .

Note that we’re going back to the usual indexing from 1 to n. (And no more periodic extensions of the
n-tuples either!) We’ll be taking Fourier transforms and may want to assign a physical meaning to our
variables, so we often think of the xi’s as coordinates in space, with the dimension of length, and x as
the “spatial variable”. We’ll then also need an n-tuple of “frequencies”, and without saying yet what
“frequency” means, we’ll (typically) write

ξ = (ξ1, ξ2, . . . , ξn)

for those variables “dual to x”. Recall that the dot product of vectors in Rn is given by

x · ξ = x1ξ1 + x2ξ2 + · · ·+ xnξn .

The geometry of Rn is governed by the dot product, and using it will greatly help our understanding as
well as streamline our notation.
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8.1.1 The Fourier transform

We started this course with Fourier series and periodic phenomena and went on from there to define the
Fourier transform. There’s a place for Fourier series in higher dimensions, but, carrying all our hard won
experience with us, we’ll proceed directly to the higher dimensional Fourier transform. I’ll save Fourier
series for a later section that includes a really interesting application to random walks.

How shall we define the Fourier transform? We consider real- or complex-valued functions f defined on
Rn, and write f(x) or f(x1, . . . , xn), whichever is more convenient in context. The Fourier transform of
f(x) is the function Ff(ξ), or f̂(ξ), defined by

Ff(ξ) =
∫

Rn
e−2πix·f(x) dx .

The inverse Fourier transform of a function g(ξ) is

F−1g(x) =
∫

Rn
e2πix·g(ξ) dξ .

The Fourier transform, or the inverse transform, of a real-valued function is (in general) complex valued.

The exponential now features the dot product of the vectors x and ξ; this is the key to extending the
definitions from one dimension to higher dimensions and making it look like one dimension. The integral
is over all of Rn, and as an n-fold multiple integral all the xj ’s (or ξj ’s for F−1) go from −∞ to ∞. Realize
that because the dot product of two vectors is a number, we’re integrating a scalar function, not a vector
function. Overall, the shape of the definitions of the Fourier transform and the inverse transform are the
same as before.

The kinds of functions to consider and how they enter into the discussion — Schwartz functions, L1, L2, etc.
— is entirely analogous to the one-dimensional case, and so are the definitions of these types of functions.
Because of that we don’t have to redo distributions et al. (good news), and I’ll seldom point out when this
aspect of the general theory is (or must be) invoked.

Written out in coordinates, the definition of the Fourier transform reads:

Ff(ξ1, ξ2, . . . , ξn) =
∫

Rn
e−2πi(x1ξ1+···+xnξn)f(x1, . . . , xn) dx1 . . .dxn ,

so for two dimensions,

Ff(ξ1, ξ2) =
∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)f(x1, x2) dx1 dx2 .

The coordinate expression is manageable in the two-dimensional case, but I hope to convince you that it’s
almost always much better to use the vector notation in writing formulas, deriving results, and so on.

Arithmetic with vectors, including the dot product, is pretty much just like arithmetic with numbers.
Consequently, all of the familiar algebraic properties of the Fourier transform are present in the higher
dimensional setting. We won’t go through them all, but, for example,

Ff(−ξ) =
∫

Rn
e−2πix·(−)f(x) dx =

∫

Rn
e2πix·f(x) dx = F−1f(ξ) ,

which is one way of stating the duality between the Fourier and inverse Fourier transforms. Here, recall
that if ξ = (ξ1, . . . , ξn) then

−ξ = (−ξ1, . . . ,−ξn) .
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To be neater, we again use the notation
f−(ξ) = f(−ξ) ,

and with this definition the duality results read exactly as in the one-dimensional case:

Ff− = (Ff)−, (Ff)− = F−1f

In connection with these formulas, I have to point out that changing variables, one of our prized techniques
in one dimension, can be more complicated for multiple integrals. We’ll approach this on a need to know
basis.

It’s still the case that the complex conjugate of the integral is the integral of the complex conjugate, so
when f(x) is real valued,

Ff(−ξ) = Ff(ξ) .

Finally, evenness and oddness are defined exactly as in the one-dimensional case. That is:

f(x) is even if f(−x) = f(x), or without writing the variables, if f− = f .

f(x) is odd f(−ξ) = −f(ξ), or f− = −f .

Of course, we no longer have quite the easy geometric interpretations of evenness and oddness in terms of a
graph in the higher dimensional case as we have in the one-dimensional case. But as algebraic properties of
a function, these conditions do have the familiar consequences for the higher dimensional Fourier transform,
e.g., if f(x) is even then Ff(ξ) is even, if f(x) is real and even then Ff(ξ) is real and even, etc. You could
write them all out. I won’t.

Soon enough we’ll calculate the Fourier transform of some model functions, but first let’s look a little bit
more at the complex exponentials in the definition and get a better sense of what “the spectrum” means
in higher dimensions.

Harmonics, periodicity, and spatial frequencies The complex exponentials are again the building
blocks — the harmonics — for the Fourier transform and its inverse in higher dimensions. Now that they
involve a dot product, is there anything special we need to know?

As mentioned just above, we tend to view x = (x1, . . . , xn) as a spatial variable and ξ = (ξ1, . . . , ξn)
as a frequency variable. It’s not hard to imagine problems where one would want to specify n spatial
dimensions each with the unit of distance, but it’s not so clear what an n-tuple of frequencies should mean.
One thing we can say is that if the spatial variables (x1, . . . , xn) do have the dimension of distance then
the corresponding frequency variables (ξ1, . . . , ξn) have the dimension 1/distance. For then

x · ξ = x1ξ1 + · · ·+ xnξn

is dimensionless and exp(−2πix · ξ) makes sense. This corresponds to dimensions of time and 1/time in
the one-dimensional time domain and frequency domain picture.

For some further insight let’s look at the two-dimensional case. Consider

exp(±2πix · ξ) = exp(±2πi(x1ξ1 + x2ξ2)) .
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(It doesn’t matter for the following discussion whether we take + or − in the exponent.) The exponent
equals 1 whenever x · ξ is an integer, that is, when

ξ1x1 + ξ2x2 = n, n an integer .

With ξ = (ξ1, ξ2) fixed this is a condition on (x1, x2), and one says that the complex exponential has zero
phase whenever ξ1x1 + ξ2x2 is an integer. This terminology comes from optics.

There’s a natural geometric interpretation of the zero phase condition that’s very helpful in understanding
the most important properties of the complex exponential. For a fixed ξ the equations

ξ1x1 + ξ2x2 = n

determine a family of parallel lines in the (x1, x2)-plane (or in the spatial domain if you prefer that phrase).
Take n = 0. Then the condition on x1 and x2 is

ξ1x1 + ξ2x2 = 0

and we recognize this as the equation of a line through the origin with (ξ1, ξ2) as a normal vector to the
line.1 (Remember your vectors!) Then (ξ1, ξ2) is a normal to each of the parallel lines in the family. One
could also describe the geometry of the situation by saying that the lines each make an angle θ with the
x1-axis satisfying

tan θ =
ξ2
ξ1
,

but I think it’s much better to think in terms of normal vectors to specify the direction — the vector point
of view generalizes readily to higher dimensions, as we’ll discuss.

Furthermore, the family of lines ξ1x1 +ξ2x2 = n are evenly spaced as n varies; in fact, the distance between
the line ξ1x1 + ξ2x2 = n and the line ξ1x1 + ξ2x2 = n+ 1 is

distance =
1

‖ξ‖ =
1√

ξ21 + ξ22
.

I’ll let you derive that. This is our first hint, in two dimensions, of a reciprocal relationship between the
spatial and frequency variables:

• The spacing of adjacent lines of zero phase is the reciprocal of the length of the frequency vector.

Drawing the family of parallel lines with a fixed normal ξ also gives us some sense of the periodic nature
of the harmonics exp(±2πix · ξ). The frequency vector ξ = (ξ1, ξ2), as a normal to the lines, determines
how the harmonic is oriented, so to speak, and the magnitude of ξ, or rather its reciprocal, 1/

√
ξ21 + ξ22

determines the period of the harmonic. To be precise, start at any point (a, b) and move in the direction
of the unit normal, ξ/‖ξ‖. That is, move from (a, b) along the line

x(t) = (x1(t), x2(t)) = (a, b) + t
ξ

‖ξ‖ or x1(t) = a+ t
ξ1
‖ξ‖ , x2(t) = b+ t

ξ2
‖ξ‖

at unit speed. The dot product of x(t) and ξ is

x(t) · ξ = (x1(t), x2(t)) · (ξ1, ξ2) = aξ1 + bξ2 + t
ξ21 + ξ22
‖ξ‖ = aξ1 + bξ2 + t‖ξ‖ ,

1 Note that (ξ1, ξ2) isn’t assumed to be a unit vector, so it’s not the unit normal.
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and the complex exponential is a function of t along the line:

exp(±2πix · ξ) = exp(±2πi(aξ1 + bξ2)) exp(±2πit‖ξ‖) .

The factor exp(±2πi(aξ1 + bξ2)) doesn’t depend on t and the factor exp(±2πit‖ξ‖) is periodic with period
1/‖ξ‖, the spacing between the lines of zero phase. Now, if ξ1 or ξ2 is large, then the spacing of the lines is
close and, by the same token, if ξ1 and ξ2 are small then the lines are far apart. Thus although “frequency”
is now a vector quantity we still tend to speak in terms of a “high frequency” harmonic, when the lines
of zero phase are spaced close together and a “low frequency” harmonic when the lines of zero phase are
spaced far apart (“high” and “low” are relatively speaking, of course). Half way between the lines of zero
phase, when t = 1/2‖ξ‖, we’re on lines where the exponential is −1, so 180◦ out of phase with the lines of
zero phase.

One often sees pictures like the following.
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Here’s what you’re looking at: The function e2πix· is complex valued, but consider its real part

Re e2πix· = 1
2

(
e2πix· + e−2πix·)

= cos 2πix · ξ = cos 2π(ξ1x1 + ξ2x2)

which has the same periodicity and same lines of zero phase as the complex exponential. Put down white
stripes where cos 2π(ξ1x1 + ξ2x2) ≥ 0 and black stripes where cos 2π(ξ1x1 + ξ2x2) < 0, or, if you want to
get fancy, use a gray scale to go from pure white on the lines of zero phase, where the cosine is 1, down to
pure black on the lines 180◦ out of phase, where the cosine is −1, and back up again. This gives a sense
of a periodically varying intensity, and the slowness or rapidity of the changes in intensity indicate low or
high spatial frequencies.

The spectrum The Fourier transform of a function f(x1, x2) finds the spatial frequencies (ξ1, ξ2). The
set of all spatial frequencies is called the spectrum, just as before. The inverse transform recovers the
function from its spectrum, adding together the corresponding spatial harmonics, each contributing an
amount Ff(ξ1, ξ2). As mentioned above, when f(x1, x2) is real we have

Ff(−ξ1,−ξ2) = Ff(ξ1, ξ2) ,

so that if a particular Ff(ξ1, ξ2) is not zero then there is also a contribution from the “negative frequency”
(−ξ1,−ξ2). Thus for a real signal, the spectrum, as a set of points in the (ξ1, ξ2)-plane, is symmetric about
the origin.2 If we think of the exponentials of corresponding positive and negative frequency vectors adding
up to give the signal then we’re adding up (integrating) a bunch of cosines and the signal really does seem
to be made of a bunch of a stripes with different spacings, different orientations, and different intensities

2 N.b.: It’s not the values Ff(ξ1, ξ2) that are symmetric, just the set of points (ξ1, ξ2) of contributing frequencies.
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(the magnitudes |Ff(ξ1, ξ2)|). It may be hard to imagine that an image, for example, is such a sum of
stripes, but, then again, why is music the sum of a bunch of sine curves?

In the one-dimensional case we are used to drawing a picture of the magnitude of the Fourier transform
to get some sense of how the energy is distributed among the different frequencies. We can do a similar
thing in the two-dimensional case, putting a bright (or colored) dot at each point (ξ1, ξ2) that is in the
spectrum, with a brightness proportional to the magnitude |Ff(ξ1, ξ2)|. This, the energy spectrum or the
power spectrum, is symmetric about the origin because |Ff(ξ1, ξ2)| = |Ff(−ξ1,−ξ2)|.

Here are pictures of the spatial harmonics we showed before and their respective spectra.

Which is which? The stripes have an orientation (and a spacing) determined by ξ = (ξ1, ξ2) which is normal
to the stripes. The horizontal stripes have a normal of the form (0, ξ2) and they are of lower frequency so
ξ2 is small. The vertical stripes have a normal of the form (ξ1, 0) and are of a higher frequency so ξ1 is
large, and the oblique stripes have a normal of the form (ξ, ξ) with a spacing about the same as for the
vertical stripes

Here’s a more interesting example.3

For the picture of the woman, what is the function we are taking the Fourier transform of ? The function
f(x1, x2) is the intensity of light at each point (x1, x2) — that’s what a black-and-white image is for the
purposes of Fourier analysis. Incidentally, because the dynamic range (the range of intensities) can be so
large in images it’s common to light up the pixels in the spectral picture according to the logarithm of the
intensity.

Here’s a natural application of filtering in the frequency domain for an image.

The first picture shows periodic noise that appears quite distinctly in the frequency spectrum. We eliminate
those frequencies and take the inverse transform to show the plane more clearly.4

Finally, there are reasons to add things to the spectrum as well as take them away. An important and
relatively new application of the Fourier transform in imaging is digital watermarking. Watermarking is an
old technique to authenticate printed documents. Within the paper an image is imprinted (somehow — I
don’t know how this is done!) that only becomes visible if held up to a light or dampened by water. The

3 I showed this picture to the class a few years ago and someone yelled : “That’s Natalie!”

4 All of these examples are taken from the book Digital Image Processing by G. Baxes.
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idea is that someone trying to counterfeit the document will not know of or cannot replicate the watermark,
but that someone who knows where to look can easily verify its existence and hence the authenticity of the
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document. The newer US currency now uses watermarks, as well as other anticounterfeiting techniques.

For electronic documents a digital watermark is added by adding to the spectrum. Insert a few extra
harmonics here and there and keep track of what you added. This is done in a way to make the changes in
the image undetectable (you hope) and so that no one else could possibly tell what belongs in the spectrum
and what you put there (you hope). If the receivers of the document know where to look in the spectrum
they can find your mark and verify that the document is legitimate.

Higher dimensions In higher dimensions the words to describe the harmonics and the spectrum are
pretty much the same, though we can’t draw the pictures5. The harmonics are the complex exponentials
e±2πix· and we have n spatial frequencies, ξ = (ξ1, ξ2, . . . , ξn). Again we single out where the complex
exponentials are equal to 1 (zero phase), which is when ξ · x is an integer. In three-dimensions a given
(ξ1, ξ2, ξ3) defines a family ξ · x = integer of parallel planes (of zero phase) in (x1, x2, x3)-space. The
normal to any of the planes is the vector ξ = (ξ1, ξ2, ξ3) and adjacent planes are a distance 1/‖ξ‖ apart.
The exponential is periodic in the direction ξ with period 1/‖ξ‖. In a similar fashion, in n dimensions
we have families of parallel hyperplanes ((n− 1)-dimensional “planes”) with normals ξ = (ξ1, . . . , ξn), and
distance 1/‖ξ‖ apart.

8.1.2 Finding a few Fourier transforms: separable functions

There are times when a function f(x1, . . . , xn) of n variables can be written as a product of n functions of
one-variable, as in

f(x1, . . . , xn) = f1(x1)f2(x2) · · ·fn(xn) .

Attempting to do this is a standard technique in finding special solutions of partial differential equations
— there it’s called the method of separation of variables. When a function can be factored in this way, its
Fourier transform can be calculated as the product of the Fourier transform of the factors. Take n = 2 as
a representative case:

Ff(ξ1, ξ2) =
∫

Rn
e−2πix·f(x) dx

=
∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)f(x1, x2) dx1 dx2

=
∫ ∞

−∞

∫ ∞

−∞
e−2πiξ1x1e−2πiξ2x2f1(x1)f2(x2) dx1 dx2

=
∫ ∞

−∞

(∫ ∞

−∞
e−2πiξ1x1f1(x) dx1

)
e−2πiξ2x2f2(x2) dx2

= Ff1(ξ1)
∫ ∞

−∞
e−2πiξ2x2f2(x2) dx2

= Ff1(ξ1)Ff2(ξ2)

In general, if f(x1, x2, . . . , xn) = f1(x1)f2(x2) · · ·fn(xn) then

Ff(ξ1, x2, . . . ξn) = Ff1(ξ1)Ff2(ξ2) · · ·Ffn(ξn) .

If you really want to impress your friends and confound your enemies, you can invoke tensor products in
this context. In mathematical parlance the separable signal f is the tensor product of the functions fi and

5 Any computer graphics experts out there care to add color and 3D-rendering to try to draw the spectrum?
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one writes
f = f1 ⊗ f2 ⊗ · · · ⊗ fn ,

and the formula for the Fourier transform as

F(f1 ⊗ f2 ⊗ · · · ⊗ fn) = Ff1 ⊗Ff2 ⊗ · · · ⊗ Ffn .

People run in terror from the ⊗ symbol. Cool.

Higher dimensional rect functions The simplest, useful example of a function that fits this description
is a version of the rect function in higher dimensions. In two dimensions, for example, we want the function
that has the value 1 on the square of side length 1 centered at the origin, and has the value 0 outside this
square. That is,

Π(x1, x2) =

{
1 −1

2 < x1 <
1
2 , −

1
2 < x2 <

1
2

0 otherwise

You can fight it out how you want to define things on the edges. Here’s a graph.

We can factor Π(x1, x2) as the product of two one-dimensional rect functions:

Π(x1, x2) = Π(x1)Π(x2) .

(I’m using the same notation for the rect function in one or more dimensions because, in this case, there’s
little chance of confusion.) The reason that we can write Π(x1, x2) this way is because it is identically
1 if all the coordinates are between −1/2 and 1/2 and it is zero otherwise — so it’s zero if any of the
coordinates is outside this range. That’s exactly what happens for the product Π(x1)Π(x2).
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For the Fourier transform of the 2-dimensional Π we then have

FΠ(ξ1, ξ2) = sinc ξ1 sinc ξ2 .

Here’s what the graph looks like.

A helpful feature of factoring the rect function this way is the ability, easily, to change the widths in the
different coordinate directions. For example, the function which is 1 in the rectangle −a1/2 < x1 < a1/2,
−a2/2 < x2 < a2/2 and zero outside that rectangle is (in appropriate notation)

Πa1a2(x1, x2) = Πa1(x1)Πa2(x2) .

The Fourier transform of this is

FΠa1a2(ξ1, ξ2) = (a1 sinca1ξ1)(a2 sinc a2ξ2) .

Here’s a plot of (2 sinc 2ξ1)(4 sinc4ξ2). You can see how the shape has changed from what we had before.
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The direct generalization of the (basic) rect function to n dimensions is

Π(x1, x2, . . . , xn) =

{
1 −1

2 < xk <
1
2 , k = 1, . . . , n

0 otherwise

which factors as
Π(x1, x2, . . . , xn) = Π(x1)Π(x2) · · ·Π(xn) .

For the Fourier transform of the n-dimensional Π we then have

FΠ(ξ1, ξ2, . . . , ξn) = sinc ξ1 sinc ξ2 · · · sinc ξn .

It’s obvious how to modify higher-dimensional Π to have different widths on different axes.

Gaussians Another good example of a separable function — one that often comes up in practice — is
a Gaussian. By analogy to the one-dimensional case, the most natural Gaussian to use in connection with
Fourier transforms is

g(x) = e−π|x|2 = e−π(x2
1+x2

2+···+x2
n) .

This factors as a product of n one-variable Gaussians:

g(x1, . . . , xn) = e−π(x2
1+x2

2+···+x2
n) = e−πx2

1 e−πx2
2 · · ·e−πx2

n = h(x1)h(x2) · · ·h(xn) ,

where
h(xk) = e−πx2

k .

Taking the Fourier transform and applying the one-dimensional result (and reversing the algebra that we
did above) gets us

Fg(ξ) = e−πξ2
1 e−πξ2

2 · · ·e−πξ2
n = e−π(ξ2

1+ξ2
2+···+ξ2

n) = e−π||2 .
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As for one dimension, we see that g is its own Fourier transform.

Here’s a plot of the two-dimensional Gaussian.

8.2 Getting to Know Your Higher Dimensional Fourier Transform

You already know a lot about the higher dimensional Fourier transform because you already know a lot
about the one-dimensional Fourier transform — that’s the whole point. Still, it’s useful to collect a few of
the basic facts. If some result corresponding to the one-dimensional case isn’t mentioned here, that doesn’t
mean it doesn’t hold, or isn’t worth mentioning — it only means that the following is a very quick and
very partial survey. Sometimes we’ll work in Rn, for any n, and sometimes just in R2; nothing should be
read into this for or against n = 2.

8.2.1 Linearity

Linearity is obvious:
F(αf + βg)(ξ) = αFf(ξ) + βFg(ξ) .

8.2.2 Shifts

In one dimension a shift in time corresponds to a phase change in frequency. The statement of this is the
shift theorem:

• If f(x) 
 F (s) then f(x± b) 
 e±2πisbF (s).

It looks a little slicker (to me) if we use the delay operator (τbf)(x) = f(x− b), for then we can write

F(τbf)(s) = e−2πisbFf(s) .
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(Remember, τb involves −b.) Each to their own taste.

The shift theorem in higher dimensions can be made to look just like it does in the one-dimensional
case. Suppose that a point x = (x1, x2, . . . , xn) is shifted by a displacement b = (b1, b2, . . . , bn) to
x + b = (x1 + b1, x2 + b2, . . . , xn + bn). Then the effect on the Fourier transform is:

• The Shift Theorem If f(x) 
 F (ξ) then f(x ± b) 
 e±2πib·F (ξ).

Vectors replace scalars and the dot product replaces multiplication, but the formulas look much the same.

Again we can introduce the delay operator, this time “delaying” by a vector:

τbf(x) = f(x − b) ,

and the shift theorem then takes the form

F(τbf)(ξ) = e−2πib·Ff(ξ) .

(Remember, τb involves a −b.) Each to their own taste, again.

If you’re more comfortable writing things out in coordinates, the result, in two dimensions, would read:

Ff(x1 ± b1, x2 ± b2) = e2πi(±ξ1b1±ξ2b2)Ff(ξ1, ξ2) .

The only advantage in writing it out this way (and you certainly wouldn’t do so for any dimension higher
than two) is a more visible reminder that in shifting (x1, x2) to (x1 ± b1, x2 ± b2) we shift the variables
independently, so to speak. This independence is also (more) visible in the Fourier transform if we break
up the dot product and multiply the exponentials:

Ff(x1 ± b1, x2 ± b2) = e±2πiξ1b1e±2πiξ2b2Ff(ξ1, ξ2) .

The derivation of the shift theorem is pretty much as in the one-dimensional case, but let me show you
how the change of variable works. We’ll do this for n = 2, and, yes, we’ll write it out in coordinates. Let’s
just take the case when we’re adding b1 and b2. First off

F(f(x1 + b2, x2 + b2)) =
∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)f(x1 + b1, x2 + b2) dx1 dx2

We want to make a change of variable, turning f(x1+b1, x2+b2) into f(u, v) by the substitutions u = x1+b1
and v = x2 + b2 (or equivalently x1 = u − b1 and x2 = v − b2). You have two choices at this point. The
general change of variables formula for a multiple integral (stay with it for just a moment) immediately
produces.

∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)f(x1 + b1, x2 + b2) dx1 dx2

=
∫ ∞

−∞

∫ ∞

−∞
e−2πi((u−b1)ξ1+(v−b2)ξ2)f(u, v) du dv

=
∫ ∞

−∞

∫ ∞

−∞
e2πib1ξ1e2πib2ξ2e−2πi(uξ2+vξ2)f(u, v) du dv

= e2πi(b1ξ1+b2ξ2)

∫ ∞

−∞

∫ ∞

−∞
e−2πi(uξ2+vξ2)f(u, v) du dv

= e2πi(b1ξ1+b2ξ2)Ff(ξ1, ξ2) ,
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and there’s our formula.

If you know the general change of variables formula then the shift formula and its derivation really are just
like the one-dimensional case, but this doesn’t do you much good if you don’t know the change of variables
formula for a multiple integral. So, for completeness, let me show you an alternative derivation that works
because the change of variables u = x1 + b1, v = x2 + b2 changes x1 and x2 separately.

Ff(x1 + b2, x2 + b2) =
∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)f(x1 + b1, x2 + b2) dx1 dx2

=
∫ ∞

−∞
e2πix1ξ1

(∫ ∞

−∞
e2πix2ξ2f(x1 + b1, x2 + b2) dx2

)
dx1

=
∫ ∞

−∞
e2πix1ξ1

(∫ ∞

−∞
e−2πi(v−b2)ξ2f(x1 + b1, v) dv

)
dx1

(substituting v = x2 + b2)

= e2πib2ξ2

∫ ∞

−∞
e−2πix1ξ1

(∫ ∞

−∞
e−2πivξ2f(x1 + b1, v) dv

)
dx1

= e2πib2ξ2

∫ ∞

−∞
e−2πivξ2

(∫ ∞

−∞
e−2πix1ξ1f(x1 + b1, v) dx1

)
dv

= e2πib2ξ2

∫ ∞

−∞
e−2πivξ2

(∫ ∞

−∞
e−2πi(u−b1)ξ1f(u, v) du

)
dv

(substituting u = x1 + b1)

= e2πib2ξ2e2πib1ξ1

∫ ∞

−∞
e−2πivξ2

(∫ ∞

−∞
e−2πiuξ1f(u, v) du

)
dv

= e2πib2ξ2e2πib1ξ1

∫ ∞

−∞

∫ ∞

−∞
e−2πi(uξ1+vξ2)f(u, v) du dv

= e2πib2ξ2e2πib1ξ1 Ff(ξ1, ξ2)

= e2πi(b2ξ2+b1ξ1) Ff(ξ1, ξ2) .

And there’s our formula, again.

The good news is, we’ve certainly derived the shift theorem! The bad news is, you may be saying to yourself:
“This is not what I had in mind when you said the higher dimensional case is just like the one-dimensional
case.” I don’t have a quick comeback to that, except that I’m trying to make honest statements about the
similarities and the differences in the two cases and, if you want, you can assimilate the formulas and just
skip those derivations in the higher dimensional case that bug your sense of simplicity. I will too, mostly.

8.2.3 Stretches

There’s really only one stretch theorem in higher dimensions, but I’d like to give two versions of it. The
first version can be derived in a manner similar to what we did for the shift theorem, making separate
changes of variable. This case comes up often enough that it’s worth giving it its own moment in the
sun. The second version (which includes the first) needs the general change of variables formula for the
derivation.

• Stretch Theorem, first version

F(f(a1x1, a2x2)) =
1

|a1| |a2|
F(f)

(
ξ1

a1
,
ξ2

a2

)
.
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There is an analogous statement in higher dimensions.

I’ll skip the derivation.

The reason that there’s a second version of the stretch theorem is because there’s something new that
can be done by way of transformations in higher dimensions that doesn’t come up in the one-dimensional
setting. We can look at a linear change of variables in the spatial domain. In two dimensions we write
this as (

u1

u2

)
=
(
a b
c d

)(
x1

x2

)

or, written out,

u1 = ax1 + bx2

u2 = cx1 + dx2

The simple, “independent” stretch is the special case
(
u1

u2

)
=
(
a1 0
0 a2

)(
x1

x2

)
.

For a general linear transformation the coordinates can get mixed up together instead of simply changing
independently.

A linear change of coordinates is not at all an odd a thing to do — think of linearly distorting an image,
for whatever reason. Think also of rotation, which we’ll consider below. Finally, a linear transformation as
a linear change of coordinates isn’t much good if you can’t change the coordinates back. Thus it’s natural
to work only with invertible transformations here, i.e., those for which detA 6= 0.

The general stretch theorem answers the question of what happens to the spectrum when the spatial
coordinates change linearly — what is F(f(u1, u2)) = F(f(ax1 + bx2, cx1 + dx2))? The nice answer is
most compactly expressed in matrix notation, in fact just as easily for n dimensions as for two. Let A be
an n × n invertible matrix. We introduce the notation

A−T = (A−1)T ,

the transpose of the inverse of A. You can check that also A−T = (AT)−1, i.e., A−T can be defined either
as the transpose of the inverse or as the inverse of the transpose. (A−T will also come up naturally when
we apply the Fourier transform to lattices and “reciprocal lattices”, i.e., to crystals.)

We can now state:

• Stretch Theorem, general version

F(f(Ax)) =
1

| detA|Ff(A−Tξ) .

There’s another way of writing this that you might prefer, depending (as always) on your tastes. Using
detAT = detA and detA−1 = 1/ detA we have

1
| detA| = | detA−T|

so the formula reads
F(f(Ax)) = | detA−T| Ff(A−Tξ) .
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Finally, I’m of a mind to introduce the general scaling operator defined by

(σAf)(x) = f(Ax) ,

where A is an invertible n × n matrix. Then I’m of a mind to write

F(σAf)(ξ) =
1

| detA|Ff(A−Tξ) .

Your choice. I’ll give a derivation of the general stretch theorem in Section 8.2.7.

Let’s look at the two-dimensional case in a little more detail. To recover the first version of the stretch
theorem we apply the general version to the diagonal matrix

A =
(
a1 0
0 a2

)
with detA = a1a2 6= 0 .

Then

A−1 =
(

1/a1 0
0 1/a2

)
⇒ A−T =

(
1/a1 0

0 1/a2

)
.

This gives

F(f(a1x1, a2x2)) = F(f(Ax)) =
1

| detA|
Ff(A−Tξ) =

1
|a1| |a2|

Ff
(
ξ1
a1
,
ξ2
a2

)
.

Works like a charm.

An important special case of the stretch theorem is when A is a rotation matrix:

A =
(

cos θ − sin θ
sin θ cos θ

)

A rotation matrix is orthogonal, meaning that AAT = I :

AAT =
(

cos θ − sin θ
sin θ cos θ

)(
cos θ sin θ
− sin θ cos θ

)
=
(

cos2 θ + sin2 θ 0
0 cos2 θ + sin2 θ

)
=
(

1 0
0 1

)
.

Thus A−1 = AT so that
A−T = (A−1)T = (AT)T = A .

Also
detA = cos2 θ + sin2 θ = 1 .

The consequence of all of this for the Fourier transform is that if A is a rotation matrix then

F(f(Ax)) = Ff(Aξ), .

In words:

• A rotation in the spatial domain corresponds to an identical rotation in the frequency domain.

This result is used all the time in imaging problems.

Finally, it’s worth knowing that for a 2 × 2 matrix we can write down A−T explicitly:
(
a b

c d

)−1

=
1

detA

(
d −b
−c a

)
so the transpose of this is

(
a b

c d

)−T

=
1

detA

(
d −c
−b a

)

This jibes with what we found for a rotation matrix.
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The indicator function for a parallelogram As an exercise in using the stretch theorem you can
show the following. Consider a parallelogram centered at (0, 0):

One set of data that describes the parallelogram are the distances between sides, p and q, and the vectors
that give the directions of the sides. Let u be a unit vector in the direction of the sides that are p apart
and let v be a unit vector in the direction of the sides that are q apart.

The indicator function P for the parallelogram is the function that is equal to 1 on the parallelogram and
equal to 0 outside the parallelogram. The Fourier transform of P can be shown to be

FP (ξ) =
pq

| sin θ| sinc
(
p(u · ξ)

sin θ

)
sinc

(
q(v · ξ)

sin θ

)
.

Shift and stretch As an example of using the general formula, let’s combine a shift with a stretch and
show:

F(f(Ax + b)) = exp(2πib ·A−Tξ)
1

| detA|Ff(A−Tξ)

(I think the exponential is a little crowded to write it as e to a power here.) Combining shifts and stretches
seems to cause a lot of problems for people (even in one dimension), so let me do this in several ways.

As a first approach, and to keep the operations straight, write

g(x) = f(x + b) ,
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and then
f(Ax + b) = g(Ax) .

Using the stretch theorem first,

F(g(Ax)) =
1

| detA|Fg(A
−Tξ)

Applying the shift theorem next gives

(Fg)(A−Tξ) = exp(2πib ·A−Tξ)Ff((A−Tξ) .

Putting these together gives the final formula for F(f(Ax + b)).

Another way around is instead to write
g(x) = f(Ax)

and then
f(Ax + b) = f(A(x +A−1b)) = g(x + A−1b) .

Now use the shift theorem first to get

F(g(x + A−1b)) = exp(2πiA−1b · ξ) (Fg)(ξ) = exp(2πib ·A−Tξ) (Fg)(ξ) .

The stretch theorem comes next and it produces

Fg(ξ) = F(f(Ax)) =
1

| detA|
Ff(A−Tξ) .

This agrees with what we had before, as if there was any doubt.

Finally, by popular demand, I do this one more time by expressing f(Ax + b) using the delay and scaling
operators. It’s a question of which comes first, and parallel to the first derivation above we can write:

f(Ax + b) = σA(τ−bf)(x) = (σAτ−bf)(x) ,

which we verify by
(σAτ−bf)(x) = (τ−bf)(Ax) = f(Ax + b) .

And now we have

F(σA(τ−bf))(ξ) =
1

| detA|F(τ−bf)(A−Tξ) =
1

| detA| exp(2πiA−Tξ · b)Ff(A−Tξ) .

I won’t give a second version of the second derivation.

8.2.4 Convolution

What about convolution? For two real-valued functions f and g on Rn the definition is

(f ∗ g)(x) =
∫

Rn
f(x− y)g(y) dy .

Written out in coordinates this looks much more complicated. For n = 2, for example,

(f ∗ g)(x1, x2) =
∫ ∞

−∞

∫ ∞

−∞
f(x1 − y1, x2 − y2)g(y1, y2) dy1 dy2 .

The intelligent person would not write out the corresponding coordinatized formula for higher dimensions
unless absolutely pressed. The intelligent person would also not try too hard to flip, drag or otherwise
visualize a convolution in higher dimensions. The intelligent person would be happy to learn, however,
that once again

F(f ∗ g)(ξ) = Ff(ξ)Fg(ξ) and F(fg)(ξ) = (Ff ∗ Fg)(ξ) .
The typical interpretations of convolution — smoothing, averaging, etc. — continue to apply, when applied
by an intelligent person.
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8.2.5 A little δ now, more later

We’ll see that things get more interesting in higher dimensions for delta functions, but the definition of the
plain vanilla δ is the same as before. To give the distributional definition, I’ll pause, just for a moment, to
define what it means for a function of several variables to be a Schwartz function.

Schwartz functions The theory and practice of tempered distributions works the same in higher di-
mensions as it does in one. The basis of the treatment is via the Schwartz functions as the class of test
functions. The condition that a function of several variables be rapidly decreasing is that all partial deriva-
tives (including mixed partial derivatives) decrease faster than any power of any of the coordinates. This
can be stated in any number of equivalent forms. One way is to require that

|x|p |∂qϕ(x)| → 0 as |x| → ∞ .

I’ll explain the funny notation — it’s an example of the occasional awkwardness that sets in when writing
formulas in higher dimensions. p is a positive integer, so that just gives a power of |x|, and q is a multi-index.
This means that q = (q1, . . . , qn), each qi a positive integer, so that ∂q is supposed to mean

∂q1+···+qn

(∂x1)q1(∂x2)q2 · · · (∂xn)qn
.

There’s no special font used to indicate multi-indices — you just have to intuit it.

From here, the definitions of tempered distributions, the Fourier transform of a tempered distribution, and
everything else, goes through just as before. Shall we leave it alone? I thought so.

δ in higher dimensions The δ-function is the distribution defined by the pairing

〈δ, ϕ〉 = ϕ(0, . . . , 0) or 〈δ, ϕ〉 = ϕ(0) in vector notation

where ϕ(x1, , . . . , xn) is a Schwartz function.6 As is customary, we also write this in terms of integration
as: ∫

Rn
ϕ(x)δ(x) dx = ϕ(0)

You can show that δ is even as a distribution (once you’ve reminded yourself what it means for a distribution
to be even).

As before, one has
f(x)δ(x) = f(0)δ(x) ,

when f is a smooth function, and for convolution

(f ∗ δ)(x) = f(x) .

The shifted delta function δ(x− b) = δ(x1 − b1, x2 − b2, , . . . , xn − bn) or δb = τbδ, has the corresponding
properties

f(x)δ(x − b) = f(b)δ(x − b) and f ∗ δ(x − b) = f(x − b) .

In some cases it is useful to know that we can “factor” the delta function into one-dimensional deltas, as
in

δ(x1, x2, . . . , xn) = δ1(x1)δ2(x2) · · ·δn(xn) .

6 Actually, δ is in a larger class than the tempered distributions. It is defined by the pairing 〈δ, ϕ〉 = ϕ(0) when ϕ is any
smooth function of compact support.
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I’ve put subscripts on the δ’s on the right hand side just to tag them with the individual coordinates
— there are some advantages in doing this. Though it remains true, as a general rule, that multiplying
distributions is not (and cannot be) defined, this is one case where it makes sense. The formula holds
because of how each side acts on a Schwartz function.7 Let’s just check this in the two-dimensional case,
and play a little fast and loose by writing the pairing as an integral. Then, on the one hand,

∫

R2
ϕ(x)δ(x) dx = ϕ(0, 0)

by definition of the 2-dimensional delta function. On the other hand,
∫

R2
ϕ(x1, x2)δ1(x1)δ2(x2) dx1 dx2 =

∫ ∞

−∞

(∫ ∞

−∞
ϕ(x1, x2)δ1(x1) dx1

)
δ2(x2) dx2

=
∫ ∞

−∞
ϕ(0, x2)δ2(x2) dx2 = ϕ(0, 0).

So δ(x1, x2) and δ1(x1)δ2(x2) have the same effect when integrated against a test function.

The Fourier transform of δ And finally — the Fourier transform of the delta function is, of course,
1 (that’s the constant function 1). The argument is the same as in the one-dimensional case. By duality,
the Fourier transform of 1 is δ. One can then shift to get

δ(x − b) 
 e−2πib· or Fδb = e−2πib· .

You can now see (again) where those symmetrically paired dots come from in looking at the spectral
picture for alternating black and white stripes. It comes from the Fourier transforms of cos(2π x · ξ0) =
Re exp(2πix · ξ0) for ξ0 = (ξ1, 0), ξ0 = (0, ξ2), and ξ0 = (ξ3, ξ3), since

F cos(2π x · ξ0) = 1
2(δ(ξ − ξ0) + δ(ξ + ξ0)) .

7 The precise way to do this is through the use of tensor products of distributions, something we have not discussed, and will
not.
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Scaling delta functions Recall how a one-dimensional delta function scales:

δ(ax) =
1
|a|δ(x) .

Writing a higher dimensional delta function as a product of one-dimensional delta functions we get a
corresponding formula. In two dimensions:

δ(a1x1, a2x2) = δ1(a1x1)δ2(a2x2)

=
1

|a1|
δ1(x1)

1
|a2|

δ2(x2)

=
1

|a1| |a2|
δ1(x1)δ2(x2) =

1
|a1a2|

δ(x1, x2),

and in n-dimensions
δ(a1x1, . . . , anxn) =

1
|a1 · · ·an|

δ(x1, . . . , xn) .

It’s also possible (and useful) to consider δ(Ax) when A is an invertible matrix. The result is

δ(Ax) =
1

| detA|δ(x) .

See Section 8.2.7 for a derivation of this. This formula bears the same relationship to the preceding formula
as the general stretch theorem bears to the first version of the stretch theorem.

8.2.6 The Fourier transform of a radial function

For use in many applications, we’re going to consider one further aspects of the 2-dimensional case. A
function on R2 is radial (also called radially symmetric or circularly symmetric) if it depends only on the
distance from the origin. In polar coordinates the distance from the origin is denoted by r, so to say that
a function is radial is to say that it depends only on r (and that it does not depend on θ, writing the usual
polar coordinates as (r, θ)).

The definition of the Fourier transform is set up in Cartesian coordinates, and it’s clear that we’ll be better
off writing it in polar coordinates if we work with radial functions. This is actually not so straightforward,
or, at least, it involves introducing some special functions to write the formulas in a compact way.

We have to convert
∫

R2
e−2πix ·f(x) dx =

∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)f(x1, x2) dx1 dx2

to polar coordinates. There are several steps: To say that f(x) is a radial function means that it be-
comes f(r). To describe all of R2 in the limits of integration, we take r going from 0 to ∞ and θ
going from 0 to 2π. The area element dx1 dx2 becomes r dr dθ. Finally, the problem is the inner product
x ·ξ = x1ξ1+x2ξ2 in the exponential and how to write it in polar coordinates. If we identify (x1, x2) = (r, θ)
(varying over the (x1, x2)-plane) and put (ξ1, ξ2) = (ρ, φ) (fixed in the integral) then

x · ξ = ‖x‖ ‖ξ‖ cos(θ − φ) = rρ cos(θ − φ) .

The Fourier transform of f is thus
∫ ∞

−∞

∫ ∞

−∞
e−2πix ·f(x) dx =

∫ 2π

0

∫ ∞

0
f(r)e−2πirρ cos(θ−φ) r dr dθ .
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There’s more to be done. First of all, because e−2πirρ cos(θ−φ) is periodic (in θ) of period 2π, the integral
∫ 2π

0
e−2πirρ cos(θ−φ) dθ

does not depend on φ.8 Consequently,
∫ 2π

0

e−2πirρ cos(θ−φ) dθ =
∫ 2π

0

e−2πirρ cos θ dθ .

The next step is to define ourselves out of trouble. We introduce the function

J0(a) =
1
2π

∫ 2π

0

e−ia cos θ dθ .

We give this integral a name, J0(a), because, try as you might, there is no simple closed form expression
for it, so we take the integral as defining a new function. It is called the zero order Bessel function of the
first kind. Sorry, but Bessel functions, of whatever order and kind, always seem to come up in problems
involving circular symmetry; ask any physicist.

Incorporating J0 into what we’ve done,
∫ 2π

0
e−2πirρ cos θ dθ = 2πJ0(2πrρ)

and the Fourier transform of f(r) is

2π
∫ ∞

0
f(r)J0(2πrρ) rdr

Let’s summarize:

• If f(x) is a radial function then its Fourier transform is

F (ρ) = 2π
∫ ∞

0
f(r)J0(2πrρ) rdr

• In words, the important conclusion to take away from this is that the Fourier transform of a radial
function is also radial.

The formula for F (ρ) in terms of f(r) is sometimes called the zero order Hankel transform of f(r) but,
again, we understand that it is nothing other than the Fourier transform of a radial function.

Circ and Jinc A useful radial function to define, sort of a radially symmetric analog of the rectangle
function, is

circ(r) =

{
1 r < 1
0 r ≥ 1

(And one can argue about the value at the rim r = 1.) Here’s the graph.

8 We’ve applied this general fact implicitly or explicitly on earlier occasions when working with periodic functions, namely if
g is periodic with period 2π then Z 2π

0

g(θ − φ)dθ =

Z 2π

0

g(θ) dθ

Convince yourself of this; for instance let G(φ) =
R 2π

0
g(θ − φ)dθ and show that G′′(φ) ≡ 0. Hence G(φ) is constant, so

G(φ) = G(0).
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For its Fourier transform the limits of integration on r go only from 0 to 1, and so we have simply

Fcirc(ρ) = 2π
∫ 1

0

J0(2πrρ) rdr .

We make a change of variable, u = 2πrρ. Then du = 2πρdr and the limits of integration go from u = 0
to u = 2πρ. The integral becomes

Fcirc(ρ) =
1

2πρ2

∫ 2πρ

0
uJ0(u) du .

We write the integral this way because, you will now be ecstatic to learn, there is an identity that brings
in the first-order Bessel function of the first kind. That identity goes

∫ x

0
uJ0(u) du = xJ1(x) .

In terms of J1 we can now write

Fcirc(ρ) =
J1(2πρ)

ρ

It is customary to introduce the jinc function, defined by

jinc(ρ) =
J1(πρ)

2ρ
.

In terms of this,
Fcirc(ρ) = 4 jinc(2ρ) .

The graph of Fcirc is:
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I could plot this because Bessel functions are so common (really) that they are built into many mathematical
software packages, such as Matlab or Mathematica. If you think the jinc function looks like some kind of
radially symmetric version of the sinc function you’d be right. But it’s not obvious just how one goes from
sinc to jinc, and we’ll have to pass on this.9

8.2.7 A Derivation of the General Stretch Theorem

The general stretch theorem says that if A is an invertible n × n matrix then

F(f(Ax)) =
1

| detA|Ff(A−Tξ) .

To derive this let’s start with the left hand side:

F(f(Ax)) =
∫

Rn
e−2πi·xf(Ax) dx .

Our object is to make a change of variable, u = Ax. For this, we need to use the change of variables
formula for multiple integrals. In the form we need it, we can state:

If A is an invertible n× n matrix and u = Ax then
∫

Rn
g(Ax) | detA| dx =

∫

Rn
g(u) du .

for an integrable function g.

9 There’s a symmetrization process at work involving repeated convolutions. I have notes on this. . .



360 Chapter 8 n-dimensional Fourier Transform

Want to feel good (or at least OK) about this in a familiar setting? Take the case n = 1. Then
∫ ∞

−∞
g(ax) |a|dx=

∫ ∞

−∞
g(u) du ,

making the substitution u = ax. The transformation u = ax of R scales lengths, and the scaling factor is
a. (du = a dx). That’s if a is positive; the absolute value of a is in there in case a is negative — thus “sense
reversing”. In n-dimensions the transformation u = Ax scales n-dimensional volumes, and the scaling
factor is detA. (du = detAdx.) The absolute value | detA| is in there because a matrix A with detA > 0
is sense preserving on Rn, and it is sense reversing if detA < 0. Thus, in general,

du = | detA| dx

so the substitution u = Ax leads right to the formula
∫

Rn
g(Ax) | detA| dx =

∫

Rn
g(u) du .

To apply this to the Fourier transform of f(Ax) we have
∫

Rn
e−2πiξ·xf(Ax) dx =

∫

Rn
e−2πiξ·A−1(Ax) f(Ax)

1
| detA| | detA| dx

=
1

| detA|

∫

Rn
e−2πiξ·A−1(Ax) f(Ax) | detA| dx (now substitute u = Ax)

=
1

| detA|

∫

Rn
e−2πiξ·A−1u f(u) du

If you think this looks complicated imagine writing it out in coordinates!

Next we use an identity for what happens to the dot product when there’s a matrix operating on one of
the vectors, namely, for a matrix B and any vectors ξ and u,

ξ ·Bu = BTξ · u .

We take B = A−1 and then
ξ ·A−1u = A−Tξ · u .

With this:
1

| detA|

∫

Rn
e−2πiξ·A−1u f(u) du =

1
| detA|

∫

Rn
e−2πiA−Tξ·uf(u) du.

But this last integral is exactly F(f)(A−Tξ). We have shown that

F(f(Ax)) =
1

| detA|F(f)(A−Tξ) ,

as desired.

Scaling the delta function The change of variables formula also allows us to derive

δ(Ax) =
1

| detA|δ(x) .
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Writing the pairing of δ(Ax) with a test function ϕ via integration —not strictly legit, but it helps to
organize the calculation —leads to

∫

Rn
δ(Ax)ϕ(x) dx =

∫

Rn
δ(Ax)ϕ(A−1Ax)

1
| detA| | detA| dx

=
1

| detA|

∫

Rn
δ(u)ϕ(A−1u) du (making the change of variables u = Ax)

=
1

| detA| ϕ(A−10) (by how the delta function acts)

=
1

| detA| ϕ(0) (A−10 = 0 because A−1 is linear)

Thus δ(Ax) has the same effect as
1

| det A|
δ when paired with a test function, so they must be equal.

8.3 Higher Dimensional Fourier Series

It’s important to know that most of the ideas and constructions for Fourier series carry over directly to
periodic functions in two, three, or higher dimensions. Here we want to give just the basic setup so you
can see that the situation, and even the notation, is very similar to what we’ve already encountered. After
that we’ll look at a fascinating problem where higher dimensional Fourier series are central to the solution,
but in a far from obvious way.

Periodic Functions The definition of periodicity for real-valued functions of several variables is much
the same as for functions of one variable except that we allow for different periods in different slots. To
take the two-dimensional case, we say that a function f(x1, x2) is (p1, p2)-periodic if

f(x1 + p1, x2) = f(x1, x2) and f(x1, x2 + p2) = f(x1, x2)

for all x1 and x2. It follows that
f(x1 + p1, x2 + p2) = f(x1, x2)

and more generally that
f(x1 + n1p1, x2 + n2p2) = f(x1, x2)

for all integers n1, n2.

There’s a small but important point associated with the definition of periodicity having to do with prop-
erties of f(x1, x2) “one variable at a time” or “both variables together”. The condition

f(x1 + n1p1, x2 + n2p2) = f(x1, x2)

for all integers n1, n2 can be taken as the definition of periodicity, but the condition f(x1 + p1, x2 + p2) =
f(x1, x2) alone is not the appropriate definition. The former implies that f(x1 + p1, x2) = f(x1, x2) and
f(x1, x2 + p2) = f(x1, x2) by taking (n1, n2) to be (1, 0) and (0, 1), respectively, and this “independent
periodicity” is what we want. The latter condition does not imply independent periodicity.

For our work now it’s enough to assume that the period in each variable is 1, so the condition is

f(x1 + 1, x2) = f(x1, x2) and f(x1, x2 + 1) = f(x1, x2) ,
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or
f(x1 + n1, x2 + n2) = f(x1, x2) for all integers n1, n2 .

If we use vector notation and write x for (x1, x2) and (why not) n for the pair (n1, n2) of integers, then
we can write the condition as

f(x + n) = f(x) ,

and, except for the typeface, it looks like the one-dimensional case.

Where is f(x1, x2) defined? For a periodic function (of period 1) it is enough to know the function for
x1 ∈ [0, 1] and x2 ∈ [0, 1]. We write this as

(x1, x2) ∈ [0, 1]2 .

We can thus consider f(x1, x2) to be defined on [0, 1]2 and then extended to be defined on all of R2 via
the periodicity condition.

We can consider periodicity of functions in any dimension. To avoid conflicts with other notation, in this
discussion I’ll write the dimension as d rather than n. Let x = (x1, x2, . . . , xd) be a vector in Rd and let
n = (n1, n2, . . . , nd) be an d-tuple of integers. Then f(x) = f(x1, x2, . . . , xd) is periodic (of period 1 in
each variable) if

f(x + n) = f(x) for all n .

In this case we consider the natural domain of f(x) to be [0, 1]d, meaning the set of points (x1, x2, . . . , xd)
where 0 ≤ xj ≤ 1 for each j = 1, 2, . . . , d.

Complex exponentials, again What are the building blocks for periodic functions in higher dimen-
sions? We simply multiply simple complex exponentials of one variable. Taking again the two-dimensional
case as a model, the function

e2πix1e2πix2

is periodic with period 1 in each variable. Note that once we get beyond one dimension it’s not so helpful
to think of periodicity “in time” and to force yourself to write the variable as t.

In d dimensions the corresponding exponential is

e2πix1 e2πix2 · · ·e2πixd

You may be tempted to use the usual rules and write this as

e2πix1 e2πix2 · · ·e2πixd = e2πi(x1+x2+···+xd) .

Don’t do that yet.

Higher harmonics, Fourier series, et al. Can a periodic function f(x1, x2, . . . , xd) be expressed as
a Fourier series using multidimensional complex exponentials? The answer is yes and the formulas and
theorems are virtually identical to the one-dimensional case. First of all, the natural setting is L2([0, 1]d).
This is the space of square integrable functions:

∫

[0,1]d
|f(x)|2 dx <∞
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This is meant as a multiple integral, e.g., in the case d = 2 the condition is
∫ 1

0

∫ 1

0
|f(x1, x2)|2 dx1 dx2 <∞ .

The inner product of two (complex-valued) functions is

(f, g) =
∫ 1

0

∫ 1

0
f(x1, x2)g(x1, x2) dx1 dx2 .

I’m not going to relive the greatest hits of Fourier series in the higher dimensional setting. The only thing
I want us to know now is what the expansions look like. It’s nice — watch. Let’s do the two-dimensional
case as an illustration. The general higher harmonic is of the form

e2πin1x1 e2πin2x2 ,

where n1 and n2 are integers. We would then imagine writing the Fourier series expansion as
∑

n1,n2

cn1n2e
2πin1x1 e2πin2x2 ,

where the sum is over all integers n1, n2. More on the coefficients in a minute, but first let’s find a more
attractive way of writing such sums.

Instead of working with the product of separate exponentials, it’s now time to combine them and see what
happens:

e2πin1x1e2πin2x2 = e2πi(n1x1+n2x2)

= e2πi n·x (dot product in the exponent!)

where we use vector notation and write n = (n1, n2). The Fourier series expansion then looks like
∑

n

cne
2πin·x .

The dot product in two dimensions has replaced ordinary multiplication in the exponent in one dimen-
sion, but the formula looks the same. The sum has to be understood to be over all points (n1, n2) with
integer coefficients. We mention that this set of points in R2 is called the two-dimensional integer lattice,
written Z2. Using this notation we would write the sum as

∑

n∈Z2

cne
2πi n·x .

What are the coefficients? The argument we gave in one dimension extends easily to two dimensions (and
more) and one finds that the coefficients are given by

∫ 1

0

∫ 1

0
e−2πin1x1e−2πin2x2f(x1, x2) dx1 dx2 =

∫ 1

0

∫ 1

0
e−2πi(n1x1+n2x2)f(x1, x2) dx1 dx2

=
∫

[0,1]2
e−2πi n·xf(x) dx

Thus the Fourier coefficients f̂(n) are defined by the integral

f̂(n) =
∫

[0,1]2
e−2πi n·xf(x) dx
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It should now come as no shock that the Fourier series for a periodic function f(x) in Rd is
∑

n

f̂(n)e2πi n·x ,

where the sum is over all points n = (n1, n2, . . . , nd) with integer entries. (This set of points is the integer
lattice in Rd, written Zd.) The Fourier coefficients are defined to be

f̂(n) =
∫

[0,1]d
e−2πi n·xf(x) dx .

Coming up next is an extremely cool example of higher dimensional Fourier series in action. Later we’ll
come back to higher dimensional Fourier series and their application to crystallography.

8.3.1 The eternal recurrence of the same?

For this example we need to make some use of notions from probability, but nothing beyond what we used
in discussing the Central Limit Theorem in Chapter 3. For this excursion, and your safe return, you will
need:

• To remember what “probability” means.

• To know that for independent events the probabilities multiply, i.e., Prob(A,B) = Prob(A) Prob(B),
meaning that the probability of A and B occuring (together) is the product of the separate proba-
bilities of A and B occuring.

• To use expected value, which we earlier called the mean.

Though the questions we’ll ask may be perfectly natural, you may find the answers surprising.

Ever hear of a “random walk”? It’s closely related to “Brownian motion” and can also be described as a
“Markov process”. We won’t take either of these latter points of view, but if — or rather, when — you
encounter these ideas in other courses, you have been warned.

Here’s the setup for a random walk along a line:

You’re at home at the origin at time n = 0 and you take a step, left or right chosen with
equal probability; flip a coin; — heads you move right, tails you move left. Thus at time n = 1
you’re at one of the points +1 or −1. Again you take a step, left or right, chosen with equal
probability. You’re either back home at the origin or at ±2. And so on.

• As you take more and more steps, will you get home (to the origin)?

• With what probability?

We can formulate the same question in two, three, or any number of dimensions. We can also tinker with
the probabilities and assume that steps in some directions are more probable than in others, but we’ll stick
with the equally probable case.

9 With apologies to F. Nietzsche
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Random walks, Markov processes, et al. are used everyday by people who study queuing problems, for
example. More recently they have been applied in mathematical finance. A really interesting treatment is
the book Random Walks and Electrical Networks by P. Doyle and J. L. Snell.

To answer the questions it’s necessary to give some precise definitions, and that will be helped by fixing
some notation. Think of the space case d = 3 as an example. We’ll write the location of a point with
reference to Cartesian coordinates. Start at the origin and start stepping. Each step is by a unit amount
in one of six possible directions, and the directions are chosen with equal probability, e.g., throw a single
die and have each number correspond to one of six directions. Wherever you go, you get there by adding
to where you are one of the six unit steps

(±1, 0, 0), (0,±1, 0), (0, 0,±1) .

Denote any of these “elementary” steps, or more precisely the random process of choosing any of these
steps, by step; to take a step is to choose one of the triples, above, and each choice is made with probability
1/6. Since we’re interested in walks more than we are individual steps, let’s add an index to step and
write step1 for the choice in taking the first step, step2 for the choice in taking the second step, and so on.
We’re also assuming that each step is a new adventure — the choice at the n-th step is made independently
of the previous n− 1 steps. In d dimensions there are 2d directions each chosen with probability 1/2d, and
stepn is defined in the same manner.

The process stepn is a discrete random variable. To be precise:

• The domain of stepn is the set of all possible walks and the value of stepn on a particular walk is
the n’th step in that walk.

(Some people would call stepn a random vector since its values are d-tuples.) We’re assuming that
distribution of values of stepn is uniform (each particular step is taken with probability 1/2d, in general)
and that the steps are independent. Thus, in the parlance we’ve used in connection with the Central Limit
Theorem, step1, step2, . . . , stepn are independent, identically distributed random variables.

• The possible random walks of n steps are described exactly as

walkn = step1 + step2 + · · ·+ stepn, or, for short, just wn = s1 + s2 + · · ·+ sn .

I’m using the vector notation for w and s to indicate that the action is in Rd.
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Here’s a picture in R3.

After a walk of n steps, n ≥ 1, you are at a lattice point in Rd, i.e., a point with integer coordinates. We
now ask two questions:

1. Given a particular lattice point l, what is the probability after n steps that we are at l?

2. How does walkn behave as n→ ∞?

These famous questions were formulated and answered by G. Pólya in 1921. His brilliant analysis resulted
in the following result.

Theorem In dimensions 1 and 2, with probability 1, the walker visits the origin infinitely
often; in symbols

Prob(walkn = 0 infinitely often) = 1 .

In dimensions ≥ 3, with probability 1, the walker escapes to infinity:

Prob
(

lim
n→∞

|walkn| = ∞
)

= 1 .
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One says that a random walk along a line or in the plane is recurrent and that a random walk in higher
dimensions is transient.

Here’s the idea — very cunning and, frankly, rather unmotivated, but who can account for genius? For
each x ∈ Rd consider

Φn = e2πi wn·x ,

where, as above, wn is a walk of n steps. For a given n the possible values of wn, as a sum of steps
corresponding to different walks, lie among the lattice points, and if wn lands on a lattice point l then
the value of Φn for that walk is e2πi l·x . What is the expected value of Φn over all walks of n steps? It is
the mean, i.e., the weighted average of the values of Φn over the possible (random) walks of n steps, each
value weighted by the probability of its occurrence. That is,

Expected value of Φn =
∑

l

Prob(wn = l)e2πi l ·x .

This is actually a finite sum because in n steps we can have reached only a finite number of lattice points,
or, put another way, Prob(wn = l) is zero for all but finitely many lattice points l.

From this expression you can see (finite) Fourier series coming into the picture, but put that off for the
moment.10 We can compute this expected value, based on our assumption that steps are equally probable
and independent of each other. First of all, we can write

Φn = e2πi wn·x = e2πi(s1+s2+···+sn)·x = e2πi s1·x e2πi s2·x · · ·e2πi sn·x .

So we want to find the expected value of the product of exponentials. At this point we could appeal to
a standard result in probability, stating that the expected value of the product of independent random
variables is the product of their expected values. You might be able to think about this directly, however:
The expected value of e2πi s1·xe2πis2·x · · ·e2πisn·x is, as above, the weighted average of the values that the
function assumes, weighted by the probabilities of those values occuring. In this case we’d be summing over
all steps s1, s2, . . . , sn of the values e2πis1·xe2πis2 ·x · · ·e2πisn·x weighted by the appropriate probabilities.
But now the fact that the steps are independent means

Prob(s1 = s1, s2 = s2, . . . , sn = sn) = Prob(s1 = s1) Prob(s2 = s2) · · ·Prob(sn = sn)
(probabilities multiply for independent events)

=
1

(2d)n
,

and then

Expected value of Φn = Expected value of e2πis1 ·x e2πis2 ·x · · ·e2πisn·x

=
∑

s1

∑

s2

· · ·
∑

sn

Prob(s1 = s1, s2 = s2, . . . , sn = sn)e2πi s1·x e2πis2·x · · ·e2πisn·x

=
∑

s1

∑

s2

· · ·
∑

sn

1
(2d)n

e2πi s1·x e2πi s2·x · · ·e2πi sn·x .

10 Also, though it’s not in the standard form, i.e., a power series, I think of Pólya’s idea here as writing down a generating
function for the sequence of probabilities Prob(wn = l). For an appreciation of this kind of approach to a great variety of
problems — pure and applied — see the book Generatingfunctionology by H. Wilf. The first sentence of Chapter One reads:
“A generating function is a clothesline on which we hang up a sequence of numbers for display.” Seems pretty apt for the
problem at hand.
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The sums go over all possible choices of s1, s2,. . . ,sn. Now, these sums are “uncoupled”, and so the nested
sum is the product of ∑

s1

1
2d
e2πi s1·x

∑

s2

1
2d
e2πi s2·x · · ·

∑

sn

1
2d
e2πi sn·x .

But the sums are, respectively, the expected values of e2πisj ·x , j = 1, . . . , n, and these expected values are
all the same. (The steps are independent and identically distributed). So all the sums are equal, say, to
the first sum, and we may write

Expected value of Φn =
( 1

2d

∑

s1

e2πi s1 ·x
)n

A further simplification is possible. The first step s1, as a d-tuple has exactly one slot with a ±1 and the
rest 0’s. Summing over these 2d possibilities allows us to combine “positive and negative terms”. Check
the case d = 2, for which the choices of s1 are

(1, 0) , (−1, 0) , (0, 1) , (0,−1) .

This leads to a sum with four terms:
∑

s1

1
2 · 2

e2πi s1·x =
∑

s1

1
2 · 2

e2πi s1·(x1,x2)

= 1
2(1

2e
2πix1 + 1

2e
−2πix1 + 1

2e
2πix2 + 1

2e
−2πix2)

= 1
2(cos 2πx1 + cos 2πx2)

The same thing happens in dimension d, and our final formula is

∑

l

Prob(wn = l)e2πi l ·x =
(1

d
(cos 2πx1 + cos 2πx2 + · · ·+ cos 2πxd)

)n

.

Let us write
φd(x) =

1
d
(cos 2πx1 + cos 2πx2 + · · ·+ cos 2πxd) .

Observe that |φd(x)| ≤ 1, since φd(x) is the sum of d cosines by d and | cos2πxj | ≤ 1 for j = 1, 2, . . . , d.

This has been quite impressive already. But there’s more! Let’s get back to Fourier series and consider the
sum of probabilities times exponentials, above, as a function of x; i.e., let

f(x) =
∑

l

Prob(wn = l) e2πi l·x .

This is a (finite) Fourier series for f(x) and as such the coefficients must be the Fourier coefficients,

Prob(wn = l) = f̂(l) .

But according to our calculation, f(x) = φd(x)n, and so this must also be the Fourier coefficient of φd(x)n,
that is,

Prob(wn = l) = f̂(l) = (̂φd)n(l) =
∫

[0,1]d
e−2πi l ·xφd(x)n dx .

In particular, the probability that the walker visits the origin, l = 0, in n steps is

Prob(wn = 0) =
∫

[0,1]d
φd(x)n dx .
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Then the expected number of times the walker visits the origin for a random walk of infinite length is
∞∑

n=0

Prob(wn = 0) ,

and we can figure this out.11 Here’s how we do this. We’d like to say that
∞∑

n=0

Prob(wn = 0) =
∞∑

n=0

∫

[0,1]d
φd(x)n dx

=
∫

[0,1]d

( ∞∑

n=0

φd(x)n

)
dx =

∫

[0,1]d

1
1− φd(x)

dx

using the formula for adding a geometric series. The final answer is correct, but the derivation isn’t quite
legitimate: The formula for the sum of a geometric series is

∞∑

n=0

rn =
1

1 − r

provided that |r| is strictly less than 1. In our application we know only that |φd(x)| ≤ 1. To get around
this difficulty, let α < 1, and write

∞∑

n=0

Prob(wn = 0) = lim
α→1

∞∑

n=0

αn Prob(wn = 0) = lim
α→1

∫

[0,1]d

( ∞∑

n=0

αnφd(x)n

)
dx

= lim
α→1

∫

[0,1]d

1
1 − αφd(x)

dx =
∫

[0,1]d

1
1 − φd(x)

dx

(Pulling the limit inside the integral is justified by convergence theorems in the theory of Lebesgue inte-
gration, specifically, dominated convergence. Not to worry.)

• The crucial question now concerns the integral
∫

[0,1]d

1
1 − φd(x)

dx .

Is it finite or infinite?

This depends on the dimension — and this is exactly where the dimension d enters the picture.

Using some calculus (think Taylor series) it is not difficult to show (I won’t) that if |x| is small then

1− φd(x) ∼ c|x|2 ,

for a constant c. Thus
1

1 − φd(x)
∼ 1
c|x|2 ,

and the convergence of the integral we’re interested in depends on that of the “power integral”
∫

x small

1
|x|2 dx in dimension d .

It is an important mathematical fact of nature (something you should file away for future use) that

11 For those more steeped in probability, here’s a further argument why this sum is the expected number of visits to the
origin. Let Vn be the random variable which is 1 if the walker returns to the origin in n steps and is zero otherwise. The
expected value of Vn is then Prob(wn = 0) · 1, the value of the function, 1, times the probability of that value occurring.
Now set V =

P∞
n=0 Vn. The expected value of V is what we want and it is the sum of the expected values of the Vn, i.e.P∞

n=0 Prob(wn = 0).
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• The power integral diverges for d = 1, 2.

• The power integral converges for d ≥ 3

Let me illustrate why this is so for d = 1, 2, 3. For d = 1 we have an ordinary improper integral,
∫ a

0

dx

x2
, for some small a > 0 ,

and this diverges by direct integration. For d = 2 we have a double integral, and to check its properties
we introduce polar coordinates (r, θ) and write

∫

|x| small

dx1 dx2

x2
1 + x2

2

=
∫ 2π

0

∫ a

0

r dr dθ

r2
=
∫ 2π

0

(∫ a

0

dr

r

)
dθ .

The inner integral diverges. In three dimensions we introduce spherical coordinates (ρ, θ, ϕ), and something
different happens. The integral becomes

∫

|x| small

dx1 dx2 dx3

x2
1 + x2

2 + x2
3

=
∫ π

0

∫ 2π

0

∫ a

0

ρ2 sinφ dρ dθ dϕ
ρ2

.

This time the ρ2 in the denominator cancels with the ρ2 in the numerator and the ρ-integral is finite. The
same phenomenon persists in higher dimensions, for the same reason (introducing higher dimensional polar
coordinates).

Let’s take stock. We have shown that

Expected number of visits to the origin =
∞∑

n=0

Prob(wn = 0) =
∫

[0,1]d

1
1 − φd(x)

dx

and that this number is infinite in dimensions 1 and 2 and finite in dimension 3. From here we can go on
to prove Pólya’s theorem as he stated it:

Prob(walkn = 0 infinitely often) = 1 in dimensions 1 and 2.

Prob(limn→∞ |walkn| = ∞) = 1 in dimensions ≥ 3.

For the case d ≥ 3, we know that the expected number of times that the walker visits the origin is finite.
This can only be true if the actual number of visits to the origin is finite with probability 1. Now the
origin is not special in any way, so the same must be true of any lattice point. But this means that for
any R > 0 the walker eventually stops visiting the ball |x| ≤ R of radius R with probability 1, and this is
exactly saying that Prob(limn→∞ |walkn| = ∞) = 1.

To settle the case d ≤ 2 we formulate a lemma that you might find helpful in this discussion.12

Lemma Let pn be the probability that a walker visits the origin at least n times and let qn be
the probability that a walker visits the origin exactly n times. Then pn = pn

1 and qn = pn
1(1−p1)

12 We haven’t had many lemmas in this class, but I think I can get away with one or two.
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To show this we argue as follows. Note first that p0 = 1 since the walker starts at the origin. Then

pn+1 = Prob(visit origin at least n + 1 times)
= Prob(visit origin at least n + 1 times given visit at least n times) ·Prob(visit at least n times)
= Prob(visit origin at least 1 time given visit at least 0 times) · pn

(using independence and the definition of pn)
= Prob(visit at least 1 time) · pn

= p1 · pn

From p0 = 1 and pn+1 = p1 · pn it follows (by induction) that pn = pn
1 .

For the second part,

qn = Prob(exactly n visits to origin)
= Prob(visits at least n times)− Prob(visits at least n+ 1 times)
= pn − pn+1 = pn

1(1− p1)

Now, if p1 were less than 1 then the expected number of visits to the origin would be

∞∑

n=0

nqn =
∞∑

n=0

npn
1(1 − p1) = (1 − p1)

∞∑

n=0

npn
1

= (1− p1)
p1

(1− p1)2
(Check that identity by differentiating identity

1
1 − x

=
∞∑

n=0

xn)

=
p1

1 − p1
<∞

But this contradicts the fact we established earlier, namely

Expected visits to the origin =
∫

[0,1]2

1
1 − φ2(x)

dx = ∞ .

Thus we must have p1 = 1, that is, the probability of returning to the origin is 1, and hence walkn must
equal 0 infinitely often with probability 1.

8.4 III, Lattices, Crystals, and Sampling

Our derivation of the sampling formula in Chapter ??? was a direct application and combination of the
important properties of the III function,

IIIp(t) =
∞∑

k=−∞
δ(t− kp) .

Without redoing the whole argument here, short as it is, let me remind you what it is about III that made
things work.
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• δ’s being what they are, IIIp is the tool to use for periodizing and for sampling:

(f ∗ IIIp)(t) =
∞∑

k=−∞
f(t− kp)

f(t)IIIp(t) =
∞∑

k=−∞
f(kp)δ(t− kp) .

• For the Fourier transform,
F IIIp =

1
p
III1/p .

• It is through this property of the Fourier transform that periodizing in one domain corresponds to
sampling in the other domain. Pay particular attention here to the reciprocity in spacing between
IIIp and its Fourier transform.

The sampling formula itself says that if Ff(s) is identically 0 for |s| ≥ p/2 then

f(t) =
∞∑

k=−∞
f

(
k

p

)
sinc(pt− k) .

We now want to see how things stand in two dimensions; there isn’t much difference in substance between
the two-dimensional case and higher dimensions, so we’ll stick pretty much to the plane.

8.4.1 The two-dimensional III

The formula F IIIp = (1/p)III1/p depends crucially on the fact that IIIp is a sum of impulses at evenly spaced
points — this is an aspect of periodicity. We’ve already defined a two-dimensional δ, so to introduce a
III that goes with it we need to define what “evenly spaced” means for points in R2. One way of spacing
points evenly in R2 is to take all pairs (k1, k2), k1, k2 integers. The corresponding III-function is then
defined to be

III(x1, x2) =
∞∑

k1,k2=−∞
δ(x1 − k1, x2 − k2) .

Bracewell, and others, sometimes refer to this as the “bed of nails”.

The points k = (k1, k2) with integer coordinates are said to form a lattice in the plane. We denote this
particular lattice, called the integer lattice, by Z2; we’ll have more general lattices in a short while. As a
model of a physical system, you can think of such an array as a two-dimensional crystal, where there’s an
atom at every lattice point.

Since we prefer to write things in terms of vectors, another way to describe Z2 is to use the standard basis
of R2, the vectors e1 = (1, 0), e2 = (0, 1), and write the points in the lattice as

k = k1e1 + k2e2 .

We can thus think of the elements of a lattice either as points or as vectors, and observe that the sum of
two lattice points is another lattice point and that an integer multiple of a lattice point is another lattice
point. The III-function can be written

IIIZ2(x) =
∞∑

k1,k2=−∞
δ(x − k1e1 − k2e2) =

∑

k∈Z2

δ(x − k) .

It is easy to show that IIIZ2 is even.
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Periodicity on Z2 and FIIIZ2 As in the one-dimensional case, IIIZ2 is the tool to use to work with
periodicity. If we form

Φ(x) = (ϕ ∗ IIIZ2)(x) =
∑

k∈Z2

ϕ(x − k) ,

assuming that the sum converges, then Φ is periodic on the lattice Z2, or briefly, is Z2-periodic. This
means that

Φ(x + n) = Φ(x)

for all x and for any lattice point n ∈ Z2, and this is true because

Φ(x + n) =
∑

k∈Z2

ϕ(x + n − k) =
∑

k∈Z2

ϕ(x − k) = Φ(x) ;

the sum (or difference) of two lattice points, n − k, is a lattice point, so we’re still summing over Z2 and
we get back Φ.

Using periodicity, and the fact that Z2 is particularly “evenly spaced” as a set of points in R2 leads to the
important and remarkable formula

F IIIZ2 = IIIZ2

corresponding precisely to the one-dimensional case. I’ll put the details of the derivation of this in Section
8.4.4. It’s also true that

F−1IIIZ2 = IIIZ2

because IIIZ2 is even.

At this point the most basic version of the two-dimensional sampling formula is already easily within
reach. It’s much more interesting, however, as well as ultimately much more useful to allow for some
greater generality.
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8.4.2 Lattices in general

Z2 isn’t the only example of a set of evenly spaced points in the plane, though perhaps it’s the example
of the most evenly spaced points. It’s easy to imagine “oblique” lattices, too. Not all crystals are square,
after all, or even rectangular, and we want to be able to use general lattices to model crystals. We’ll now
consider such oblique arrangements, but be warned that the subject of lattices can go on forever; the effort
here is to be brief to the point.

We adopt the vector point of view for defining a general lattice. Take any basis u1, u2 of R2 and consider
all the points (or vectors) that are integer linear combinations of the two. These form:

Lattice points = p = p1u1 + p2u2, p1, p2 = 0,±1,±2, . . .

We’ll denote such a lattice by L. The sum and difference of two lattice points is again a lattice point, as
is any integer times a lattice point.13

The vectors u1 and u2 are said to be a basis for the lattice. Other vectors can also serve as a basis, and
two bases for the same lattice are related by a 2 × 2 matrix with integer entries having determinant 1. (I
won’t go through the derivation of this.) The parallelogram determined by the basis vectors (any basis
vectors) is called a fundamental parallelogram for the lattice, or, in crystallographers” terms, a unit cell.
A fundamental parallelogram for Z2 is the square 0 ≤ x1 < 1, 0 ≤ x2 < 1.14 By convention, one speaks of
the area of a lattice in terms of the area of a fundamental parallelogram for the lattice, and we’ll write

Area(L) = Area of a fundamental parallelogram .

Two fundamental parallelograms for the same lattice have the same area since the bases are related by a
2 × 2 integer matrix with determinant 1 and the area scales by the determinant.

If we take the natural basis vectors e1 = (1, 0) and e2 = (0, 1) for R2 we get the integer lattice Z2 as
before. We can see that any lattice L can be obtained from Z2 via an invertible linear transformation A,
the one that takes e1 and e2 to a basis u1 = Ae1 and u2 = Ae2 that defines L. This is so precisely
because A is linear: if

p = p1u1 + p2u2, p1, p2 integers ,

is any point in L then
p = p1(Ae1) + p2(Ae2) = A(p1e1 + p2e2) ,

showing that p is the image of a point in Z2. We write

L = A(Z2)

A fundamental parallelogram for L is determined by u1 and u2, and so

Area(L) = Area of the parallelogram determined by u1 and u2 = | detA| .

Here, for example, is the lattice obtained from Z2 by applying

A =
(

3 −1
1 2

)

A basis is u1 = (3, 1), u2 = (−1, 2) (Draw the basis on the lattice!) The area of the lattice is 7.

13 In mathematical terminology a lattice is a module over Z; a module is like a vector space except that you can’t divide by
the scalars (the integers in this case) only add and multiply them. For a module, as opposed to a vector space, the scalars
form a ring, not a field.
14 It’s a common convention to define a fundamental parallelogram to be “half open”, including two sides (x1 = 0 and x2 = 0

in this case) and excluding two (x1 = 1 and x2 = 1). This won’t be an issue for our work.
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8.4.3 III for a lattice

It doesn’t take a great leap in imagination to think about introducing III for a general lattice: If L is a
lattice in R2 then the III function associated with L is

IIIL(x) =
∑

p∈L
δ(x − p) .

So there’s your general “sum of delta functions at evenly spaced points”. We could also write the definition
as

IIIL(x) =
∞∑

k1,k2=−∞
δ(x − k1u1 − k2u2) .

As L can be obtained from Z2 via some linear transformation so too can IIIL be expressed in terms of IIIZ2 .
If L = A(Z2) then

IIIL(x) =
∑

p∈L
δ(x − p) =

∑

k∈Z2

δ(x −Ak) .

Next, using the formula for δ(Ax) from earlier in this chapter,

δ(x −Ak) = δ(A(A−1x − k)) =
1

| detA|
δ(A−1x − k)

Therefore
IIIL(x) =

1
| detA|IIIZ2(A−1x) .

Compare this to our earlier formulas on how the one-dimensional III-function scales: With

IIIp(x) =
∞∑

k=−∞
δ(x− kp)
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and

III(px) =
∞∑

k=−∞
δ(px− k)

we found that
III(px) =

1
|p|III1/p(x)

Periodizing and sampling Periodizing with IIIL via convolution results in a function that is periodic
with respect to the lattice. If

Φ(x) = (ϕ ∗ IIIL)(x) =
∑

p∈L
ϕ(x − p)

then
Φ(x + p) = Φ(x)

for all x ∈ R2 and all p ∈ L. Another way of saying this is that Φ has two “independent” periods, one
each in the directions of any pair of basis vectors for the lattice. Thus if u1, u2 are a basis for L then

Φ(x + k1u1) = Φ(x) and Φ(x + k2u2) = Φ(x), k1, k2 any integers.

IIIL is also the tool to use for sampling on a lattice, for

(ϕIIIL)(x) =
∑

p∈L
ϕ(p)δ(x − p) .

We’re almost ready to use this.

Dual lattices and FIIIL Of the many (additional) interesting things to say about lattices, the one
that’s most important for our concerns is how the Fourier transform of IIIL depends on L. This question
leads to a fascinating phenomenon, one that is realized physically in x-ray diffraction images of crystals.

We mentioned earlier that for the integer lattice we have

F IIIZ2 = IIIZ2 .

What about the Fourier transform of IIIL? We appeal to the general similarity theorem to obtain, for
L = AZ2,

F IIIL(ξ) =
1

| detA|F(IIIZ2(A−1x))

=
1

| detA|
1

| detA−1|F IIIZ2(ATξ)

(we just get AT on the inside because we’re already working with A−1)

= F IIIZ2(ATξ)

= IIIZ2(ATξ)

There’s a much neater version of this last result, and one of genuine physical importance. But we need a
new idea.
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In crystallography it is common to introduce the reciprocal lattice associated to a given lattice. Given a
lattice L, the reciprocal lattice is the lattice L∗ consisting of all points (or vectors) q such that

q · p = an integer for every p in the lattice L.

In some other areas of applications, and in mathematics, the reciprocal lattice is known as the dual lattice.
I’ll show my heritage and generally use the term dual lattice.

Warning People in crystallography, those in Material Sciences for example, use the reciprocal
lattice all the time and define it this way. However, in some fields and for some applications
the reciprocal lattice is normalized differently to require that q ·p be an integer multiple of 2π.
This alternate normalization is exactly tied up with the alternate ways of defining the Fourier
transform, i.e., while we use e−2πi ·x , putting the 2π in the exponential, others do not put the
2π there and have to put a factor in front of the integral, and so on. I can do no more than to
issue this warning and wish us all luck in sorting out the inconsistencies.

To develop the notion of the dual lattice a little, and to explain the terminology “reciprocal”, suppose we
get the lattice L from Z2 by applying an invertible matrix A to Z2. We’ll show that the reciprocal lattice
L∗ of L is given by

L∗ = A−T(Z2) .

There’s a maxim lurking here. Use of the Fourier transform always brings up “reciprocal” relations of some
sort, and in higher dimensions more often than not:

• “Reciprocal” means inverse transpose.

Notice, by the way, that (Z2)∗ = Z2, since A in this case is the identity, i.e., Z2 is “self-dual” as a lattice.
This, coupled with the discussion to follow, is another reason for saying that Z2 wins the award for most
evenly spaced points in R2.

Here’s why L∗ = A−T(Z2). Suppose q = A−Tm for some m = (m1, m2) in Z2. And suppose also, because
L = A(Z2), that p = Am′ for some other m′ = (m′1, m

′
2) in Z2. Then

q · p = A−Tm ·Am′

= m ·A−1(Am′) (because of how matrices operate with the dot product)
= m · m′ = m1m

′
1 +m2m

′
2 (an integer)

We want to draw two conclusions from the result that L∗ = A−T(Z2). First, we see that

Area(L∗) = | detA−T| =
1

| detA| =
1

Area(L)
.

Thus the areas of L and L∗ are reciprocals. This is probably the crystallographer’s main reason for using
the term reciprocal.

The second conclusion, and the second reason to use the term reciprocal, has to do with bases of L and of
L∗. With L = A(Z2) let

u1 = Ae1, u2 = Ae2

be a basis for L. Since L∗ = A−T(Z2), the vectors

u∗1 = A−Te1, u∗2 = A−Te2



378 Chapter 8 n-dimensional Fourier Transform

are a basis for L∗. They have a special property with respect to u1 and u2, namely

ui · u∗j = δij (Kronecker delta) .

This is simple to show, after all we’ve been through:

ui · u∗j = Aei ·A−Tej = ei ·ATA−Tej = ei · ej = δij .

Now, in linear algebra — independent of any connection with lattices — bases {u1, u2} and {u∗1, u∗2} of
R2 are called dual (or sometimes, reciprocal) if they satisfy

ui · u∗j = δij (Kronecker delta) .

We can therefore summarize what we’ve found by saying

• If {u1, u2} is a basis for a lattice L and if {u∗1, u∗2} is the dual basis to {u1, u2}, then {u∗1, u∗2} is a
basis for the dual lattice L∗.

Lots of words here, true, but it’s worth your while understanding what we’ve just done. You’re soon to
see it all in action in the sampling formula.

Here’s a picture of the dual lattice to the lattice pictured earlier. It’s obtained from Z2 by applying

A−T =
(

2/7 −1/7
1/7 3/7

)
.

As the scales on the axes show, the dual lattice is, in this case, much more “compressed” than the original
lattice. Its area is 1/7.



8.4 III, Lattices, Crystals, and Sampling 379

Back to the Fourier transform. We showed that if L = A(Z2) then

F IIIL(ξ) = IIIZ2(ATξ) .

We want to call forth the reciprocal lattice. For this,

IIIZ2(ATξ) =
∑

n∈Z2

δ(ATξ − n)

=
∑

n∈Z2

δ(AT(ξ − A−Tn))

=
1

| detAT|
∑

n∈Z2

δ(ξ −A−Tn) =
1

| detA|
∑

n∈Z2

δ(ξ − A−Tn) .

But this last expression is exactly a sum over points in the reciprocal lattice L∗. We thus have

F(IIIL)(ξ) =
1

| detA|IIIL
∗(ξ) .

Bringing in the areas of fundamental parallelograms for L and L∗ we can write this either in the form

F(IIIL)(ξ) = Area(L∗)IIIL∗(ξ) or Area(L)F(IIIL)(ξ) = IIIL∗(ξ) .

Interchanging the roles of L and L∗, we likewise have

F(IIIL∗)(ξ) = Area(L)IIIL(ξ) or Area(L∗)F(IIIL∗)(ξ) = IIIL(ξ) .
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Formulas for the inverse Fourier transforms look just like these because the III’s are even.

Compare these results to the formula in one dimension,

F IIIp =
1
p
III1/p ,

and now you’ll see why I said “Pay particular attention here to the reciprocity in spacing between IIIp and
its Fourier transform” at the beginning of this section.

Higher dimensions Everything in the preceding discussion goes through in higher dimensions with no
significant changes, e.g., “area” becomes “volume”. The only reason for stating definitions and results in
two-dimensions was to picture the lattices a little more easily. But, certainly, lattices in three dimensions
are common in applications and provide a natural framework for understanding crystals, for example. Let’s
do that next.

8.4.4 The Poisson Summation Formula, again, and FIIIZ2

Back in Chapter 5 we derived the Poisson summation formula: if ϕ is a Schwartz function then

∞∑

k=−∞
Fϕ(k) =

∞∑

k=−∞
ϕ(k) .

It’s a remarkable identity and it’s the basis for showing that

F III = III

for the one-dimensional III. In fact, the Poisson summation formula is equivalent to the Fourier transform
identity.

The situation in higher dimensions is completely analogous. All that we need is a little bit on higher
dimensional Fourier series, which we’ll bring in here without fanfare; see the earlier section on “Higher
dimensional Fourier series and random walks” for more background.

Suppose ϕ is a Schwartz function on R2. We periodize ϕ to be periodic on the integer lattice Z2 via

Φ(x) = (ϕ ∗ IIIZ2)(x) =
∑

n∈Z2

ϕ(x − n) .

Then Φ has a two-dimensional Fourier series

Φ(x) =
∑

k∈Z2

Φ̂(k)e2πik ·x .

Let’s see what happens with the Fourier coefficients.

Φ̂(k1, k2) =
∫ 1

0

∫ 1

0
e−2πi(k1x1+k2x2)Φ(x1, x2) dx1 dx2

=
∫ 1

0

∫ 1

0

e−2πi(k1x1+k2x2)
∞∑

n1,n2=−∞
ϕ(x1 − n1, x2 − n2) dx1 dx2

=
∞∑

n1 ,n2=−∞

∫ 1

0

∫ 1

0

e−2πi(k1x1+k2x2)ϕ(x1 − n1, x2 − n2) dx1 dx2 .
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Now we make the change of variables u = x1−n1, v = x2−n2. We can either do this “separately” (because
the variables are changing separately) or together using the general change of variables formula.15 Either
way, the result is

∞∑

n1 ,n2=−∞

∫ 1

0

∫ 1

0
e−2πi(k1x1+k2x2)ϕ(x1 − n1, x2 − n2) dx1 dx2

=
∞∑

n1,n2=−∞

∫ 1−n1

−n1

∫ 1−n2

−n2

e−2πi(k1(u+n1)+k2(v+n2)ϕ(u, v) dudv

=
∞∑

n1,n2=−∞

∫ 1−n1

−n1

∫ 1−n2

−n2

e−2πi(k1n1+k2n2)e−2πi(k1u+k2v)ϕ(u, v) dudv

=
∞∑

n1,n2=−∞

∫ 1−n1

−n1

∫ 1−n2

−n2

e−2πi(k1u+k2v)ϕ(u, v) du dv

=
∫ ∞

−∞

∫ ∞

−∞
e−2πi(k1u+k2v)ϕ(u, v) dudv

= Fϕ(k1, k2) .

We have found, just as we did in one dimension, that the Fourier series for the Z2-periodization of ϕ is

Φ(x) =
∑

k∈Z2

Fϕ(k)e2πi k·x .

We now evaluate Φ(0) in two ways, plugging x = 0 into its definition as the periodization of ϕ and into
its Fourier series. The result is ∑

k∈Z2

Fϕ(k) =
∑

k∈Z2

ϕ(k) .

To wrap it all up, here’s the derivation of

F IIIZ2 = IIIZ2

based on the Poisson summation formula. For any Schwartz function ψ,

〈F IIIZ2 , ψ〉 = 〈IIIZ2 ,Fψ〉 =
∑

k∈Z2

Fψ(k) =
∑

k∈Z2

ψ(k) = 〈IIIZ2 , ψ〉 .

8.5 Crystals

In a few paragraphs, here’s one reason why all this stuff on dual lattices is so interesting. The physical
model for a crystal is a three-dimensional lattice with atoms at the lattice points. An X-ray diffraction
experiment scatters X-rays off the atoms in the crystal and results in spots on the X-ray film, of varying
intensity, also located at lattice points. From this and other information the crystallographer attempts to
deduce the structure of the crystal. The first thing the crystallographer has to know is that the lattice of
spots on the film arising from diffraction is the dual of the crystal lattice. (In fact, it’s more complicated

15 Right here is where the property of Z2 as the “simplest” lattice comes in. If we were working with an “oblique” lattice we
could not make such a simple change of variables. We would have to make a more general linear change of variables. This
would lead to a more complicated result.
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than that, for it is the projection onto the two-dimensional plane of the film of the three-dimensional dual
lattice.)

We can explain this phenomenon — atoms on a lattice, spots on the dual lattice — via the Fourier
transform. What the crystallographer ultimately wants to find is the electron density distribution for the
crystal. The mathematical model for crystals puts a delta at each lattice point, one for each atom. If we
describe the electron density distribution of a single atom by a function ρ(x) then the electron density
distribution of the crystal with atoms at points of a (three-dimensional) lattice L is

ρL(x) =
∑

p∈L
ρ(x − p) = (ρ ∗ IIIL)(x) .

This is now a periodic function with three independent periods, one in the direction of each of the three
basis vectors that determine L. We worked with a one-dimensional version of this in Chapter 5.

The basic fact in X-ray crystallography is that the “scattered amplitude” of the X-rays diffracting off the
crystal is proportional to the magnitude of the Fourier transform of the electron density distribution. This
data, the results of X-ray diffraction, comes to us directly in the frequency domain. Now, we have

FρL(ξ) = Fρ(ξ)F IIIL(ξ) = Fρ(ξ) Volume(L∗) IIIL∗(ξ) ,

where L∗ is the dual lattice. Taking this one more step,

FρL(ξ) = Volume(L∗)
∑

q∈L∗
Fρ(q)δ(ξ − q) .

The important conclusion is that the diffraction pattern has peaks at the lattice points of the reciprocal
lattice. The picture is not complete, however. The intensities of the spots are related to the magnitude
of the Fourier transform of the electron density distribution, but for a description of the crystal it is also
necessary to determine the phases, and this is a hard problem.

Here’s a picture of a macroscopic diffraction experiment. On the left is an array of pinholes and on the
right is the diffraction pattern. The spots on the right are at the lattice points of the reciprocal lattice.

The goal of X-ray diffraction experiments is to determine the configuration of atoms from images of this
type. Making the analysis even harder is that for 3D crystal lattices the images on an X-ray film are the
projection onto the image plane of the 3D configuration. Just how difficult it may be to infer 3D structure
from 2D projections is illustrated by a famous experiment: “Fun in Reciprocal Space” published in the
distinguished American journal The New Yorker.
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8.6 Bandlimited Functions on R2 and Sampling on a Lattice

Let’s develop the sampling formula in two dimensions. A function f on R2 is bandlimited if Ff is identically
zero outside of some bounded region. We always assume that f is real valued, and hence Ff(−ξ) = Ff(ξ).
Thus, as we’ve pointed out before, if Ff(ξ) 6= 0 then Ff(−ξ) 6= 0 and so, as a point set in R2, the spectrum
is symmetric about the origin.

We want to derive a sampling formula associated with a lattice L by following the recipe of first periodizing
Ff via IIIL, then cutting off, and then taking the inverse Fourier transform. The result will be a sinc
reconstruction of f from its sampled values — but just where those sampled values are is what’s especially
interesting and relevant to what we’ve just done.

To get the argument started we assume that the support of Ff lies in a parallelogram. This parallelogram
determines a fundamental parallelogram for a lattice L, and the spectrum gets shifted parallel to itself
and off itself through convolution with IIIL. This periodization is the first step and it’s analogous to the
one-dimensional case when the spectrum lies in an interval, say from −p/2 to p/2, and the spectrum gets
shifted around and off itself through convolution with IIIp. Recall that the crucial limitation is that the
spectrum only goes up to p/2 and down to −p/2, while IIIp has δ’s spaced p apart. The spacing of the
δ’s is big enough to shift the spectrum off itself and no smaller spacing will do. Correspondingly in two
dimensions, the parallelogram containing the spectrum determines a lattice with “big enough spacing” for
a III based on the lattice to shift the spectrum off itself.

Using the general stretch theorem, we’ll be able to get the general result by first deriving a special case,
when the spectrum lies in a square. Suppose, then, that Ff(ξ) is identically zero outside the (open) square
|ξ1| < 1/2, |ξ2| < 1/2. We work with the integer lattice Z2 with basis e1 and e2. The (open) fundamental
parallelogram for Z2 is 0 < ξ1 < 1, 0 < ξ2 < 1 and the spectrum is inside the center fourth of four copies
of it, as pictured.

Periodizing Ff by IIIZ2 shifts the spectrum off itself, and no smaller rectangular lattice will do for this.
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We then cut off by the two-dimensional rect function Π(x1, x2) = Π(x1)Π(x2) and this gives back Ff :

Ff(ξ) = Π(ξ1) Π(ξ2)(Ff ∗ IIIZ2)(ξ) .

This is just as in the one-dimensional case, and now it’s time to take the inverse Fourier transform. Using
F IIIZ2 = IIIZ2 , or rather F−1IIIZ2 = IIIZ2 , and invoking the convolution theorem we obtain

f(x) = f(x1, x2) = (sincx1 sinc x2) ∗ (f(x) · IIIZ2(x))

= (sincx1 sinc x2) ∗
(
f(x) ·

∞∑

k1,k2=−∞
δ(x − k1e1 − k2e2)

)

= (sincx1 sinc x2) ∗
∞∑

k1,k2=−∞
f(k1, k2)δ(x1 − k1, x2 − k2)

=
∞∑

k1 ,k2=−∞
f(k1, k2) sinc(x1 − k1) sinc(x2 − k2) .

In solidarity with the general case soon to follow, let’s write this “square sampling formula” as

f(x) =
∞∑

k1 ,k2=−∞
f(k1e1 + k2e2) sinc(x · e1 − k1) sinc(x · e2 − k2) .

Now suppose that the spectrum of Ff lies in the (open) parallelogram, as pictured, with u1 and u2 parallel
to the sides and as long as the sides.

Let A be the 2× 2 matrix that takes e1 to u1 and e2 to u2, so that A maps the lattice Z2 to the lattice L
with basis u1 and u2. Let B = A−T (hence B−T = A) and remember that B takes Z2 to the dual lattice
L∗ of L. A basis for L∗ (the dual basis to u1 and u2) is

u∗1 = Be1, u∗2 = Be2 .
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Next let
g(x) = f(Bx) .

According to the general stretch theorem,

Fg(ξ) =
1

| detB|Ff(B−Tξ) = | detA| Ff(Aξ) .

The determinant factor out front doesn’t matter; what’s important is that the spectrum of g is in the
square −1/2 < ξ1 < 1/2, −1/2 < ξ2 < 1/2, since the corresponding points Aξ lie in the parallelogram
containing the spectrum of f , i.e., Fg is identically zero outside the square.

We now apply the square sampling formula to g to write

g(x) =
∞∑

k1 ,k2=−∞
g(k1e1 + k2e2) sinc(x · e1 − k1) sinc(x · e2 − k2)

With y = Bx we can then say

f(y) =
∞∑

k1,k2=−∞
f(B(k1e1 + k2e2)) sinc(B−1y · e1 − k1) sinc(B−1y · e2 − k2)

=
∞∑

k1,k2=−∞
f(k1Be1 + k2Be2) sinc(ATy · e1 − k1) sinc(ATy · e2 − k2)

=
∞∑

k1,k2=−∞
f(k1u∗1 + k2u∗2) sinc(y ·Ae1 − k1) sinc(y ·Ae2 − k2)

=
∞∑

k1,k2=−∞
f(k1u∗1 + k2u∗2) sinc(y · u1 − k1) sinc(y · u2 − k2) .

We’re done. Change y to x for psychological comfort, and the “lattice sampling formula” says that

f(x) =
∞∑

k1 ,k2=−∞
f(k1u∗1 + k2u∗2) sinc(x · u1 − k1) sinc(x · u2 − k2). (8.1)

This is a sinc reconstruction formula giving the function in terms of sample values on a lattice. But it’s
the dual lattice! Here’s how to remember the highlights:
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• The spectrum of f lies in a parallelogram, which determines a lattice with basis u1 and u2.

• That lattice determines a dual lattice (in the spatial domain) with dual basis u∗1 and u∗2.

• The sincs use data from the lattice, while the sample points are exactly the points in the dual lattice.

Look back at the one-dimensional sampling formula and tell yourself what you see of this picture.

Exercise What should we mean by “sampling rate” vis à vis the two-dimensional lattice sampling for-
mula?

The next topics on this path would be to investigate aliasing and to consider the case of a finite spectrum
and finite sampling. Another time, another class.

8.7 Naked to the Bone

Our final topic in the course will be a quick development of the use of the Fourier transform in medical
imaging. We’ll find that the two-dimensional Fourier transform is perfectly suited to the problem of
recovering a density function — a function representing bones, internal organs, the whole lot — from the
projections of that density obtained by passing parallel beams of X-rays through a two-dimensional cross
section of the body. (For the discussion of the use of the Fourier transform I’m not making a distinction
between the original methods of tomography using X-rays and those of magnetic resonance imaging.)

For an account of the history of medical imaging, I recommend the book Naked to the Bone: Medical
Imaging in the Twentieth Century by Bettyann Kevles, from which I stole the title of this section.

Dimmer and dimmer What happens when light passes through murky water? It gets dimmer and
dimmer the farther it goes, of course — this is not a trick question. If the water is the same murkiness
throughout, meaning, for example, uniform density of stuff floating around in it, then it’s natural to assume
that the intensity of light decreases by the same percent amount per length of path traveled. Through
absorption, scattering, etc., whatever intensity comes in, a certain percentage of that intensity goes out;
over a given distance the murky water removes a percentage of light, and this percentage depends only on
the distance traveled and not on where the starting and stopping points are.16 We’re assuming here that
light is traveling in a straight line through the water.

Constant percent change characterizes exponential growth, or decay, so the attenuation of the intensity of
light passing through a homogeneous medium is modeled by

I = I0e
−µx ,

where I0 is the initial intensity, x is the distance traveled, and µ is a (positive) “murkiness constant”. x has
dimension of length and µ has dimension 1/length and units “murkiness/length”. µ is constant because
we assume that the medium is homogeneous. We know the value of I0, and one measurement of x and I
will determine µ. In fact, what we do is to put a detector at a known distance x and measure the intensity
when it arrives at the detector.

16 Optical fibers provide an interesting and important study in the progress of making something — glass in this case — less
murky. In the Appendix 8.12 I’ve attached a graph showing just how dramatic the progress has been.
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Now suppose the water is not uniformly murky, but rather the light passes through a number of layers,
each layer of uniform murkiness. If the i’th layer has murkiness constant µi and is of length ∆xi, and if
there are n layers, then the intensity of light that reaches the detector can be modeled by

I = I0 exp
(
−

n∑

i=1

µi∆xi

)
.

Clearly, if the murkiness is described by a function µ(x), then the intensity arriving at the detector is
modeled by

I = I0 exp
(
−
∫

L
µ(x) dx

)
,

where L is the line the light travels along. It’s common to call the number

p =
∫

L
µ(x) dx = − ln

(
I

I0

)

the attenuation coefficient.

Can we recover the density function µ(x) from knowledge of the intensity? Not so easily. Certainly not
from a single reading — many arrangements of murkiness along the path could result in the same final
intensity at the detector.

If we could vary the detector along the path and record the results then we would be able to determine
µ(x). That is, if we could form

p(ξ) =
∫ ξ

ξ0

µ(x) dx ,

as a function of a variable position ξ along the line (ξ0 is some fixed starting point — the source) then we
could find µ from p by finding the derivative p′′. The trouble is moving the detector through the murky
water along the path.

Tomography X-rays are light, too, and when they pass through murky stuff (your body) along a straight
line they are attenuated and reach a detector on the other end at a reduced intensity. We can continue to
assume that the attenuation, the decrease in intensity, is exponentially decreasing with the path length.
The exponential of what? What do the X-rays pass through?

From the start we set this up as a two-dimensional problem. Take a planar slice through your body. The
gunk in this two-dimensional slice — bones, organs, other tissue — is of variable density ; let’s say it’s
described by an unknown function µ(x1, x2). We consider µ(x1, x2) to be zero outside the section of the
body. Take a line L through this slice — in the plane of the slice, the path that an X-ray would follow —
and parameterize the line by x1(s), x2(s), where s is the arclength parameter going from s0 to s1. (The
“arclength parameter” means that we move along the line at unit speed.) Then the density along the line
is µ(x1(s), x2(s)) and the attenuation of the X-ray intensity along the line is

I = I0 exp
(
−
∫ s1

s0

µ(x1(s), x2(s)) ds
)

Instead of writing out the parameters and limits, we often write the integral simply as
∫

L
µ(x1, x2) ds .

We’ll refer to this as a line integral of µ along L.
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• The fundamental problem of tomography17 is to determine the function µ(x, y) from these line inte-
grals, taken over many lines through the region.

For example — what’s inside?

In trying to solve this problem, what’s not allowed is to move the detector through the body — that’s not
covered by HMO plans. What is allowed is to rotate the source (and the detector) to get X-rays circling
around the two-dimensional cross-section of the body, and what we’ll have are families of parallel X-rays.
Before laying all this out, it pays to organize our study of the problem.

8.8 The Radon Transform

For each line L, cutting through the slice, the integral
∫

L

µ(x1, x2) ds

is a number. The operation “line determines number” thus defines a real-valued function of L. The whole
subject of tomography is about this function. To work with it effectively we need to be able describe the
set of all lines — not the (Cartesian) equation of a given line, but some kind of parametric description for
the collection of lines. This will allow us to write the integral as a function of these parameters.

There are many ways to describe the collection of all lines in the plane. One that may seem most natural
to you is to use the “slope-intercept” form for the equation of a line; a line can be written as y = mx + b

where m is the slope and b is the y-intercept. A line can thus be associated with a unique pair (m, b) and

17 tomos means “section” in Greek
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vice versa. There’s a catch here, however — vertical lines (lines x = constant, infinite slope) are left out
of this description.

Another approach, one that allows us to describe all lines and that is well suited for the function of L,
above, goes as follows. First, a line through the origin is determined by its unit normal vector n. Now,
n and −n determine the same line, so we represent all the (distinct) normal vectors as (cosφ, sinφ) for
an angle φ satisfying 0 ≤ φ < π, measured counterclockwise from the x1-axis. In other words, there is
a one-to-one correspondence between the φ’s with 0 ≤ φ < π and the collection of all lines through the
origin.

A line not through the origin can then be described by its unit normal vector together with the directed
distance of the line from the origin, a positive number if measured in the direction of n and a negative
number if measured in the direction −n. Call this directed distance ρ. Thus −∞ < ρ <∞.

The set of pairs (ρ, φ) provides a parameterization for the set of all lines in the plane. Once again:

• A pair (ρ, φ) means, in this context, the unique line with normal vector n = (cosφ, sinφ) which is at
a directed distance ρ from the origin, measured in the direction n if ρ > 0 and in the direction −n
if ρ < 0.

Anytime you’re confronted with a new coordinate system you should ask yourself what the situation is
when one of the coordinates is fixed and the other is free to vary. In this case, if φ is fixed and ρ varies we
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get a family of parallel lines.

For the other case, when ρ is fixed, we have to distinguish some cases. The pairs (0, φ) correspond to lines
through the origin. When ρ is positive and φ varies from 0 to π (including 0, excluding π) we get the
family of lines tangent to the upper semicircle of radius ρ (including the tangent at (ρ, 0) excluding the
tangent at (−ρ, 0)). When ρ < 0 we get lines tangent to the lower semicircle (including the tangent at
(−|ρ|, 0), excluding the tangent at (|ρ|, 0)).

Using the coordinates (ρ, φ) we therefore have a transform of the function µ(x1, x2) to a function Rµ(ρ, φ)
defined by

Rµ(ρ, φ) =
∫

L(ρ,φ)
µ(x1, x2) ds .

This is called the Radon transform of µ, introduced by Johann Radon — way back in 1917! The funda-
mental question of tomography can then be stated as:

• Is there an inversion formula for the Radon transform? That is, from knowledge of the values Rµ(ρ, φ)
can we recover µ?
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We’ve indicated the dependence of the integral on ρ and φ by writing L(ρ, φ), but we want to use the
coordinate description of lines to write the integral in a still more convenient form. Using the dot product,
the line determined by (ρ, φ) is the set of points (x1, x2) with

ρ = x · n = (x1, x2) · (cosφ, sinφ) = x1 cosφ+ x2 sinφ .

or described via the equation

ρ− x1 cosφ− x2 sinφ = 0 , −∞ < x1 <∞, −∞ < x2 <∞ .

Now consider the delta function “along the line”, that is,

δ(ρ− x1 cosφ− x2 sinφ)

as a function of x1, x2. This is also called a line impulse and it’s an example of the greater variety one has
in defining different sorts of δ’s in two-dimensions. With some interpretation and argument (done in those
notes) one can show that integrating a function f(x1, x2) against the line impulse associated with a line
L results precisely in the line integral of f along L. This is all we’ll need here, and with that the Radon
transform of µ(x1, x2) can be expressed as

R(µ)(ρ, φ) =
∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(ρ− x1 cosφ− x2 sinφ) dx1 dx2 .

This is the form we’ll most often work with. One also sees the Radon transform written as

R(µ)(ρ,n) =
∫

R2
µ(x)δ(ρ− x · n) dx .

This expression suggests generalizations to higher dimensions — interesting, but we won’t pursue them.

Projections It’s often convenient to work with R(µ)(ρ, φ) by first fixing φ and letting ρ vary. Then we’re
looking at parallel lines passing through the domain of µ, all perpendicular to a particular line making
an angle φ with the x1-axis (that line is the common normal to the parallel lines), and we compute the
integral of µ along these lines.

This collection of values, R(µ)(ρ, φ) with φ fixed, is often referred to as a projection of µ, the idea being
that the line integrals over parallel lines at a fixed angle are giving some kind of profile, or projection, of
µ in that direction.18 Then varying φ gives us a family of projections, and one speaks of the inversion
problem as “determining µ(x1, x2) from its projections”.

This is especially apt terminology for the medical applications, since that’s how a scan is made:

1. Fix an angle and send in a bunch of parallel X-rays at that angle.

2. Change the angle and repeat.

8.9 Getting to Know Your Radon Transform

We want to develop a few properties of the Radon transform, just enough to get some sense of how to work
with it. First, a few comments on what kinds of functions µ(x1, x2) one wants to use; it’s interesting but
we won’t make an issue of it.

18 Important: Don’t be fooled by the term “projection”. You are not geometrically projecting the shape of the two-
dimensional cross section (that the lines are cutting through). You are looking at the attenuated, parallel X-rays that emerge
as we move a source along a line. The line is at some angle relative to a reference axis.
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Inspired by honest medical applications, we would not want to require that the cross-sectional density
µ(x1, x2) be smooth, or even continuous. Jump discontinuities in µ(x1, x2) correspond naturally to a change
from bone to muscle, etc. Although, mathematically speaking, the lines extend infinitely, in practice the
paths are finite. In fact, the easiest thing is just to assume that µ(x1, x2) is zero outside of some region —
it’s describing the density of a slice of a finite extent body, after all.

Examples There aren’t too many cases where one can compute the Radon transform explicitly. One
example is the circ function, expressed in polar coordinates as

circ(r) =

{
1 r ≤ 1
0 r > 1

We have to integrate the circ function along any line. Think in terms of projections, as defined above.
From the circular symmetry, it’s clear that the projections are independent of φ.

Because of this we can take any convenient value of φ, say φ = 0, and find the integrals over the parallel
lines in this family. The circ function is 0 outside the unit circle, so we need only to find the integral (of
the function 1) over any chord of the unit circle parallel to the x2-axis. This is easy. If the chord is at a
distance ρ from the origin, |ρ| ≤ 1, then

R(1)(ρ, 0) =
∫ p

1− ρ2

−
p

1 − ρ2

1 dx2 = 2
√

1− ρ2 .
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Thus for any (ρ, φ),

R circ(ρ, φ) =

{
2
√

1 − ρ2 |ρ| ≤ 1
0 |ρ| > 1

Gaussians again Another example where we can compute the Radon transform exactly is for a Gaussian:

g(x1, x2) = e−π(x2
1+x2

2) .

Any guesses as to what Rg is? Let’s do it.

Using the representation in terms of the line impulse we can write

Rg(ρ, φ) =
∫ ∞

−∞

∫ ∞

−∞
e−π(x2

1+x2
2)δ(ρ− x1 cosφ− x2 sinφ) dx1 dx2 .

We now make a change of variables in this integral, putting

u1 = x1 cosφ+ x2 sinφ,
u2 = −x1 sinφ+ x2 cosφ.

This is a rotation of coordinates through an angle φ, making the u1-axis correspond to the x1-axis. The
Jacobian of the transformation is 1, and we also find that

u2
1 + u2

2 = x2
1 + x2

2 .
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In the new coordinates the integral becomes:

Rg(ρ, φ) =
∫ ∞

−∞

∫ ∞

−∞
e−π(u2

1+u2
2)δ(ρ− u1) du1du2

=
∫ ∞

−∞

(∫ ∞

−∞
e−πu2

1 δ(ρ− u1) du1

)
e−πu2

2 du2

=
∫ ∞

−∞
e−πρ2

e−πu2
2 du2 (by the sifting property of δ)

= e−πρ2

∫ ∞

−∞
e−πu2

2 du2

= e−πρ2
(because the Gaussian is normalized to have area 1)

Writing this in polar coordinates, r = x2
1 + x2

2, we have shown that

R(e−πr2
) = e−πρ2

.

How about that.

Linearity, Shifts, and Evenness We need a few general properties of the Radon transform.

Linearity: R(αf + βg) = αR(f) + βR(g). This holds because integration is a linear function of the
integrand.
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Shifts: This is a little easier to write (and to derive) in vector form. Let n = (cosφ, sinφ). The result is

R(µ(x − b)) = (Rµ)(ρ− b · n, φ)

In words: shifting x by b has the effect of shifting each projection a distance b · n in the ρ-variable.

To derive this we write the definition as

R(µ(x − b)) =
∫

R2
µ(x − b)δ(ρ− x · n) dx

If b = (b1, b2) then the change of variable u1 = x1 − b1 and u2 = x2 − b2, or simply u = x − b with
u = (u1, u2), converts this integral into

R(µ(x − b)) =
∫

R2
µ(u)δ(ρ− (u + b) · n) du

=
∫

R2
µ(u)δ(ρ− u · n − b · n)) du

= (Rµ)(ρ− b · n, φ)

Evenness: Finally, the Radon transform always has a certain symmetry — it is always an even function
of ρ and φ. This means that

Rµ(−ρ, φ+ π) = Rµ(ρ, φ) .

Convince yourself that this makes sense in terms of the projections. The derivation goes:

Rµ(−ρ, φ+ π) =
∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(−ρ− x1 cos(φ+ π)− x2 sin(φ+ π)) dx1dx2

=
∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(−ρ− x1(− cosφ) − x2(− sinφ)) dx1 dx2

=
∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(−ρ+ x1 cosφ+ x2 sinφ) dx1 dx2

=
∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(ρ− x1 cosφ− x2 sinφ) dx1 dx2 (because δ is even)

= Rµ(ρ, φ)

8.10 Appendix: Clarity of Glass

Here’s a chart showing how the clarity of glass has improved over the ages, with some poetic license in
estimating the clarity of the windows of ancient Egypt. Note that on the vertical axis on the left the tick
marks are powers of 10 but the units are in decibels — which already involve taking a logarithm! The big
jump in clarity going to optical fibers was achieved largely by eliminating water in the glass.
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8.11 Medical Imaging: Inverting the Radon Transform

Let’s recall the setup for tomography. We have a two-dimensional region (a slice of a body) and a density
function µ(x1, x2) defined on the region. The Radon transform of µ is obtained by integrating µ along
lines that cut across the region. We write this as

Rµ(ρ, φ) =
∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(ρ− x1 cosφ− x2 sinφ) dx1 dx2 .

Here (ρ, φ) are coordinates that specify a line; φ (0 ≤ φ < π) is the angle the normal to the line makes with
the x1-axis and ρ (−∞ < ρ <∞) is the directed distance of the line from the origin. δ(ρ−x1 cosφ−x2 sinφ)
is a line impulse, a δ-function along the line whose (Cartesian) equation is ρ− x1 cosφ− x2 sinφ = 0.

If we fix φ and vary ρ, then Rµ(ρ, φ) is a collection of integrals along parallel lines through the region, all
making the same angle, φ + π/2, with a reference axis, the x1-axis. This set of values is referred to as a
projection of µ. Thus one often speaks of the Radon transform as a collection of projections parameterized
by an angle φ.

In practice µ(x1, x2) is unknown, and what is available are the values Rµ(ρ, φ). These values (or rather
a constant times the exponential of these values) are what your detector registers when an X-ray reaches
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it having gone through the region and having been attenuated according to its encounter with µ(x1, x2).
The problem is to reconstruct µ(x1, x2) from these meter readings, in other words to invert the Radon
transform.

Among those who use these techniques, µ(x1, x2) is often referred to simply as an image. In that termi-
nology the problem is then “to reconstruct the image from its projections”.

The Projection-Slice Theorem The inversion problem is solved by a result that relates the two-
dimensional Fourier transform of µ to a one-dimensional Fourier transform of R(µ), taken with respect
to ρ. Once Fµ is known, µ can be found by Fourier inversion.

The formulation of this relation between the Fourier transforms of an image and its projections is called
the Projection-Slice Theorem19 and is the cornerstone of tomography. We’ll go through the derivation,
but it must be said at once that, for practical applications, all of this has to be implemented numerically,
i.e., with the DFT (and the FFT). Much of the early work in Computer Assisted Tomography (CAT)
was in finding efficient algorithms for doing just this. An important issue are the errors introduced by
approximating the transforms, termed artifacts when the reconstructed image µ(x1, x2) is drawn on a
screen. We won’t have time to discuss this aspect of the problem.

Starting with

Rµ(ρ, φ) =
∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(ρ− x1 cosφ− x2 sinφ) dx1 dx2 ,

what is its Fourier transform with respect to ρ, regarding φ as fixed? For lack of a better notation, we
write this as Fρ(R(µ)). Calling the frequency variable r — dual to ρ — we then have

FρR(µ)(r, φ) =
∫ ∞

−∞
e−2πirρRµ(ρ, φ) dρ

=
∫ ∞

−∞
e−2πirρ

∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(ρ− x1 cosφ− x2 sinφ) dx1 dx2 dρ

=
∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)

(∫ ∞

−∞
δ(ρ− x1 cosφ − x2 sinφ)e−2πirρ dρ

)
dx1 dx2

=
∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)e−2πir(x1 cosφ+x2 sin φ) dx1 dx2

=
∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)e−2πi(x1r cosφ+x2r sinφ) dx1 dx2

Check out what happened here: By interchanging the order of integration we wind up integrating the line
impulse against the complex exponential e−2πirρ. For that integration we can regard δ(ρ−x1 cosφ−x2 sinφ)
as a shifted δ-function, and the integration with respect to ρ produces e−2πi(x1r cosφ+x2r sinφ). Now if we let

ξ1 = r cosφ
ξ2 = r sinφ

the remaining double integral is
∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)µ(x1, x2) dx1 dx2 =

∫

R2
e−2πix · µ(x) dx .

19 Also called the Central Slice Theorem, or the Center Slice theorem.
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This is the two-dimensional Fourier transform of µ.

We have shown

• The Projection-Slice Theorem:

FρR(µ)(r, φ) = Fµ(ξ1, ξ2), ξ1 = r cosφ, ξ2 = r sinφ .

Observe that
r2 = ξ21 + ξ22 and tanφ =

ξ2
ξ1
.

This means that (r, φ) are polar coordinates for the (ξ1, ξ2)-frequency plane. As φ varies between 0 and π
(including 0, excluding π) and r between −∞ and ∞ we get all the points in the plane.

Reconstructing the image That last derivation happened pretty fast. Let’s unpack the steps in using
the projection-slice theorem to reconstruct an image from its projections.

1. We have a source and a sensor that rotate about some center. The angle of rotation is φ, where
0 ≤ φ < π.

2. A family of parallel X-rays pass from the source through a (planar) region of unknown, variable
density, µ(x1, x2), and are registered by the sensor.

For each φ the readings at the meter thus give a function gφ(ρ) (or g(ρ, φ)), where ρ is the (directed)
distance that a particular X-ray is from the center of the beam of parallel X-rays.

Each such function gφ, for different φ’s, is called a projection.

3. For each φ we compute Fgφ(r), i.e., the Fourier transform of gφ(ρ) with respect to ρ.

4. Since gφ(ρ) also depends on φ so does its Fourier transform. Thus we have a function of two variables,
G(r, φ), the Fourier transform of gφ(ρ). The projection-slice theorem tells us that this is the Fourier
transform of µ:

Fµ(ξ1, ξ2) = G(r, φ), where ξ1 = r cosφ, ξ2 = r sinφ .

Thus (Fµ)(ξ1, ξ2) is known.

5. Now take the inverse two-dimensional Fourier transform to recover µ:

µ(x) =
∫

R2
e2πix · Fµ(ξ) dξ .

Running the numbers Very briefly, let’s go through how one might set up a numerical implementation
of the procedure we’ve just been through. The function that we know is g(ρ, φ) — that’s what the sensor
gives us, at least in discrete form. To normalize things we suppose that g(ρ, φ) is zero for |ρ| ≥ 1. This
means, effectively, that the region we’re passing rays through is contained within the circle of radius one
— the region is bounded so we can assume that it lies within some disk, so we scale to assume the the
region lies within the unit disk.
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Suppose we have M equal angles, φj = jπ/M , for j = 0, . . . ,M − 1. Suppose next that for each angle we
send through N X-rays. We’re assuming that −1 ≤ ρ ≤ 1, so the rays are spaced ∆ρ = 2/N apart and we
index them to be

ρn =
2n

N
, n = −N

2
, . . . ,

N

2
− 1 .

Then our projection data are the MN values

gnj = g(ρn, φj) , j = 0, . . . ,M − 1 , n = −N

2
, . . . ,

N

2
− 1 .

The first step in applying the projection slice theorem is to find the one-dimensional Fourier transform of
g(ρ, φj) with respect to ρ, which, since the function is zero for |ρ| ≥ 1, is the integral

Fg(r, φj) =
∫ 1

−1
e−2πirρg(ρ, φj) dρ .

We have to approximate and discretize the integral. One approach to this is very much like the one we
took in obtaining the DFT (Chapter 6). First, we’re integrating with respect to ρ, and we already have
sample points at the ρn = 2n/N ; evaluating g at those points gives exactly gnj = g(ρn, φj). We’ll use these
for a trapezoidal rule approximation.

We also have to discretize in r, the “frequency variable” dual to ρ. According to the sampling theorem, if
we want to reconstruct Fg(r, φj) from its samples in r the sampling rate is determined by the extent of
g(ρ, φj) in the spatial domain, where the variable ρ is limited to −1 ≤ ρ ≤ 1. So the sampling rate in r
is 2 and the sample points are spaced 1/2 apart:

rm =
m

2
, m = −N

2
, . . . ,

N

2
− 1 .

The result of the trapezoidal approximation using ρn = 2n/N and of discretizing in r using rm = m/2 is

Fg(rm, φj) ≈
2
N

N/2∑

n=−N/2+1

e−2πiρnrmgnj

=
2
N

N/2∑

n=−N/2+1

e−2πinm/N gnj .

(The 2 in 2/N comes in from the form of the trapezoidal rule.) Up to the constant out front, this is a DFT
of the sequence (gnj), n = −N/2 + 1, . . . , N/2. (Here n is varying, while j indexes the projection.) That
is,

Fg(rm, φj) ≈
2
N

F (gnj)[m] .

Computing this DFT for each of the M projections φj (j = 0, . . . ,M − 1) gives the data Fg(rm, φj). Call
this

Gmj = F (gnj)[m] .

The next step is to take the two-dimensional inverse Fourier transform of the data Gmj . Now there’s an
interesting problem that comes up in implementing this efficiently. The Gmj are presented as data points
based on a polar coordinate grid in the frequency domain:
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The vertices in this picture are the points (rm, φj) and that’s where the data points Gmj live. However,
efficient FFT algorithms depend on the data being presented on a Cartesian grid. One way this is often
done is to manufacture data at Cartesian grid points by taking a weighted average of the Gmj at the polar
grid points which are nearest neighbors:

GCartesian = waGa + wbGb + wcGc + wdGd .

Choosing the weighting factors wa, wb, wc and wc is part of the art, but the most significant introductions
of error in the whole process come from this step.

The final picture is then created by

µ(grid points in spatial domain) = F −1(GCartesian) .
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This is your brain. This is your brain on Fourier transforms Here are some pictures of a Fourier
reconstruction of a model brain.20. The “brain” is modeled by a high density elliptical shell (the skull)
with lower density elliptical regions inside.

It’s possible to compute explicity the Radon transform for lines going through an elliptical region, so the
sampling can be carried out based on these formulas. There are 64 projections (64 φj ’s) each sampled at 64
points (64 ρn’s) in the interval [−1, 1]. Here’s the plot of the values of the projections (the Radon transforms
along the lines). As in pictures of the (Fourier) spectrum of images, the values here are represented via
shading; white represents large values and black represents small values. The horizontal axis is ρ and the
vertical is φ.

20 See the paper: L A. Shepp and B. F. Logan, The Fourier reconstruction of a head section, IEEE Trans. Nucl. Sci., NS-21
(1974) 21–43.
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And here is the reconstructed brain.



Appendix A

Mathematical Background

A.1 Complex Numbers

These notes are intended as a summary and review of complex numbers. I’m assuming that the definition,
notation, and arithmetic of complex numbers are known to you, but we’ll put the basic facts on the
record. In the course we’ll also use calculus operations involving complex numbers, usually complex valued
functions of a real variable. For what we’ll do, this will not involve the area of mathematics referred to
as “Complex Analysis”.

For our purposes, the extensions of the formulas of calculus to complex numbers are straightforward and
reliable.

Declaration of principles Without apology I will write

i =
√
−1 .

In many areas of science and engineering it’s common to use j for
√
−1. If you want to use j

in your own work I won’t try to talk you out of it. But I’ll use i.

Before we plunge into notation and formulas there are two points to keep in mind:

• Using complex numbers greatly simplifies the algebra we’ll be doing. This isn’t the only reason they’re
used, but it’s a good one.

• We’ll use complex numbers to represent real quantities — real signals, for example. At this point in
your life this should not cause a metaphysical crisis, but if it does my only advice is to get over it.

Let’s go to work.

Complex numbers, real and imaginary parts, complex conjugates A complex number is deter-
mined by two real numbers, its real and imaginary parts. We write

z = x+ iy

where x and y are real and
i2 = −1 .

x the real part and y is the imaginary part, and we write x = Re z, y = Im z. Note: it’s y that is the
imaginary part of z = x+ iy, not iy. One says that iy is an imaginary number or is purely imaginary. One
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says that z has positive real part (resp., positive imaginary part) if x (resp., y) is positive. The set of all
complex numbers is denoted by C. (The set of all real numbers is denoted by R.)

Elementary operations on complex numbers are defined according to what happens to the real and imagi-
nary parts. For example, if z = a+ ib and w = c+ di then their sum and product are given by

z + w = (a+ c) + (b+ d)i
zw = (ac− bd) + i(ad+ bc)

I’ll come back to the formula for the general quotient z/w, but here’s a particular little identity that’s used
often: Since i · i = i2 = −1 we have

1
i

= −i and i(−i) = 1 .

The complex conjugate of z = x + iy is
z̄ = x− iy .

Other notations for the complex conjugate are z∗ and sometimes even z†. It’s useful to observe that

z = z̄ if and only if z is real, i.e., y = 0.

Note also that
z + w = z + w , zw = z w , z = z .

We can find expressions for the real and imaginary parts of a complex number using the complex conjugate.
If z = x+ iy then z = x− iy so that in the sum z + z the imaginary parts cancel. That is z + z = 2x, or

x = Re z =
z + z

2
.

Similarly, in the difference, z − z̄, the real parts cancel and z − z̄ = 2iy, or

y = Im z =
z − z̄

2i
.

Don’t forget the i in the denominator here.

The formulas z + w = z̄+w̄ and zw = z̄w̄ extend to sums and products of more than two complex numbers,
and to integrals (being limits of sums), leading to formulas like

∫
f(t)g(t) dt =

∫
f(t) g(t)dt (here dt is a real quantity.)

This overextended use of the overline notation for complex conjugates shows why it’s useful to have alternate
notations, such as (∫

f(t)g(t) dt
)∗

=
∫
f(t)∗g(t)∗ dt .

It’s best not to mix stars and bars in a single formula, so please be mindful of this. I wrote these formulas
for “indefinite integrals” but in our applications it will be definite integrals that come up.
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The magnitude of z = x+ iy is
|z| =

√
x2 + y2 .

Multiplying out the real and imaginary parts gives

zz̄ = (x+ iy)(x− iy) = x2 − i2y2 = x2 + y2 = |z|2 .

This formula comes up all the time.

More generally,

|z + w|2 = |z|2 + 2 Re{zw̄}+ |w|2 which is also |z|2 + 2 Re{z̄w}+ |w|2 .

To verify this,

|z + w|2 = (z + w)(z̄ + w̄)
= zz̄ + zw̄ + wz̄ + ww̄

= |z|2 + (zw̄+ +zw̄) + |w|2 which is also |z|2 + (z̄w + z̄w) + |w|2.

The quotient z/w For people who really need to find the real and imaginary parts of a quotient z/w
here’s how it’s done. Write z = a+ bi and w = c+ di. Then

z

w
=
a + bi

c+ di

=
a + bi

c+ di

c− di

c− di

=
(a+ bi)(c− di)

c2 + d2
=

(ac+ bd) + (bc− ad)i
c2 + d2

.

Thus
Re

a+ bi

c+ di
=
ac+ bd

c2 + d2
, Im

a+ bi

c+ di
=
bc− ad

c2 + d2
.

Do not memorize this. Remember the “multiply the top and bottom by the conjugate” sort of thing.

Polar form Since a complex number is determined by two real numbers it’s natural to associate z = x+iy
with the pair (x, y) ∈ R2, and hence to identify z with the point in the plane with Cartesian coordinates
(x, y). One also then speaks of the “real axis” and the “imaginary axis”.

We can also introduce polar coordinates r and θ and relate them to the complex number z = x+iy through
the equations

r =
√
x2 + y2 = |z| and θ = tan−1 y

x
.

The angle θ is called the argument or the phase of the complex number. One sees the notation

θ = arg z and also θ = ∠z .

Going from polar to Cartesian through x = r cos θ and y = r = sin θ, we have the polar form of a complex
number:

x+ iy = r cos θ + ir sin θ = r(cos θ + i sin θ) .
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A.2 The Complex Exponential and Euler’s Formula

The real workhorse for us will be the complex exponential function. The exponential function ez for a
complex number z is defined, just as in the real case, by the Taylor series:

ez = 1 + z +
z2

2!
+
z3

3!
+ · · · =

∞∑

n=0

zn

n!
.

This converges for all z ∈ C, but we won’t check that.

Notice also that

ez =

( ∞∑

n=0

zn

n!

)
(a heroic use of the bar notation)

=
∞∑

n=0

z̄n

n!

= ez̄

Also, ez satisfies the differential equation y′ = y with initial condition y(0) = 1 (this is often taken as a
definition, even in the complex case). By virtue of this, one can verify the key algebraic properties:

ez+w = ezew

Here’s how this goes. Thinking of w as fixed,

d

dz
ez+w = ez+w

hence ez+w must be a constant multiple of ez ;

ez+w = cez .

What is the constant? At z = 0 we get
ew = ce0 = c .

Done. Using similar arguments one can show the other basic property of exponentiation,

(ez)r = ezr

if r is real. It’s actually a tricky business to define (ez)w when w is complex (and hence to establsh
(ez)w = ezw). This requires introducing the complex logarithm, and special considerations are necessary.
We will not go into this.

The most remarkable thing happens when the exponent is purely imaginary. The result is called Euler’s
formula and reads

eiθ = cos θ + i sin θ .

I want to emphasize that the left hand side has only been defined via a series. The exponential function in
the real case has nothing to do with the trig functions sine and cosine, and why it should have anything
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to do with them in the complex case is a true wonder.1

Plugging θ = π into Euler’s formula gives eiπ = cos π + i sinπ = −1, better written as

eiπ + 1 = 0 .

This is sometimes referred to as the most famous equation in mathematics; it expresses a simple relationship
— and why should there be any at all? — between the fundamental numbers e, π, 1, and 0, not to mention
i. We’ll probably never see this most famous equation again, but now we’ve seen it once.

Consequences of Euler’s formula The polar form z = r(cos θ + i sin θ) can now be written as

z = reiθ ,

where r = |z| is the magnitude and θ is the phase of the complex number z. Using the arithmetic properties
of the exponential function we also have that if z1 = r1e

iθ1 and z2 = r2e
iθ2 then

z1z2 = r1r2e
i(θ1+θ2) .

That is, the magnitudes multiply and the arguments (phases) add.

Euler’s formula also gives a dead easy way of deriving the addition formulas for the sine and cosine. On
the one hand,

ei(α+β) = eiαeiβ

= (cosα + i sinα)(cosβ + i sinβ)
= (cosα cosβ − sinα sin β) + i(sinα cosβ + cosα sinβ).

On the other hand,
ei(α+β) = cos(α+ β) + i sin(α+ β) .

Equating the real and imaginary parts gives

cos(α+ β) = cosα cosβ − sinα sinβ
sin(α+ β) = sinα cosβ + cosα sinβ

I went through this derivation because it expresses in a simple way an extremely important principle in
mathematics and its applications.

1 Euler’s formula is usually proved by substituting into and manipulating the Taylor series for cos θ and sin θ. Here’s another
more elegant way of seeing it. It relies on results for differential equations, but the proofs of those are no more difficult that the
proofs of the properties of Taylor series that one needs in the usual approach. Let f(θ) = eiθ. Then f(0) = 1 and f ′(θ) = ieiθ,
so that f ′(0) = i. Moreover

f ′′(θ) = i2eiθ = −eiθ = −f(θ)

i.e., f satisfies
f ′′ + f = 0, f(0) = 1, f ′(0) = i .

On the other hand if g(θ) = cos θ + i sin θ then

g′′(θ) = − cos θ − i sin θ = −g(θ), or g′′ + g = 0

and also
g(0) = 1, g′(0) = i .

Thus f and g satisfy the same differential equation with the same initial conditions, so f and g must be equal. Slick. I prefer
using the second order ordinary differential equation here since that’s the one naturally associated with the sine and cosine.
We could also do the argument with the first order equation y′ = y. Indeed, if f(θ) = eiθ then f ′(θ) = ieiθ = if(θ) and
f(0) = 1. Likewise, if g(θ) = cos θ + i sin θ then g′(θ) = − sin θ + i cos θ = i(cosθ + i sin θ) = ig(θ) and g(0) = 1. This implies
that f(θ) = g(θ) for all θ.
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If you can compute the same thing two different ways, chances are you’ve done something
significant.

Take this seriously.2

Symmetries of the sine and cosine: even and odd functions Using the identity

eiθ = eiθ = e−iθ

we can express the cosine and the sine as the real and imaginary parts, respectively, of eiθ :

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ

2i
Once again this is a simple observation. Once again there is something more to say.

You are very familiar with the symmetries of the sine and cosine function. That is, cos θ is an even function,
meaning

cos(−θ) = cos θ ,

and sin θ is an odd function, meaning
sin(−θ) = − sin θ .

Why is this true? There are many ways of seeing it (Taylor series, differential equations), but here’s one
you may not have thought of before, and it fits into a general framework of evenness and oddness that
we’ll find useful when discussing symmetries of the Fourier transform.

If f(x) is any function, then the function defined by

fe(x) =
f(x) + f(−x)

2
is even. Check it out:

fe(−x) =
f(−x) + f(−(−x))

2
=
f(−x) + f(x)

2
= fe(x) .

Similarly, the function defined by

fo(x) =
f(x)− f(−x)

2
is odd. Moreover

fe(x) + f0(x) =
f(x) + f(−x)

2
+
f(x) − f(−x)

2
= f(x)

The conclusion is that any function can be written as the sum of an even function and an odd function. Or,
to put it another way, fe(x) and fo(x) are, respectively, the even and odd parts of f(x), and the function is
the sum of its even and odd parts. We can find some symmetries in a function even if it’s not symmetric.

And what are the even and odd parts of the function eiθ? For the even part we have

eiθ + e−iθ

2
= cos θ

and for the odd part we have
eiθ − e−iθ

2
= i sinθ .

Nice.

2 In some ways this is a maxim for the Fourier transform class. As we shall see, the Fourier transform allows us to view a
signal in the time domain and in the frequency domain; two different representations for the same thing. Chances are this is
something significant.
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A.3 Algebra and Geometry

To wrap up this review I want to say a little more about the complex exponential and its use in representing
sinusoids. To set the stage for this we’ll consider the mix of algebra and geometry — one of the reasons
why complex numbers are often so handy.

We not only think of a complex number z = x+ iy as a point in the plane, we also think of it as a vector
with tail at the origin and tip at (x, y). In polar form, either written as reiθ or as r(cos θ + i sinθ), we
recognize |z| = r as the length of the vector and θ as the angle that the vector makes with the x-axis (the
real axis). Note that

|eiθ| = | cos θ + i sin θ| =
√

cos2 θ + sin2 θ = 1 .

Many is the time you will use |ei(something real)| = 1.

Once we make the identification of a complex number with a vector we have an easy back-and-forth between
the algebra of complex numbers and the geometry of vectors. Each point of view can help the other.

Take addition. The sum of z = a + bi and w = c+ di is the complex number z + w = (a + c) + (c+ d)i.
Geometrically this is given as the vector sum. If z and w are regarded as vectors from the origin then z+w
is the vector from the origin that is the diagonal of the parallelogram determined by z and w.

Similarly, as a vector, z − w = (a− c) + (b− d)i is the vector that goes from the tip of w to the tip of z,
i.e., along the other diagonal of the parallelogram determined by z and w. Notice here that we allow for
the customary ambiguity in placing vectors; on the one hand we identify the complex number z − w with
the vector with tail at the origin and tip at (a− c, b− d). On the other hand we allow ourselves to place
the (geometric) vector anywhere in the plane as long as we maintain the same magnitude and direction of
the vector.

It’s possible to give a geometric interpretation of zw (where, you will recall, the magnitudes multiply and
the arguments add) in terms of similar triangles, but we won’t need this.

Complex conjugation also has a simple geometric interpretation. If z = x+ iy then the complex conjugate
z̄ = x− iy is the mirror image of z in the x-axis. Think either in terms of reflecting the point (x, y) to the
point (x,−y) or reflecting the vector. This gives a natural geometric reason why z+ z̄ is real — since z and
z̄ are symmetric about the real axis, the diagonal of the parallelogram determined by z and z̄ obviously
goes along the real axis. In a similar vein, −z̄ = −(x− iy) = −x+ iy is the reflection of z = x+ iy in the
y-axis, and now you can see what z − z̄ is purely imaginary.

There are plenty of examples of the interplay between the algebra and geometry of complex numbers, and
the identification of complex numbers with points in the plane (Cartesian or polar coordinates) often leads
to some simple approaches to problems in analytic geometry. Equations in x and y (or in r and θ) can
often be recast as equations in complex numbers, and having access to the arithmetic of complex numbers
frequently simplifies calculations.

A.4 Further Applications of Euler’s Formula

We’ve already done some work with Euler’s formula eiθ = cos θ + i sin θ, and we agree it’s a fine thing to
know. For additional applications we’ll replace θ by t and think of
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eit = cos t + i sin t

as describing a point in the plane that is moving in time. How does it move? Since |eit| = 1 for every t,
the point moves along the unit circle. In fact, from looking at the real and imaginary parts separately,

x = cos t, y = sin t

we see that eit is a (complex-valued) parametrization of the circle; the circle is traced out exactly once in
the counterclockwise direction as t goes from 0 to 2π. We can also think of the vector from the origin to z
as rotating counterclockwise about the origin, like a (backwards moving) clock hand.

For our efforts I prefer to work with

e2πit = cos 2πt+ i sin2πt

as the “basic” complex exponential. Via its real and imaginary parts, the complex exponential e2πit

contains the sinusoids cos 2πt and sin 2πt, each of frequency 1 Hz. If you like, including the 2π or not is the
difference between working with frequency in units of Hz, or cycles per second, and “angular frequency”
in units of radians per second. With the 2π, as t goes from 0 to 1 the point e2πit traces out the unit circle
exactly once (one cycle) in a counterclockwise direction. The units in the exponential e2πit are (as they
are in cos 2πt and sin 2πt)

e2π radians/cycle·i·1cycles/sec·t sec .

Without the 2π the units in eit are
ei·1 radians/sec·t sec .

We can always pass easily between the “complex form” of a sinusoid as expressed by a complex exponential,
and the real signals as expressed through sines and cosines. But for many, many applications, calculations,
prevarications, etc., it is far easier to stick with the complex representation. As I said earlier in these
notes, if you have philosophical trouble using complex entities to represent real entities the best advice I
can give you is to get over it.

We can now feel free to change the amplitude, frequency, and to include a phase shift. The general (real)
sinusoid is of the form, say, A sin(2πνt+ φ); the amplitude is A, the frequency is ν (in Hz) and the phase
is φ. (We’ll take A to be positive for this discussion.) The general complex exponential that includes this
information is then

Aei(2πνt+φ) .

Note that i is multiplies the entire quantity 2πνt+φ. The term phasor is often used to refer to the complex
exponential e2πiνt.

And what is Aei(2πνt+φ) describing as t varies? The magnitude is |Aei(2πiνt+φ)| = |A| = A so the point
is moving along the circle of radius A. Assume for the moment that ν is positive — we’ll come back to
negative frequencies later. Then the point traces out the circle in the counterclockwise direction at a rate
of ν cycles per second — 1 second is ν times around (including the possibility of a fractional number of
times around). The phase φ determines the starting point on the circle, for at t = 0 the point is Aeiφ. In
fact, we can write

Aei(2πνt+φ) = e2πiνt Aeiφ

and think of this as the (initial) vector Aeiφ set rotating at a frequency ν Hz through multiplication by
the time-varying phasor e2πiνt.



A.4 Further Applications of Euler’s Formula 411

What happens when ν is negative? That simply reverses the direction of motion around the circle from
counterclockwise to clockwise. The catch phrase is just so: positive frequencies means counterclockwise
rotation and negative frequencies means clockwise rotation. Now, we can write a cosine, say, as

cos 2πνt =
e2πiνt + e−2πiνt

2
and one sees this formula interpreted through statements like “a cosine is the sum of phasors of positive
and negative frequency”, or similar phrases. The fact that a cosine is made up of a positive and negative
frequency, so to speak, is important for some analytical considerations, particularly having to do with the
Fourier transform (and we’ll see this phenomenon more generally), but I don’t think there’s a geometric
interpretation of negative frequencies without appealing to the complex exponentials that go with real
sines and cosines —“negative frequency” is clockwise rotation of a phasor, period.

Sums of sinusoids As a brief, final application of these ideas we’ll consider the sum of two sinusoids of
the same frequency.3 In real terms, the question is what one can say about the superposition of two signals

A1 sin(2πνt+ φ1) + A2 sin(2πνt+ φ2) .

Here the frequency is the same for both signals but the amplitudes and phases may be different.

If you answer too quickly you might say that a phase shift between the two terms is what leads to beats.
Wrong. Perhaps physical considerations (up to you) can lead you to conclude that the frequency of the
sum is again ν. That’s right, but it’s not so obvious looking at the graphs of the individual sinusoids and
trying to imagine what the sum looks like, e.g., (see graph below):

Figure A.1: Two sinusoids of the same frequency. What does their sum look like?

3 The idea for this example comes from A Digital Signal Processing Primer by K. Stieglitz
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An algebraic analysis based on the addition formulas for the sine and cosine does not look too promising
either. But it’s easy to see what happens if we use complex exponentials.

Consider
A1e

i(2πνt+φ1) +A2e
i(2πνt+φ2)

whose imaginary part is the sum of sinusoids, above. Before messing with the algebra, think geometrically
in terms of rotating vectors. At t = 0 we have the two vectors from the origin to the starting points,
z0 = A1e

iφ1 and w0 = A2e
iφ2 . Their sum z0 + w0 is the starting point (or starting vector) for the sum of

the two motions. But how do those two starting vectors move? They rotate together at the same rate, the
motion of each described by e2πiνtz0 and e2πiνtw0, respectively. Thus their sum also rotates at that rate —
think of the whole parallelogram (vector sum) rotating rigidly about the vertex at the origin. Now mess
with the algebra and arrive at the same result:

A1e
i(2πνt+φ1) +A2e

i(2πνt+φ2) = e2πiνt(A1e
iφ1 + A2e

iφ2) .

And what is the situation if the two exponentials are “completely out of phase”?

Of course, the simple algebraic manipulation of factoring out the common exponential does not work if
the frequencies of the two terms are different. If the frequencies of the two terms are different . . . now that
gets interesting.
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Some References

Two books that have been used often as texts for 261 are:

R. M. Gray and J. W. Goodman Fourier Transforms, Kluwer, 1995

R. N. Bracewell, The Fourier Transform and its Applications, McGraw Hill, 1986

Gray and Goodman is the main reference for this version of the course and is at the bookstore as
a ‘recommended’ book. The feature of Gray & Goodman that makes it different from most other
books is the parallel treatment of the continuous and discrete cases throughout. Though we won’t
follow that approach per se it makes good parallel reading to what we’ll do. Bracewell, now out in
its third edition, is also highly recommended. Both books are on reserve in Terman library along
with several others listed below.

Some other references (among many) are:

J. F. James, A Student’s Guide to Fourier Transforms, Cambridge, 1995

This is a good, short book (130 pages), paralleling Bracewell to some extent, with about 70% devoted
to various applications. The topics and examples are interesting and relevant. There are, however,
some pretty obscure mathematical arguments, and some errors, too.

Jack D. Gaskill, Linear Systems, Fourier Transforms, and Optics, Wiley, 1978

This is sometimes used as a text for 261. The applications are drawn primarily from optics (nothing
wrong with that) but the topics and treatment mesh very well with the course overall. Clearly
written.

A. Papoulis, The Fourier Transform and its Applications, McGraw Hill, 1960

Same title as Bracewell’s book, but a more formal mathematical treatment. Papoulis has written a
whole slew of EE books. Two others that are relevant to the topics in this class are:

A. Papoulis, Systems and Transforms With Applications in Optics, Krieger Publishing Company, 1981

A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw Hill, 1991

This last one has very general forms of the sampling theorem, including reconstruction by random
sampling. Read this and be one of the few people on earth to know these results.
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P. J. Nahim, The Science of Radio, 2nd edition, Springer, 2001

This is an interesting and entertaining book on the history and practice of radio. Of relevance to
our course are treatments of the Fourier analysis of radio signals, from sparks to AM. The author’s
intention is to start from scratch and take a ‘top down’ approach.

Some references for the discrete Fourier transform and the fast Fourier transform algorithm are:

E. O. Brigham, The Fast Fourier Transform, Prentice Hall, 1974

This is a standard reference and I included it because of that; I think it’s kind of clunky, however.

W. Briggs and V. Henson, The DFT: An Owner’s Manual for the Discrete Fourier Transform, SIAM,
1995

I really like the treatment in this book; the topics, the examples, the problems are all well chosen.

A highly respected, advanced book on the FFT algorithm is

C. van Loam, Computational Frameworks for the Fast Fourier Transform, SIAM 1992

Books more often found on mathematician’s shelves include:

H. Dym and H. P. McKean, Fourier Series and Integrals, Academic Press, 1972

This is a very well written, straightforward mathematical treatment of Fourier series and Fourier
transforms. It includes a brief development of the theory of integration needed for the mathematical
details (the L2 and L1 theory). Breezy style, but sophisticated.

T. W. Körner, Fourier Analysis, Cambridge, 1988

This is a good, long book (580 pages) full of the lore of Fourier analysis for mathematicians. It’s
written with a light touch with lots of illuminating comments.

R. Strichartz, A Guide to Distribution Theory and Fourier Transforms, CRC Press, 1994

This is an accessible introduction to distributions (generalized functions) and their applications,
at the advanced undergraduate, beginning graduate level of mathematics. It’s a good way to see
how distributions and Fourier transforms have become fundamental in studying partial differential
equations (at least for proving theorems, if not for computing solutions).

A. Terras, Harmonic Analysis on Symmetric Spaces and Applications, I, II, Springer Verlag, 1988

If you want to see how the Fourier transform is generalized to the setting of Lie groups, and why it’s
such a big deal in number theory, these books are an excellent source. Let me know if you believe
the applications.
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n-dim Fourier series, 359, 361
coefficients, 361

n-dim Fourier transform, 333
convolution theorem, 351
definition, 334
general stretch theorem, 348
inverse, 334
linearity, 345
notation, 333
polar coordinates, 354
properties, 345
rotation theorem, 349
shift and stretch theorem, 350
shift theorem, 345
spectrum, 338
stretch theorem, 347

n-dim Fourier transform of
delta function, 353
radial function, 354
separable functions, 341

n-dim Schwarz functions, 352
n-dim complex exponential, 360
n-dim complex exponentials, 335
n-dim convolution, 351
n-dim functions

circ, 355
delta, 352
Gaussian, 344
jinc, 356
parallelogram rect, 350
rect, 342

n-dim periodic functions, 359
n-dim stretch theorem derivation, 357
n-dim tempered distributions, 352

AC component, 9
Ahlfors Lars, 148
alias, 239
aliasing, 238, 245
analytic signal, 316
antenna radiation patterns, 201
artifacts, 395
attenuation coefficient, 385
averaging and least squares, 320

BachJ.S., 9
bandlimited function on R2, 380
bandwidth, 13, 224

basis
dual, 376
natural, 28
orthonormal, 28

basis of CN

complex exponentials, 265
shifted delta, 263

bed of nails, 370
bell-shaped curve, 99
Bessel function of the first kind

first-order, 356
zero-order, 355

bit reversal, 289
via permutation matrices, 289

Bracewell, 189, 201
Brownian motion, 362
butterfly diagram, 287
buzz, 47

Cantor G., 2
CAT, see Computer Assisted Tomography
Cauchy-Schwarz inequality, 33

and matched filters, 310
causal function or signal, 312
causality, 311

and linear systems, 311
and linear time invariant systems, 311
and physical realizability, 312

Central Limit Theorem, 116, 118, 129
Central Slice Theorem, see Projection-Slice Theorem
change of variables formula

for multiple integrals, 357
circ function, 355
circularly (radially) symmetric function, 354
clarity of glass, 394
Clark Latimer, 45
compact support, 225
complex exponentials

n-dim, 335
eigenfunctions of LTI systems, 307
operator decomposition, 308

complex inner product, 30, 36
Computational Frameworks for the Fast Fourier Trans-

form, 285
Computer Assisted Tomography, 395
continuity of Fourier transform, 136
continuous Fourier transform

of sampled signal, 251
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convergence
Fourier series, 50
of power integral, 367
pointwise, 53
pointwise vs. uniform, 58
uniform, 53

convergence rate
Fourier series, 53

convolution, 43, 91
and probability density functions, 125
as a smoothing operation, 116, 196
as smoothing and averaging, 96
definition, 93
derivative theorem, 196
Dirichlet kernel, 60
discrete, 273
in frequency domain, 94
interpretation, 95
properties, 97
theorem, 93
visualization, 95

convolution integral, 43
Cooley J., 249
crystal lattice dual, 378
crystals, 378
cumulative density function (cdf), 121
cumulative probability, 121
cycle, 5

DC component, 9
in discrete case, 257

deconvolution, 98
delta

n-dim, 352
along the line, 389
approximating function sequences, 166
as a tempered distribution, 163
convolution property, 193
derivative, 178
discrete, see discrete delta
Fourier transform, 171
function, 98, 153
function origins, 156
Kronecker, 28
product with a function, 185
scaling, 191
sifting property, 193

derivative of
delta function, 178
signum (sign) function, 177
unit ramp function, 177
unit step function, 176

DFT, see discrete Fourier transform
differential calculus, 175
differential equations

solution via Fourier transform, 106
differential operator, 106

diffraction, 199
by a single slit, 204
by two point sources, 206

diffraction gratings, 209
diffusion, 39

submarine telegraphy, 45, 109
digital filters, 319

analysis in the frequency domain, 323
computation in the frequency domain, 325

digital watermarking, 339
Dirac comb, 210
Dirac P., 139, 156
Dirichlet kernel, 49, 59
discrete delta, 263

properties, 274
discrete filters

band-pass, 327
low-pass, 325

discrete Fourier transform, 249, 252
alternative definition, 262, 275
convolution, 273
duality relations, 268
general properties, 259, 271
matrix form, 255
modulation theorem, 272
notation, 252
of reversed signals, 266
Parseval’s identity, 271
periodicity, 260
shift theorem, 272
vector form, 255

discrete Fourier transform of
discrete rect, 330
shifted deltas, 264
vector complex exponential, 265

discrete linear systems examples
matrix multiplication, 296

discrete signals
periodic assumption, 261
periodicity, 269

disrete convolution
and random variable probability, 126

distribution
normal (or Gaussian), 118, 124
uniform, 123

distributions, 135, 139, 153
as limits, 153
as linear functionals, 157
convolution, 193, 195
derivative, 176
duality relations, 183
evenness and oddness, 184
other classes, 164
physical analogy, 165
product with a function, 185
reversal, 182
tempered, 139
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distributions and Fourier transform
convolution theorem, 192
derivative theorem, 187
shift theorem, 189
stretch theorem, 191

dual (reciprocal) basis, 376
dual lattice, 375

electron density distribution, 210
electrostatic capacity per unit length, 45
energy spectrum, 13, 73
Euler, 99
existence of Fourier transform, 135
exponential decay

one-sided, 77
two-sided, 88

far field diffraction, 203
Faraday Michael, 45
fast Fourier transform, 277

algorithm, 277
and Gauss, 258
butterfly diagram, 287
calculation, 280
computational complexity, 286
description, 281
divide and conquer approach, 284
sorting indices, 287
via matrix factorization, 285

Feynman, 199
FFT, see fast Fourier transform
filtering, 102
filters, 102

bandpass, 104
discrete, 325
highpass, 105
lowpass, 103
notch, 106

finite sampling theorem, 232
formula

integration by parts, 51
Fourier, 39

analysis, 1
coefficients, 11
finite series, 12
infinite series, 12

Fourier coefficients
as Fourier transform, 72
size, 50

Fourier inversion theorem, 72
Fourier optics, 199
Fourier pair, 74
Fourier reconstruction

model brain, 399
Fourier transform, 65

continuity, 136
definition, 71

duality, 79
existance, 135
magnitude and L1 norm, 138, 141
motivation, 68
of a Fourier series, 220
of reversed signals, 81
polar coordinates, 354

Fourier transform of
1/x, 188
delta, 171
shah function, 214
shifted delta, 173
signum, 188
sine and cosine, 174
unit step, 188

Fourier transform properties
derivative formula, 106, 142
duality, 79
even and odd symmetry, 82
general shift and stretch theorem, 87
linearity, 83
shift theorem, 83
stretch (similarity) theorem, 84

Fraunhofer approximation (diffraction), 201
Fraunhofer diffraction, 202
frequencies

positive and negative, 256, 262
frequency domain

polar coordinate grid, 398
frequency response, 307
Friedrich and Kniping, 209
function

absolutely integrable, 36
compact support, 164
global properties, 53
local properties, 53
orthogonal projection, 38
rapidly decreasing, 140
scaling, 78
Schwartz class, 143
smoothness and decay, 140
square integrable, 36

functional analysis, 293
fundamental solution

heat flow on a circle, 43

Gauss, 99, 249
calculating orbit of an asteroid, 258

Gaussian function, 99, 117
general form, 100
heat kernel for infinite rod, 108
its Fourier transform, 100
periodization, 115

Gaussian integral evaluation, 101
generalized Fourier transform, 179
generalized functions, 139
generating function, 365
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Gibbs J. W., 57
Gibbs phenomenon, 57

square wave, 62
Goodman J. W., 199
Gray and Goodman, 189
Green’s function

for infinite rod heat flow, 109
heat flow on a circle, 43

Hankel transform, 355
harmonic oscillator, 7
harmonics, 7, 21

amplitude and phase, 9
energy, 13

heat, 39
flow, 39

heat equation, 40
infinite rod, 107, 156

heat flow
on a circle, 41, 113
on an infinite rod, 107
spot on earth, 43

heat kernel
for infinite rod heat flow, 109

Heaviside, 156
Heaviside function, 176
Heaviside Oliver, 46, 139, 176
Heisenberg uncertainty principle, 132
Heisenberg Werner, 47
Heisenberg’s inequality, 132
Helmholtz equation, 201
high-pass filter, 198
Hilbert transform, 178, 312

and analytic signals, 316
as an LTI system, 315
as an operator, 313
Cauchy principal value integral, 314
inverse, 314
of sinc, 318

histogram, 119
Huygens Christiaan, 200
Huygens’ principle, 202

identity
infinite sum of Gaussians, 114

IDFT, see inverse discrete Fourier transform
improper integral, 180
impulse function, 98, 153
impulse response, 102, 198, 300

heat flow on a circle, 43
impulse train, 49
independence, 124
independent periodicity, 359
inner product

complex-valued functions in L2, 30
geometric formula, 35
in n-dim, 360

real-valued functions in L2, 29
vectors in Rn, 27

instantaneous frequency, 318
integer lattice, 361, 370

self-dual, 375
integral

convergence, 149
integration, 146

contour and the residue theorem, 148
positive functions, 146

interpolation
general form, 228
Lagrange, 229

inverse n-dim Fourier transform
definition, 334

inverse discrete Fourier transform, 268
matrix form, 269

inverse Fourier transform
definition, 72
motivation, 72

inverse Hilbert transform, 314

Jacobi theta function, 114
Jacobi’s identity, 114
jinc function, 356
Joy of Convolution, 97

Körner T., 148
Kac Mark, 119
kernel

Dirichlet, 49, 59
Kronecker delta, 28

Lagrange, 229
Lagrange interpolation polynomial, 230
Laplacian, 201
lattice, 217, 370

and shah, 373
area, 372
dual, 375
fundamental parallelogram, 372
general, 372
reciprocal, 375
unit cell, 372

lattice sampling formula, 382
Law of squares, 46
least squares curve fitting, 258
Lebesgue, 23

integral, 138
Lebesgue dominated convergence theorem, 149
Lebesgue integral, 148
Lectures on Physics, 199
light

linearly polarized, 200
monochromatic, 200
point source, 207
waves, 201

limits of distributions, 166
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line
(ρ, φ) parametrization, 387
(m, b) parametrization, 387
parametric description, 387

line impulse, 389
linear change of variables, 348
linear combination, 294
linear system

additivity, 294
homogeneity, 294

linear systems, 293
and causality, 311
and convolution, 297
and translation, 298
composition or cascade, 299
impulse response, 300
kernel, 296
superposition theorem, 300
via integration against a kernel, 296

linear systems examples
integration, 296
multiplication, 295
periodization, 298
sampling, 295
switching, 295

linear time invariant systems
and causality, 311
and Fourier transform, 307
definition, 302
superposition theorem, 303
transfer function, 307

Lippman G., 118
Lord Kelvin, 45
Lorenz profile curve, 78
Los Alamos, 47
LTIS, see linear time invariant systems

Markov process, 362
matched filter theorem, 310
matched filters, 309
matrix

circulant, 298
Hermitian, 270
orthogonal, 270, 349
rotation, 349
symmetric, 270
Toeplitz, 298
unitary, 270

Maxwell’s theory of electromagnetism, 156
measure, 148

theory, 148
medical imaging, 384

numerical computations, 397
reconstruction, 396

Michael Frayn’s play Copenhagen, 47
Michelson and Stratton’s device, 57
minimum sampling rate, 227

module, 372
musical

pitch, 8
tuning, 8

musical tone, 47

narrowband signal, 317
Newton, 200
Newton’s law of cooling, 40
nonrecursive filter, 321
norm

L1, 138
L2 (square), 23

normal approximation or distribution, 118
notch filter, 199
Nyquist frequency, 227
Nyquist Harry, 227

one-sided exponential decay, 77
operators, 153
ordinary differential equations

solution, 107
orthogonality, 26
orthonormal basis, 28

Pólya G., 364
Parseval’s theorem, 24

for Fourier transforms, 73
period

fundamental, 4
periodic distributions, 218

and Fourier series, 217
periodic functions, 2, 4

summation of, 5
periodicity

and integer lattice, 371
independent, 359
spatial, 2
temporal, 2

periodizing sinc functions, 235
permutation matrix, 282
perpendicularity, 26
plane wave field, 202
Poisson summation formula, 215

n-dim case, 383
polar coordinates Fourier transform, 354
power integral convergence, 367
power spectrum, 13, 73
principal value distribution, 180
principle of superposition, 294
principle value integrals, 137
probability, 120, 121

generating function, 365
probability density function (pdf), 119
probability distribution, 119
Projection-Slice Theorem, 395
projections, 390
Pythagorean theorem, 26
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quadrature function, 315
quantum mechanics

inequalities, 132
momentum, 134
observable, 134
particle moving in one dimension, 134
position of particle, 134

radial function, 354
Radon Johann, 388
Radon transform, 387, 388

evenness, 393
linearity, 393
properties, 393
shift, 393

Radon transform of
circ, 391
Gaussian, 392

random variable
continuous, 119
discrete, 119
independent and identically distributed (iid), 128
mean (or average), 121
standrad deviation, 121
variance, 121

random variables, 118
random vector, 363
random walk, 362

recurrent, 365
transient, 365

randomw walk
theorem, 364

rapidly decreasing functions, 140, 142
dual space, 158
Fourier inversion, 144
Fourier transform, 143
Parseval identity, 145

ratio of sine functions, 236
Rayleigh’s identity, 24, 32
reciprocal lattice, 375
reciprocal or dual lattice , 217
reciprocal relationship

spatial and frequency domain, 336
reciprocity

time and frequency domain, 15
rect function, 65
recursive filter, 321
resistance per unit length, 45
reversed signal, 81

discrete case, 266
Fourier transform, 81

Riemann integral, 25
Riemann-Lebesgue lemma, 139, 150
Riesz-Fischer theorem, 24
Roentgen William, 209
running average, 321

sampling, 209

endpoint problem, 243
for bandlimited periodic signal, 230
in frequency domain, 251
sines and bandlimited signals, 222
with shah function, 213

sampling and interpolation, 222
bandlimited signals, 225

sampling on a lattice, 380
sampling theorem, 226
Savage Sam, 118
sawtooth signal, 54
scaling operator, 191
Schwartz kernel, see impulse response
Schwartz Laurent, 139, 143
self-dual lattice, 375
separable functions, 341
separation of variables method

in partial differential equations, 341
Serber Robert, 47
shah

distribution, 210
Fourier series, 219
Fourier transform, 214
function, 210
scaling identity, 214

Shannon C., 140, 227
shift (delay) operator, 189
shifted delta

Fourier transform, 173
sifting property of delta, 193
signal

bandlimited, 13, 71, 73, 224
bandwidth, 13, 224
reversal, 81

signal conversion
continuous to discrete, 249

signal-to-noise ratio, 310
signum (sign) function, 177
similarity, 84
sinc function, 69

as a convolution identity, 225
orthonormal basis, 228

sinusoid, 7
Smith Julius, 20
smooth windows, 150
SNR, see signal-to-noise ratio
Sommerfeld, 199
sorting algorithm

merge and sort, 277
spatial variable, 333
spectral power density, 73
spectrum, 13, 73

analyzer, 13
continuous, 71
musical instruments, 20
unbounded, 224

square integrable functions, 21
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square sampling formula, 381
Stokes G., 45
superposition, 294

principle, 294
superposition theorem

for discrete linear systems, 302
for discrete linear time invariant systems, 304
for linear systems, 300
for linear time invariant systems, 303

support of a function, 164, 224
system, 293

Tekalp A. M., 217
telegraph equation, 46
temperature, 40
tempered distribution

Fourier inversion, 171
Fourier transform, 169
inverse Fourier transform, 170

tempered distributions, 153, 157
continuity, 158
defined by function, 159
dual space, 158
linearity, 158
regularization, 197

tensor products, 341
test functions

class, 139
thermal capacity, 40
thermal resistance, 40
Thomson William (Lord Kelvin), 45, 99, 109
timelimited vs. bandlimited, 225, 233
Toeplitz Otto, 298
tomography, 386, 395
top-hat function, 66
transfer function, 102
transfer function, 198
transfer function of linear time invariant system, 307
trapezoidal rule approximation, 397
triangle function, 75
triangle inequality, 35
Tukey John, 26, 249
tuning

equal tempered scale, 8
natural, 8

Two Slits experiments, 200
two-dimensional shah, 370
two-sided exponential decay, 88

unit ramp function, 177
unit step function, 176

Van Loan Charles, 285
vector, 26

inner (dot) product, 27
norm, 26
projection, 28

vector complex exponential, 253

vector complex exponentials
eigenvectors, 309
geometric series, 328
orthogonality, 264

von Laue Max, 209
von Neumann John, 34

Wandell Brian, 4
wave equation, 201
wavefront, 201
Whitehouse Edward, 46
Whittaker E., 227
windowing, 145

X-ray diffraction, 378
X-rays, 209

Young Thomas, 200
Young’s experiment, 205

zero padding, 290
zero phase, 336
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